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Animals must contend with an ever-changing environment. Social animals,

especially eusocial insects such as ants and bees, rely heavily on communication

for their success. However, in a changing environment, communicated infor-

mation can become rapidly outdated. This is a particular problem for

pheromone trail using ants, as once deposited pheromones cannot be removed.

Here, we study the response of ant foragers to an environmental change. Ants

were trained to one feeder location, and the feeder was then moved to a different

location. We found that ants responded to an environmental change by strongly

upregulating pheromone deposition immediately after experiencing the change.

This may help maintain the colony’s foraging flexibility, and allow multiple food

locations to be exploited simultaneously. Our treatment also caused uncertainty

in the foragers, by making their memories less reliable. Ants which had made an

error but eventually found the food source upregulated pheromone deposition

when returning to the nest. Intriguingly, ants on their way towards the food

source downregulated pheromone deposition if they were going to make an

error. This may suggest that individual ants can measure the reliability of

their own memories and respond appropriately.
1. Introduction
Uncertainty poses a significant problem for animals, especially when facing a chan-

ging environment. To overcome uncertainty, animals must continually gather

information about their surroundings [1]. Central place foragers often have a

well-developed memory [2–4]. In addition, social animals can share valuable

information, such as patch productivity, safety and quality [5–7]. In many social

insects, such as honeybees and ants, information transfer has become key to

their ecological success. Many ants deposit pheromone trails from a food source

to their nest, thereby recruiting other foragers and increasing food intake [8].

Because the chance of an ant to follow a specific pheromone trail at a bifurcation

is proportional to the relative amount of pheromone on either side of the bifur-

cation [9,10], modulation of pheromone deposition strongly influences collective

decision-making, and thus colony success [7]. Pheromone deposition is therefore

modulated according to factors which impact on foraging success, such as resource

quality, colony need and perceived path use [7,11,12]. However, reliance solely on

trail pheromones may be risky, as accidentally depositing pheromone inappropri-

ately could result in an erroneous information cascade [13,14], and indeed,

behavioural rules are in place to avoid such events [15]. On complex paths, mem-

orizing a route becomes more difficult, resulting in poorer-quality information and

an increase in navigational errors [16].

Similarly, in a changing environment, social information can become rapidly

outdated. This brings particular difficulties to ants, as pheromone trails cannot be

quickly removed. Honeybees can prevent nest-mates from recruiting to a danger-

ous food source, when too much nectar is being retrieved, or to competing nest

sites during nest-relocation, by using a stereotyped ‘stop’ signals [5,17,18]. Phar-

aoh’s ants, Monomorium pharaonis, are reported to deposit a ‘no entry’ pheromone

marker on the trail that does not lead to a food source, preventing other foragers

from taking the wrong route, and it is conceivable that such a ‘no entry’
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Figure 1. Experimental T-maze. Pheromone depositions were counted in the grey rectangular area. Ants were considered to have chosen one arm of the T-maze
when their antennae had crossed a decision line. In every experiment, the feeder was first placed at the end of one arm of the T-maze, and after a set number of
visits by the ants moved to the other arm.
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pheromone could be deployed on outdated routes [19]. How-

ever, apart from the one example in Pharaoh’s ants, no other

stop signals have been reported in ant organization.

An alternative method by which ant colonies could

prevent redundant information from being harmful would

be to upregulate the production of new information. In con-

crete terms, this would entail upregulating pheromone

deposition in response to an environmental change.

To test this, we trained ants to a feeder location, and then

changed the environment by changing the feeder location.

We hypothesized that ants would respond to this change

by upregulating pheromone deposition.
2. Material and methods
(a) Housing and maintenance of the ants
Colonies of the black garden ant, Lasius niger, were collected on the

campus of the Ludwig-Maximilian University in Munich, and

housed in plastic foraging boxes (40� 30� 20 cm) with a layer

of plaster of Paris on the bottom. Each box contained a circular

plaster nest (14 cm diameter, 2 cm high). Colonies were queenless

with 1000–2000 workers and small amounts of brood. Colonies

were fed three times per week with Bhatkar diet, a mixture of

egg, agar, honey and vitamins [20]. While being from a queenless

colony may slightly affect the behaviour of ants, this is unlikely to

affect the result of this experiment, as small amounts of brood were

present in the nests [21,22]. Colonies were deprived of food for 4

days prior to each trial to give high and consistent motivation

for foraging and recruitment. Water was provided ad libitum.

(b) Experimental procedure
A colony was given access to a plastic T-maze (stem 15 cm long,

head 22 cm, width 2 cm) via a drawbridge (figure 1). The T-maze

and drawbridge were covered in printer paper overlays. Lines on

the T-maze head 3 cm from the centre of the stem acted as

‘decision lines’, with ants whose antenna crossed the line being

scored as having taken that direction. A bright light was

placed to the right of the T-maze to act as an obvious landmark,

and the experiment was carried out in a room containing many

other landmarks the ants could use to form a route memory. A

drop of 1 molar sucrose (Merck KGaA, Darmstadt, Germany)

solution was placed on a small plastic platform at the end of

one arm of the T-maze and acted as a feeder.
The first five ants to reach the feeder were individually marked

on the abdomen with a dot of acrylic paint, and all other ants were

removed and replaced in the foraging box. This prevented

unmarked ants from visiting the feeder, depositing pheromone or

otherwise interfering with the experiment. Unmarked ants were

then prevented from entering the T-maze using the drawbridge.

The marked ants were allowed to perform either 1, 3, 5, 10 or 15

visits to the feeder (training phase). The location of the feeder was

then switched to the other arm of the T-maze. The variation in the

number of training visits was implemented in order to characterize

the foraging persistence of the ants, results of which are presented

elsewhere [23]. Trained ants began by searching the old feeder

location, but eventually discovered the new feeder location, and

then were allowed to make further return trips to the feeder (testing

phase). During both the outwards (towards the feeder) and return

(towards the nest) journey, the number of pheromone depositions

performed by each ant was counted on the 3 cm section of the

T-maze stem nearest to the T-maze head (figure 1). Pheromone

deposition in L. niger is a highly stereotyped behaviour, and easily

quantified by eye [7]. The arm chosen by each ant at each visit

was also noted. As the presence of trail pheromone itself reduces

pheromone deposition [16], the paper overlay covering the

T-maze head was either removed whenever an ant walked over it

(pheromone-removed treatment) or was left in place throughout

the experiment (pheromone-allowed treatment). Once all the

marked ants had made a correct decision (as defined by the decision

lines) on at least three consecutive visits to the new feeder location,

the ants were removed from the colony, and the experiment ended.

Each colony was tested twice at each level of training visits, once

with pheromone being removed and once with pheromone remain-

ing in place. In half of the experiments the training visits were to the

right, and on the other half to the left. This was randomly assigned.

A total of 413 ants from eight colonies were tested.
(c) Statistical analysis
Statistical analyses were carried out in R v. 3.1.0 [24] using

generalized linear-mixed models [25]. Following Forstmeier &

Schielzeth [26], we included in the tested models only factors

and interactions for which we had a priori reasons for including.

As the pheromone deposition behaviour of ants heading

towards the food source (outgoing) and ants returning to the

nest is known to be very different [15,16,27], we analysed

the behaviour of outgoing and returning ants separately.

As multiple data points were collected from each individual
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Figure 2. Main figure: mean pheromone depositions of ants returning from the food source to the nest, by the visit number relative to the food source location
change. Note that pheromone deposition is upregulated immediately after experiencing the change event. For clarity, this figure shows data only from experiments
in which ants made 15 training visits to the original feeder location before the food source location was changed. See the electronic supplementary material figure
S1 for similar figures from all change treatments. Inset: mean pheromone depositions of returning ants by whether or not they had experienced an environmental
change event, and whether or not they had made a branch choice error before finally locating the food. This figure shows data from both ants which did and
did not deposit pheromone. See the electronic supplementary material, S1 for two similar figures (figures S2 and S3) for deposition probability of ants and
deposition intensity of depositing ants. Electronic supplementary material, S1 also contains all statistical results for the post hoc pairwise analyses. (Online version
in colour.)
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and multiple ants were tested per colony, ant and colony identity

were added as random effects, with ant identity nested inside

colony identity. Binomial data (pheromone deposited or not)

were modelled using a binomial distribution and logit link

function. Count data (number of pheromone depositions for

ants, which deposited pheromone at least once) were modelled

using a Poisson distribution using a log link function.

The following model formulae were used, and each model

was run twice; once for outgoing and once for returning ants.

To test whether an environmental change elicits a change in

pheromone deposition:

pheromone deposited or not OR number of pheromone

depositions = pheromone.removed? + visit

þ directly.after.switch

þ (random effects: ant nested within colony)

With ‘pheromone.removed?’, ‘visit’ and ‘directly.after.switch’ as

fixed effects.

As Czaczkes et al. [16] found that ants which had made an

error while outgoing deposited more pheromone when returning,

we also tested for this effect. Furthermore, in an initial survey of

the data, it seemed that ants which were about to make an error
decreased their pheromone deposition. We also tested explicitly

for this effect. The model formulae used were as follows:

(for returning ants)

pheromone deposited or not OR number of pheromone

depositions ¼ just:made:an:error?þ directly:after:switch

þ (random effects: ant nested within colony)

(for outgoing ants)

pheromone deposited or not OR number of pheromone

depositions ¼ will:make:an:error:this:visit?

þ directly:after:switchþ (random effects: ant nested

within colony)
With ‘just.made.an.error?’, ‘will.make.an.error.this.visit?’ and

‘directly.after.switch’ as fixed effects.

Finally, to explicitly disentangle the effects of making an

error and of experiencing an environmental change, we per-

formed post hoc pairwise comparisons between the four

possible combinations of error/no error and change/no

change. Likewise, to explicitly disentangle the effort of making

an error and travel direction, we performed post hoc pairwise

comparisons between the four possible combinations of error/

no error and travelling outwards/returning to nest.
3. Results
(a) Response of ant to an environmental change
Immediately following a change in feeder locations,

trained ants that had found a changed feeder position dra-

matically increased the number of pheromone depositions

on their way back to the colony. The proportion (Z ¼ 7.61,

p , 0.001) and the number (Z ¼ 5.53, p , 0.001) of depo-

sitions increased (main figure in figure 2). This was true

of both ants which had correctly followed their memory

to the old (now empty) feeder location, and those ants

which had mistakenly taken the wrong path to the new

(now rewarding) feeder location (figure 2 inset).

Conversely, outgoing ants, which had just experienced an

environmental change on their previous visit, were less likely

to deposit pheromone (Z ¼ 22.71, p ¼ 0.0067) even though

they all did eventually relocate the feeder during the previous

visit. However, of the ants that did choose to deposit phero-

mone, the number of pheromone depositions performed did

not change (Z ¼ 0.81, p ¼ 0.42). Surprisingly, whether or not

pheromone was removed from the stem of the maze had no

effect on either deposition probability (outgoing Z ¼ 1.43,

p ¼ 0.15, returning Z ¼ 1.45, p ¼ 0.15) or intensity (outgoing
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Z ¼ 0.99, p ¼ 0.32, returning Z ¼ 0.93, p ¼ 0.35). As reported

previously [16,27], in later visits, ants were less likely to

deposit pheromone (outgoing Z ¼ 28.51, p , 0.001, return-

ing Z ¼ 28.02, p , 0.001), and when they did, they did so

less intensely (outgoing Z ¼ 26.49, p , 0.001, returning

Z ¼ 25.85, p , 0.001) in later visits.

(b) Response of ant to making an error
When returning to the nest after eventually finding the feeder,

ants which had just made an error increased both the prob-

ability (Z ¼ 6.40, p , 0.001) and intensity (Z ¼ 2.03, p ¼
0.043) of pheromone deposition, even after any effect

of environmental change had been taken into account

(figure 2 inset and figure 3). Post hoc analysis revealed that

the upregulation of pheromone deposition in response to an

environmental change and in response to making an error

are separate phenomena (see figure 2 inset and electronic

supplementary material, S1 for statistical test results).

Most surprisingly, outgoing ants which were about to make
an error were significantly less likely to choose to deposit

pheromone (Z ¼ 26.19, p , 0.001, see figure 3 and electronic

supplementary material, S1 and figure S4). However, of the

ants that chose to deposit pheromone, the intensity of

pheromone deposition was unchanged (see the electronic

supplementary material, S1 and figure S5).

significant values. These patterns are mainly driven by the proportion of ants
choosing to deposit pheromone, and not by the modulation of the number of
pheromone depositions by depositing ants. See the electronic supplementary
material, S1 for similar figures (figures S5 and S6) in which pheromone laying prob-
ability and intensity are separated and for statistical details. Data from all visits and
all treatments are pooled for clarity in this figure. (Online version in colour.)
4. Discussion
We found that ants strongly upregulate pheromone depo-

sition in response to an environmental change. This might

also be seen as ants upregulating pheromone deposition on

finding a new, unexpected, food source. Decision-making

systems based on positive feedback loops, such as the ants’

pheromone-based recruitment, are very adept at reaching col-

lective decisions, but are susceptible to becoming trapped in

initial decisions [28–30]. This is because pheromone trails

leading to initially chosen options become so strong as to out-

compete any incipient trails to new options. Even if a better

resource is found, the strong recruitment of a few ants

cannot produce a trail strong enough to compete with the

established trail. Likewise, algorithms based on positive feed-

back and ant colony optimization (ACO) can also suffer from

early convergence and becoming trapped in local optima

[31], as early paths strongly constrain future exploration of

the available options by the algorithm. By implementing a

rule upregulating pheromone deposition after an environ-

mental change, colonies and ACO algorithms may be able

to respond more rapidly to environmental changes, by

facilitating the breaking out from previous decisions.

However, this response is seemingly only open to systems

composed of agents with a memory. Only by comparing the

previous situation to the current one can an environmental

change be noted. However, an alternative behaviour, which

does not require a memory, would be for ants to upregulate

pheromone when returning on an unmarked path, and in

fact, pheromone deposition of returning ants is higher on

unmarked paths [7,15,32]. Decision-making in biological

systems is characterized by multiple redundant or

complementary mechanisms, and it is thus perhaps not

surprising to find two separate mechanisms, which seem to

fulfil the same role. A further alternative to upregulating

recruitment in the face of environmental change would be
to downregulate recruitment to the old food location.

Indeed, honeybees can employ a piping signal to stop

recruitment to dangerous food sources, and to prevent

decision-making deadlocks [5,17,18]. We might expect honey-

bees, which have an excellent memory, to also show an

upregulation in recruitment when faced with an environ-

mental change. Likewise, it may be fruitful to search for a

downregulation signal in ant recruitment systems. In honey-

bees, downregulation might be more straightforward, as

individual dancing bees may be targeted. As ants deposit a

pheromone trail and then leave, other mechanisms, such as

perhaps a ‘no entry’ signal [19], might need to be employed.

Another potential benefit of responding to a changing

environment by upregulating pheromone deposition would

be in maintaining the pheromone trail as an ‘external

memory’ [8]. Positive-feedback-based systems tend to con-

verge on a single decision—a process termed ‘symmetry

breaking’ [30,33]. By upregulating recruitment to new or

underused resources such convergence may be avoided.

Computer scientists tellingly have implemented rules

strengthening underused parts of a network, specifically to

prevent early convergence [34]. Other mechanisms for

coping with environmental change include reducing the

intensity of recruitment, or using more linear positive feed-

back mechanisms, such as individual recruitment [29,35–37].

The apparent response of ants to making an error by upre-

gulating pheromone deposition on the return journey has been

described previously [16]. Intriguingly, we also found that out-

going ants which went on to make an error deposited less

pheromone. This seems to imply that the ants can judge the
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quality of their own memories, and respond accordingly: if the

ant does not trust its own memory, it deposits less pheromone.

The ability to assess the quality of a memory (known as meta-

memory judgement, which is an aspect of metacognition) is a

highly advanced cognitive ability, which has previously only

be demonstrated in mammals and some birds [38–41]. Social

insects, such as ants and honeybees, are often found to have

impressive cognitive abilities, such as making generalizations

(e.g. something being similar or different to something) and

learning abstract relationships between stimuli [42–45]. None-

theless, it is hard to believe that such tiny-brained animals are

capable of such an advanced cognitive feat. However, a recent

study showed that honeybees are capable of selectively ‘opting

out’ of difficult choices [46], although the authors stopped

short of definitively claiming that metacognition was being

used. Their study could not disentangle metacognition from

simple association of the more difficult stimulus with the

‘opt-out’ decision. While our study avoids this particular pit-

fall and other problems which plague demonstrations of

metacognition [47–49] (see the electronic supplementary

material, S1), it was not designed specifically to address this

question. Thus, one could conceive of several alternative expla-

nations for our findings, which do not invoke metacognition.

For example, it is possible that a third factor which we did

not control, e.g. age, may predict both pheromone deposition

and learning accuracy (although the opposite pattern found

for returning ants speaks against this example). Individual

variation between ants may also have caused the correlation

we report. We therefore do not claim a definitive demon-

stration of metacognition in ants. Nonetheless, our findings,

alongside similar results from honeybees [46], are suggestive
of metacognitive abilities in social insects. As Smith [40,47],

one of the founders of the field of metacognition, warns: we

must also be careful that over-stringent demands for demon-

strations of cognitive abilities do not cause us to ‘throw the

baby out with the bathwater’.

Ants and social insects, in general, have a wide variety of

elegant behavioural rules, which allow them to reach adap-

tive collective decisions in an ever-changing environment.

The combination of individual cognitive abilities, such as a

memory, alongside the ability to communicate information,

allows for added complexity [8,23]. Whether or not they

also possess metacognitive abilities, social insects demon-

strate an impressive array of behavioural adaptations. While

we have learned a great deal about social insect organization,

and applied some of what we have learned, there are clearly

many more aspects left to apply, and much more to learn

about how social insects make decisions.
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