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Parkinson disease (PD), once considered as a prototype of
a sporadic disease, is now known to be considerably affected
by various genetic factors, which interact with environmental
factors and the normal process of aging, leading to PD. Large
studies determined that the hereditary component of PD is at
least 27%, and in some populations, single genetic factors are
responsible for more than 33% of PD patients. Interestingly,
many of these genetic factors, such as LRRK2, GBA, SMPD1,
SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved
in the autophagy-lysosome pathway (ALP). Some of these
genes encode lysosomal enzymes, whereas others
correspond to proteins that are involved in transport to the
lysosome, mitophagy, or other autophagic-related functions.
Is it possible that all these factors converge into a single
pathway that causes PD? In this review, we will discuss these
genetic findings and the role of the ALP in the pathogenesis
of PD and will try to answer this question. We will suggest a
novel hypothesis for the pathogenic mechanism of PD that
involves the lysosome and the different autophagy pathways.

Introduction

Parkinson disease (PD) is a common, age-related, neurode-
generative movement disorder, characterized by degeneration of
dopaminergic neurons at the substantia nigra pars compacta, and
accumulation of the SNCA protein within aggregates termed
Lewy-Bodies.1 The lifetime risk for PD is 1–2%,2 with various
environmental and genetic factors that affect PD susceptibility.1

For the past 2 decades, major advancements have been made
in the understanding of the genetic basis of PD, transforming
our notion of PD as a sporadic disease in which “it appears
unlikely that heredity is an important determinant”3 into a disor-
der largely affected by genetics. Studies that aimed to determine
the role of heredity in PD, suggested that at least 27% and up to
60% is attributed to genetic factors.4-6 With the development of
new genetic methods, we now know of numerous genes and
genetic loci that cause or affect the risk for PD.

Recently, the largest genetic study of PD thus far—a large
scale meta-analysis of genome-wide association studies (GWAS),
analyzed data from more than 19,000 PD patients and over
100,000 controls—identified 24 genetic loci across the genome
that are associated with PD.7 Most of these genetic markers were
identified in previous large GWASs,4,8-13 and 6 of them were
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novel. Interestingly, out of these 24 loci, at least 11 genes are
involved in or disrupt various functions of the autophagy-
lysosome pathway (ALP), namely SNCA,14 GBA,15,16

LRRK2,17,18 SCARB2,19,20 LAMP3,21 RAB29/RAB7L1,17,22,23,
MAPT,24-26 GAK,27,28, SREBF1,29 GPNMB,30,31 and potentially
TMEM175.32

Prior to and during the GWAS era, the study of familial par-
kinsonism and candidate gene approaches in clinical settings, led
to the discovery of additional genes that cause PD or parkinso-
nian syndromes. The first gene that was identified was SNCA
(synuclein, a [non A4 component of amyloid precursor]), in an
Italian family with PD,33 followed by the identification of the
PARK2,34 PINK135 and PARK7/DJ-136 genes in young onset
recessively inherited PD. Additional autosomal recessive muta-
tions that lead to atypical parkinsonism syndromes were identi-
fied in the genes ATP13A2,37 ATP6AP2,38 and SYNJ1,39,40 and
mutations in DNAJC13 were suggested to cause autosomal dom-
inant familial PD.41 Disease-causing mutations with reduced
penetrance were also identified in familial settings and cohort
studies in the LRRK242-45 and GBA46 genes, which are now rec-
ognized as the 2 most common genetic causes of PD worldwide.
More recently, mutations in the VPS3547,48 and SMPD149,50

genes were also suggested to cause PD. All of these genes are also
involved in various functions of the ALP.

The importance of the ALP in neuroprotection and neurode-
generation in general is well established.51 For example, ATG5
and ATG7, 2 important proteins in the ALP,52,53 are crucial for
neuronal maintenance. Deficiency of ATG5 in mice leads to
motor function deficiency and accumulation of neuronal inclu-
sion bodies.54 Similarly, mice with selective ATG7 deficiency in
the central nervous system have motor impairment, severe neuro-
degeneration, and formation of inclusion bodies from polyubi-
quitinated proteins.55 Whole-brain ATG7 deficiency results in
accumulation of the PD-related proteins SNCA and LRRK2.56

SQSTM1/p62 also plays a central role in autophagy and may be
involved in neurodegeneration.57-59 However, it is still not clear
if the ATG5, ATG7 and SQSTM1 genes have a direct role in PD
in humans, as no mutations or genetic risk markers have been
found in these genes in PD patients.

In this review we will discuss the findings in human genetic
studies and their suggested roles in the ALP and in PD pathogen-
esis (Fig. 1). We will attempt to answer the question of whether
these genes are involved in a specific ALP-related function that
may lead to PD, or whether it is more probable that several ALP-
related functions are involved. We will conclude by suggesting a
novel hypothesis for one possible mechanism by which ALP
dysfunction may lead to PD.

The Autophagy-Lysosome Pathway

Autophagy is a cellular degradation pathway involved in vari-
ous processes in normal and diseased cells. The normal function
of the ALP involves the transfer of various components into the
lysosome for degradation, by 3 main pathways: chaperone-medi-
ated autophagy (CMA), microautophagy, and macroautophagy

(Fig. 1).51 CMA involves chaperone proteins that bind and
direct specific targets (e.g., SNCA) to receptors on the lysosomal
membrane (e.g., LAMP2A, to be discussed later), which in turn
internalize these targets into the lysosome for degradation.
Microautophagy is the engulfment and internalization of cyto-
plasmic components by the lysosomal membrane, a relatively less
studied mechanism. Macroautophagy is a complex mechanism,
characterized by the creation of a phagophore, a double-lipid
bilayer that engulfs cellular cargo, such as proteins and organelles,
to create an autophagosome, which in turn fuses with the lyso-
some for the degradation of its content.51 This process includes
mitophagy, the selective degradation of mitochondria via a path-
way involving specific signals.60

Genes Involved in Lysosomal Storage Disorders and
Parkinson Disease

GBA—Gaucher disease
Mutations in the GBA gene may lead to the autosomal reces-

sive Gaucher disease (GD) when inherited from both parents.
GD is a lysosomal storage disorder that can be further classified
into neuropathic (GD type II or III) or non-neuropathic (GD
type I). In GD, the lysosomal enzyme encoded by the GBA gene,
glucosidase b, acid/glucocerebrosidase, has a reduced or null
activity, which leads to accumulation of glucocerebroside and
lysosomal dysfunction. Thus far, approximately 300 GBA muta-
tions have been described, including missense, frame-shift,
splice-sites, and stop mutations, as well as recombinant alleles
caused by recombination with the nearby and highly homologous
pseudogene.61 The association between GBA mutations and PD
was first suggested after several clinical reports described GD
patients who developed PD.62 Although initially this association
was controversial,63,64 it is now clear that GBA mutations are
among the most common genetic factors for PD worldwide,
found in about 3–20% of the patients in various populations,
most common among Ashkenazi-Jews, but also found in Asians,
Europeans, North and South Americans, and Africans.46,65 The
classification of GBA mutations as “severe” or “mild” according
to the type of GD that they lead to (severe mutations lead to the
neuropathic GD types and mild mutations lead to the non-neu-
ropathic type),66 is also valid for PD, as carriers of severe GBA
mutations have higher risk and earlier onset compared to mild
GBA mutation carriers.67

It is still unclear how GBA mutations lead to PD, and several
hypotheses have been raised, including mechanisms involving loss-
of-function or gain-of-function mutations.68 First, it was demon-
strated that chemical inhibition of GBA can lead to accumulation
of SNCA,69 a finding that was later replicated in other models
with GBA mutations.70-73 In brains of PD patients without GBA
mutations, reduction of GBA enzymatic activity is associated with
increased SNCA.74 It was also demonstrated that GBA dysfunc-
tion leads to increased cell-to-cell transmission of SNCA.75 A pos-
sible mechanism suggested to explain the accumulation of SNCA
and PD development is a positive feedback loop, in which GBA
depletion increases SNCA accumulation, which in turn inhibits
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the function of normal GBA, causing additional aggregation of
SNCA.71 Alternatively, toxic gain-of-function mechanisms were
suggested,68,76 for example by causing ER stress.76 However, GBA
toxic gain of function, although it can contribute to PD develop-
ment, is less likely to have an essential role in the disease develop-
ment. This can be explained by the fact that null GBA mutations,

which result in lack of expression of GBA, also cause PD.67

Hence, if no protein is produced, it cannot cause a toxic effect,
and loss of function is more likely to be the cause of increased sus-
ceptibility for PD.

Several studies have also suggested that GBA dysfunction may
lead to general lysosomal dysfunction and disruption of

Figure 1. Genes involved in Parkinson disease and in the autophagy-lysosome pathway. Figure 1 depicts genes that are associated with Parkinson dis-
ease and their area of effect in the autophagy lysosome pathway. Genes that are also involved in any lysosomal function that is not one of the forms of
autophagy are depicted above the lysosome.
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autophagy.74,75,77 Moreover, it was suggested that in PD patients
without GBA mutations, there is a reduced function of GBA. For
example, a study on brains of PD patients with wild-type GBA,
the GBA levels and its enzymatic activity were reduced, which
led to reduced lysosomal chaperone-mediated autophagy,
increased SNCA levels and reduced ceramide levels.74 This
observation implies that factors other than GBA mutations,
whether genetic or environmental, can affect the activity of GBA.
Identifying these factors could be of great importance for the
understanding of PD pathogenesis. In a cellular model with
GBA null mutations, there is a general lysosomal impairment,
demonstrated by the accumulation of SQSTM1 and polyubiqui-
tinated proteins, as well as increased LysoTracker-positive struc-
tures, reduced degradation of dextran and accumulation of
vacuoles.75

Interestingly, one of the genes that is repeatedly implicated in
GWASs, the SCARB2 gene, associated with a 10–20% reduced
risk for PD (p < 8 £ 10¡10).4,7 SCARB2 encodes the scavenger
receptor class B, member 2, which is responsible for the transport
of GBA to the lysosome.19 SCARB2 deficiency can lead to
reduced GBA activity and SNCA accumulation.20 Mutations in
SCARB2 cause autosomal recessive progressive myoclonus epi-
lepsy, in which reduced GBA activity is also noted.78 Both
SCARB2 and GBA are also strongly associated with another synu-
cleinopathy, Lewy body dementia,79-81 further supporting the
effect of these genes on SNCA aggregation, and suggesting that
SCARB2 variants may affect GBA and lysosomal function. It will
be important to examine the effects of SCARB2 variants on trans-
port of GBA to the lysosome and on its function in PD-relevant
models. At the end of this review, we propose a novel mechanism
that can explain how GBA mutations impair lysosomal function
and increase susceptibility to PD.

SMPD1—Niemann-Pick type A and B
The SMPD1 gene codes for the lysosomal enzyme sphingo-

myelin phosphodiesterase 1, acid lysosomal, and carriage of
homozygous or compound heterozygous mutations in this
gene may lead to the lysosomal storage disorder Niemann-Pick
type A or B. Since the end product of both GBA and SMPD1 is
ceramide, which was previously implicated in PD,82 and
since both are causing closely related lysosomal storage
disorders, the potential role of the SMPD1 gene in PD was also
examined. Two studies identified rare SMPD1 mutations that are
associated with increased risk for PD;49,50 however, more studies
are needed to determine the significance of the SMPD1 gene
in PD.

Similar to GBA, it is possible that SMPD1 deficiency may lead
to more general disruption of the lysosome and autophagy. For
example, fibroblasts from patients from Niemann-Pick type A
show accumulation of autolysosomes, and an excess of sphingo-
myelin, caused by SMPD1 deficiency, which affects autophagy
regulation.83 In addition, SMPD1 also regulates autophagy in
smooth muscle of mice.84 Therefore, it will be of interest to
examine the effects of SMPD1 mutations on lysosomal activity in
general and on the internalization and processing of SNCA
specifically.

Other lysosomal storage disorder genes
Several other lysosomal storage disorders may be associated

with PD. Limited evidence exists suggesting that the Fabry dis-
ease gene GLA, encoding the lysosomal enzyme galactosidase, a,
may also have a role in PD. One case study of a patient with
Fabry disease presenting with parkinsonism was described.85

Reduced activity of GLA is observed in leukocytes of PD
patients,86 and a subsequent study showed a reduced expression
of GLA both in the mRNA level and in the protein level in PD
patients.87 However, there is little evidence that GLA genetic var-
iants can be associated with PD,88 therefore the role of GLA in
PD is still to be determined.

A possible association of Niemann-Pick type C with PD,
caused by mutations in the NPC1 or NPC2 gene, was also sug-
gested, although the evidence for this association is also not
strong. In a study of 563 PD patients, 1.1% had NPC1 muta-
tions, which was only slightly higher than controls (0.8%) and
not statistically significant.89 A case series of 3 heterozygous car-
riers90 and a case report of an additional carrier91 of NPC1 dis-
ease-causing mutations with parkinsonism, further support a
potential role for NPC1 in PD. Some pathological evidence from
autopsies of Niemann-Pick type C patients’ brains, suggest that
SNCA may be aberrantly phosphorylated and aggregate in Lewy
bodies.92,93 Although none of these genes was implicated in
human genetic studies, it is possible that rare mutations in these
genes can be found in PD; therefore, sequencing of GLA and
NPC1 in different PD cohorts is important for determining if
they have a role in PD.

Autosomal Dominant PD Genes and Autophagy

LRRK2
LRRK2 mutations, together with GBA, are the 2 most com-

mon genetic risk factors for PD. Both are dominant with reduced
penetrance, i.e., heterozygous carriage of a mutation increases the
risk for the disease, but other genetic or environmental factors
are required for PD to develop. Although LRRK2 was initially
identified in several familial PD cases,45,94 it is a common cause
of sporadic PD, found in more than 30% of Arab-Berber PD
patients,95,96 more than 12% of Ashkenazi-Jews with PD,97 and
in many other patient populations worldwide with various fre-
quencies, mostly ranging between 1–5%.98

Evidence from recent years suggests that LRRK2 has an impor-
tant role in autophagy as a part of the pathogenic mechanism
leading to PD. While the wild-type LRRK2 protein is degraded
by CMA, the common LRRK2G2019S mutation impairs this deg-
radation.99 Moreover, it was demonstrated that the interaction
between the mutated LRRK2 and the CMA receptor, LAMP2A,
disturbed the multimerization of the receptor, resulting in accu-
mulation of its substrates, including SNCA.99 These findings
suggest a possible mechanism linking LRRK2 mutations to defec-
tive autophagy and subsequent accumulation of SNCA. Other
studies suggest a role for LRRK2 also in general lysosomal func-
tion and in macroautophagy. In a cellular model transfected with
the gene encoding the LRRK2G2019S mutation, an accumulation
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of autophagic vacuoles is observed.100 Similar responses are noted
in cells with another common mutation, LRRK2R1441C,101 in
mice with the LRRK2G2019S mutation,102 and in Drosophila with
Lrrk2 loss of function.103 Knockdown of LRRK2 increases auto-
phagic activity and reduces cell death;101 however, independent
studies demonstrated that either Lrrk2 mutations or knockout of
Lrrk2 result in the reduction of the autophagic marker LC3-II
(although this could be attributed to accelerated autophagic
flux).104,105 In addition, increased GTPase activity of the
LRRK2 protein impairs endocytic vesicular trafficking and
autophagy.106 Collectively, these results raise the issue of gain vs.
loss of function in LRRK2-associated PD. While it was demon-
strated that the mutations that occur in PD patients can cause
gain of the kinase or GTPase functions,54 the above experiments
demonstrate that both loss and gain-of function have similar del-
eterious effects on autophagy. The reduction in the autophagic
marker LC3-II occurs in both gain- (Lrrk2 mutations)104 and
loss-of-function (knockout) models of LRRK2-associated PD.
Likewise, accumulation of autophagic vacuoles is observed in
both gain- (mutated mice)102 and loss-of-function (Drosoph-
ila)103 models. This could be explained by differences between
species and models, but it is also possible that while LRRK2
mutations cause a gain of kinase/GTPase activity, they also cause
loss of another function at the same time, and therefore this issue
should be further studied.

A recent study also suggested an effect of the LRRK2G2019S

mutation on induction of mitophagy by interacting with the
mitochondrial membrane protein BCL2.107 LRRK2 also inter-
acts with RAB29 and affects PD risk and lysosomal dysfunction;
these interactions will be discussed in the RAB29 section. While
there is clear evidence that LRRK2 is involved in various forms
of autophagy and lysosomal functions, the exact mechanisms
are not fully understood and necessitate more study. Interest-
ingly, LRRK2-associated PD is not always characterized by accu-
mulation of SNCA, and it can be associated with deposition of
MAPT/tau protein or ubiquitin-positive inclusions.108 It was
suggested that LRRK2 dysfunction may be upstream to the
accumulation of SNCA and MAPT, and that other genetic or
environmental factors determine which pathology will
develop;109 however, more evidence is needed to support this
hypothesis.

SNCA and autophagy
SNCA is the main component of Lewy bodies. Duplications,

triplications,110,111 and point mutations 33,112-114 in the SNCA
gene cause PD or parkinsonian syndromes, and genetic markers
in its locus are associated with PD in various popula-
tions.4,7,8,13,115 Since SNCA oligomers are toxic in neurons, a
leading paradigm in PD research suggests that SNCA accumula-
tion, resulting from its overexpression or lack of degradation, is
one of the important mechanisms causing degeneration of dopa-
minergic neurons.116

Early reports suggested that both ALP and the ubiquitin-pro-
teasome system (UPS) are responsible for SNCA degradation,117

but it seems that the main cellular mechanism responsible for its
degradation is the ALP, as SNCA accumulation results from

inhibition of the ALP, but not the UPS.118 CMA internalizes
SNCA into the lysosome,14 but macroautophagy also takes part
in SNCA clearance.118,119

Chaperone-mediated autophagy and SNCA degradation
CMA of wild-type SNCA is mediated by the LAMP2A lyso-

somal receptor and the chaperone molecule HSPA8.14,118,120

Interestingly, the mutant forms of SNCA that cause PD,
SNCAA53T and SNCAA30P, are poorly degraded by CMA,14,121

although they have high affinity to LAMP2A.14 This observation
may suggest that these mutant forms attach to the receptor and
prevent it from internalizing wild-type or mutant SNCA, result-
ing in SNCA accumulation and cellular toxicity. Furthermore,
dopamine can modify SNCA, and as a result the CMA of SNCA
is blocked by the dopamine-modified form of the protein.122

This finding may explain the higher sensitivity of dopaminergic
neurons to SNCA accumulation, as observed in PD. Additional
effects of SNCA on CMA and neurodegeneration may be medi-
ated by the neuronal survival factor MEF2D. Both wild-type and
mutant SNCA inhibit the CMA of MEF2D, accompanied by a
decline of MEF2D function and survival of neuronal cells.123 Of
note, the UCHL1 gene product, whose role in PD is still under
debate, interacts with LAMP2 and increases SNCA levels, sug-
gesting that it affects the CMA of SNCA.124

Wild-type SNCA is also degraded by macroautophagy, and
inhibition of this process causes SNCA accumulation, in contrast
to inhibition of the UPS.118 In addition, following dysfunction
of the CMA pathway in cells with the SNCAA53T mutation, a
subsequent activation of the macroautophagy pathway occurs.121

The same phenomenon follows inhibition of CMA with dopa-
mine,122 or overexpression of wild-type SNCA or SNCAA53T,125

suggesting that macroautophagy may be a compensatory mecha-
nism for dysfunctional CMA of SNCA. It was further demon-
strated that induction of autophagy can induce degradation of
SNCA and rescue neurons from cell death. For example, treha-
lose, a dissacharide that induces macroautophagy, accelerates the
degradation of the SNCAA30P and SNCAA53T mutant forms of
SNCA,126 and induction of autophagy by the transcription regu-
lator of the ALP, TFEB,127 rescues dopaminergic neurons from
SNCA toxicity.128

VPS35 and other genes in the lysosomal-endosomal pathway
Mutations in VPS35 (VPS35 retromer complex component),

are a rare but well validated cause of autosomal dominant PD,
the most common mutation being VPS35D620N.47,48,129-131 In a
meta-analysis of mRNA expression in the substantia nigra (SN),
there was a highly significant decrease in VPS35 levels, which
was further replicated in dopaminergic neurons that were laser-
microdissected from the SN of PD patients.17 VPS35 is a
component of the retromer complex, which mediates endosome-
to-Golgi transport of proteins, for recycling and reuse or for fur-
ther degradation. One of these proteins is M6PR (mannose
6-phosphate receptor [cation dependent]), which is responsible
for transporting many of the lysosomal hydrolases to the lyso-
some.132 Therefore, retromer dysfunction may lead to lysosomal
dysfunction. It was recently shown that the VPS35D620N
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mutation leads to reduced association with the WASH1/Wis-
kott–Aldrich syndrome homolog complex,133 which is a complex
of proteins essential for the process of endosomal actin polymeri-
zation and facilitation of protein sorting.134 The reduced associa-
tion of mutated VPS35 with the WASH complex, further reduce
its recruitment to endosomes, which leads to impairment of
autophagy.133 In addition, knockdown or mutated VPS35 in
neuronal cell cultures leads to reduced colocalization of the
M6PR with the Golgi apparatus and with late endosome/lyso-
some markers.17 Interestingly, 2 additional genes that cause rare
autosomal recessive atypical parkinsonism, ATP6AP2,38 and
SYNJ1,39,40 and the dominant PD gene DNAJC13,41 are also
involved in the endosomal pathway. Similar to VPS35,
DNAJC13 is also associated with the WASH complex by binding
to the FAM21 protein.135 Atp6ap2 regulates endolysosomal traf-
ficking in Drosophila136 and it is essential for the acidification of
lysosomes.137 SYNJ1 also has an important role in endolysosonal
trafficking of synaptic proteins,138 together with the involvement
of the other PD-related genes in this pathway, including LRRK2
and RAB29 (discussed separately), emphasizing its important role
in PD.

Autosomal Recessive PD Genes, Autophagy, and
Mitophagy

Carriage of homozygous or compound heterozygous muta-
tions in 3 genes: PARK2,34 PINK1 35 and PARK7,36 causes
young or early onset PD, with motor symptoms usually occur-
ring between the first and sixth decades of life. PARK2 is the
most common autosomal recessive PD-causing gene, accounting
for most cases of young onset PD, followed by PINK1.108 Inter-
estingly, these genes are all involved in the process of selective
mitochondria engulfment by autophagosomes and their degrada-
tion within the lysosome, termed mitophagy. Pathologically,
PARK2-associated PD is often limited to the substantia nigra,
mostly without Lewy bodies,108 suggesting that the pathogenic
mechanism is downstream of the accumulation of SNCA. This
could mean that ALP dysfunction that leads only to mitophagy
dysfunction may be sufficient for the development of PD, or a
sub-type of PD.

PARK2 and PINK1 in mitophagy
Initially, PARK2 was identified as a cytosolic E3 ubiquitin

ligase, but it was later shown that when mitochondria are depo-
larized, PARK2 is selectively recruited to their surface and ubiqi-
tinates other proteins on the outer mitochondrial membrane,
such as MFN1 and MFN2.139,140 The translocation of PARK2
to the mitochondrial membrane and the recruitment and ubiqiti-
nation of mitochondrial proteins initiates mitophagy, and this
process requires PINK1 expression and kinase activity. PINK1
has low levels of expression on healthy mitochondria, whereas on
dysfunctional mitochondria it rapidly accumulates and recruits
PARK2 to induce mitophagy.141-143 Furthermore, PD-causing
mutations in PINK1144 and PARK2145 disrupt PARK2 recruit-
ment to the mitochondria and the induction of mitophagy.

Overexpression of PARK2 has a protective effect in cells deficient
for PINK1, and overexpression of PINK1 suppresses autophagy
or mitophagy induced by toxins.146 It is possible that lysosomal
dysfunction in lysosomal storage disorders can also affect
PARK2-mediated mitophagy.147 Studies of other genetic condi-
tions in which parkinsonism is a part of the disorder may also
shed more light on the importance of mitophagy in PD. For
example, mutations in the VCP gene cause a multisystem degen-
erative disorder in which one of its many clinical features is par-
kinsonism.148 A recent study demonstrated that the pathogenic
mutations in VCP also impair the clearance of damaged mito-
chondria via the PINK1/PARK2 pathway.149

PARK7 and mitophagy
Interestingly, PARK7 acts under conditions of oxidative stress

in a parallel pathway to that of PINK1 and PARK2 to sustain
mitochondrial function and mitophagy, and overexpression of
PARK2 protects against PARK7 loss and prevents mitochondrial
damage.150 In another study, Park7 overexpression rescues the
phenotype of Pink1 loss of function in Drosophila.151 Altogether,
these studies demonstrated that the PD-related genes PARK2,
PINK1, and PARK7 have an important role in mitophagy, sug-
gesting that impairment of this mechanism has a role in PD path-
ogenesis. Impaired mitochondria processing by mitophagy due to
mutations in any of these genes, may lead to excess production of
reactive oxygen species, cause excessive oxidative stress, and con-
tribute to cell death and neurodegeneration.152

ATP13A2 lysosomal function and autophagy/mitophagy
ATP13A2 codes for a lysosomal transmembrane protein that

functions as P-type ATPase on the lysosome and late endosome,
and is highly expressed in the substantia nigra, as well as in
other parts of the brain.153 Mutations in ATP13A2 cause
Kufor-Rakeb syndrome, which is a rare autosomal recessive dis-
order characterized by early-onset parkinsonism with pyramidal
degeneration and dementia.37 Studies on fibroblasts from these
patients demonstrated that, as compared to controls, there are
high rates of mitochondrial DNA damage, decreased ATP syn-
thesis rates and increased fragmentation of the mitochondrial
network, all suggesting an effect of mitochondrial quality con-
trol. When wild-type ATP13A2 is overexpressed, this mitochon-
drial phenotype is rescued.154 Similarly, silencing of ATP13A2
induces fragmentation of mitochondria in a neuronal cell
model, and its overexpression delays mitochondrial fragmenta-
tion.155 These and similar findings156 suggest a role for
ATP13A2 in quality control of mitochondria, probably through
mitophagy. A more general role in lysosomal function and
autophagy was suggested for ATP13A2, as fibroblasts from
patients with Kufor-Rakeb syndrome as well as mouse primary
neurons with ATP13A2 deficiency lead to reduced capacity of
lysosomal degradation, resulting in SNCA accumulation and
neurotoxicity.157

FBXO7 and mitophagy
Homozygous and compound heterozygous mutations in the

FBXO7 gene can cause a parkinsonism disorder that can be
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clinically similar to PARK2-associated PD,158,159 or to typical
PD.160 Interestingly, just like the other autosomal recessive forms
of PD, it was suggested that FBXO7 is involved in mitophagy.161

Given its similar phenotype to PARK2-associated PD, the inter-
action of FBXO7 with PARK2 was examined, and it was shown
that reduced expression of FBXO7 leads to reduced translocation
of PARK2 to the mitochondria. FBXO7 directly interacts with
PARK2 and recruits it to the mitochondria, and it is also
involved in mitophagy of mitochondria treated with carbonyl
cyanide m-chlorophenylhydrazone.161 Overall, it seems that the
PD autosomal recessive genes may all converge into a subpathway
of the ALP, mitophagy. It may suggest that severe impairment of
mitophagy can elicit PD or a similar disease. Why this
impairment affects mainly dopaminergic neurons at the substan-
tia nigra and the exact mechanism by which this impairment
occurs is still to be determined.

Genes Identified in GWAS and their Potential role in
the Autophagy-Lysosome Pathway

RAB29
Two GWASs identified a region on chromosome 1, termed

PARK16, which includes 5 genes: PM20D1, SLC41A1, RAB29/
RAB7L1, NUCKS1, and SLC45A3.12,13 Minor alleles in this
region are associated with a 30–40% reduced risk for PD, a find-
ing that was later replicated by several other studies in different
populations.162-166 A particularly reduced risk was demonstrated
in the Ashkenazi Jewish population, demonstrating that a haplo-
type that included SNPs in the promoter of RAB29 is associated
with a 10-fold reduced risk. Furthermore, one of the promoter
SNPs, rs1572931, has the strongest association and is found in
both haplotypes with a protective effect.162 Subsequently, it was
demonstrated that the same SNP is associated with alternative
splicing of RAB29, where the protective allele is associated with
increased inclusion of exon 2, while the risk allele is associated
with exon skipping.17 A second SNP within the promoter region
of RAB29, rs823114, has the strongest epistasis with LRRK2,
jointly affecting the risk for PD.

These 2 proteins, RAB29 and LRRK2, not only genetically
interact, they also physically interact, as shown in an unbiased
screen using protein-protein interaction arrays.17,22 This interac-
tion was further supported in a study where RAB29 overexpres-
sion inhibits the known effect of LRRK2 mutations on neurite
length.17 In relation to the ALP, knockdown of RAB29 leads to
swelling of lysosomes and to reduction of M6PR accumulation
in the lysosome, and it was suggested that these changes may be
secondary to altered retromer-mediated trafficking between the
lysosome and the Golgi apparatus.17 It was further confirmed
that RAB29 has an important role in the retrograde trafficking
of M6PRs to the Golgi apparatus.23 M6PRs are needed for
recruitment and transport of lysosomal hydrolases to the lyso-
some; therefore, disruption of this function may lead to lyso-
somal dysfunction.17 Identifying the specific mechanism
underlying the protective effect of RAB29, as well as other pro-
tective genetic factors, should be a priority, since they may

provide clinicians with crucial information for treatment or pre-
vention of PD.

SREBF1
The association between the SREBF1 gene, encoding the ste-

rol regulatory element binding transcription factor 1, and PD
was initially identified in a GWAS,4 and it was recently replicated
in the largest GWAS performed to date.7 In both GWASs, the
minor allele is associated with a reduced risk for PD, with an esti-
mated effect of 5–15% reduced risk. Recently, in a whole
genome RNAi screen that aimed to identify factors that promote
mitophagy mediated by PARK2, the lipogenesis pathway was
implicated with 4 genes of this pathway, SREBF1, SREBF2,
FBXW7 and GSK3A, among the top hits.29,167 Knockdown of
SREBF1 blocks both the translocation of PARK2 to the mito-
chondria and the consequent mitophagy, an effect that is inde-
pendent of PINK1 expression levels.167 Therefore it is
hypothesized that reduced SREBF1 expression my lead to
reduced mitophagy and risk for PD.

SREBF1 also regulates the expression levels of the NPC1 gene
(which is associated with the lysosomal storage disorder Nie-
mann-Pick Type C), by binding to its promoter and increasing
its transcription. Downregulation of this pathway may induce
the sequestration of cholesterol within late endosomes and lyso-
somes,168 and the transcriptional activity of SREBF1 is enhanced
in models of lysosomal storage disorders, leading to increased
transcription of LDLR (low density lipoprotein receptor).169

These findings suggest that SREBF1 has a role in mitophagy, as
well as in regulation of lysosomal lipid accumulation, and more
studies of its potential interactions with PARK2, PARK7, and
PINK1 are necessary.

MAPT
MAPT is one of the most intriguing genes in neurogenetics, as

it is associated with different neurological conditions in different
ways. MAPT codes for the microtubule-associated protein tau,
which aggregates in Alzheimer and other diseases, generally
termed tauopathies. In some of these diseases, such as progressive
supranuclear palsy,170 corticobasal degeneration,171 and argyro-
philic grain disease,172 MAPT variations play an important role.
Additionally, MAPT mutations may cause fronto-temporal
dementia with parkinsonism173 and lower motor neuron dis-
ease.174 However, the association between MAPT variations and
the most common tauopathy, Alzheimer disease, is still not clear,
although several studies suggest such an association.175-177

MAPT haplotypes, such as the H1 haplotype, were identified in
various studies as important risk factors for PD,4,7-9,12,13 in
which tau does not accumulate. Furthermore, MAPT-associated
SNP is the second strongest risk factor in PD GWAS, with an
OR of 0.77 and p D 2 £ 10¡48.7 Considering all these findings,
it is clear thatMAPT plays a critical role in the nervous system.

MAPT is both affected by and affects the function of the lyso-
some, since it is being degraded by it and at the same time is
important to its function.178-181 It is possible that the H1 haplo-
type is associated with impaired autophagy, or with dysfunction of
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MAPT, which may lead to autophagy impairment.26 However,
this hypothesis still needs to be supported by future research.

Other GWAS hits with a possible role in the autophagy-
lysosome pathway

A locus that contains 2 genes, LAMP3 and MCCC1, was
repeatedly identified in GWASs of PD, with an estimated risk
reduction of 13–20%.4,7, 8 LAMP3 encodes the lysosomal-associ-
ated membrane protein 3, which has a role in the unfolded pro-
tein response, and is expressed in immune system cells, mainly
dendritic cells.182 Since the immune system is also suggested to
be involved in PD pathogenesis,183 it is possible that the role of
LAMP3 in PD is related to the lysosomal function in these cells.
It was recently shown that LAMP3 is involved in autophagy, as
its knockdown reduces the ability of cells to complete the auto-
phagic process, and cells with high LAMP3 expression show
increased basal autophagy levels.21 However, not much is known
about this potential function, and since the risk locus for PD
includes both LAMP3 and MCCC1, it is possible that it is
MCCC1 that is involved in PD. Although MCCC1 functions at
the mitochondria as a subunit of the 3-methylcrotonyl-CoA car-
boxylase enzyme,184 it is currently not known if it has any role in
mitophagy or mitochondrial quality control. Studying the poten-
tial relationship of MCCC1 with other mitochondrial-related
genes that are involved in PD, such as PARK2, PARK7, PINK1
and SREBF1 may help determining if it is the LAMP3 gene or
MCCC1 that affects the risk for PD in this locus.

GAK is another gene that was identified in the largest GWASs,
with an estimated effect of 14–30% on risk for PD.4,7,8 GAK
encodes the cyclin G associated kinase, and RNAi-mediated
depletion of GAK results in diminished sorting of CTSD
(cathepsin D),27 an important lysosomal hydrolase that is also
responsible for the degradation of SNCA.185,186 Introducing
RNAi-resistant GAK following RNAi restores the proper lyso-
somal sorting of CTSD.27 Therefore, it is possible that GAK is
involved in PD through its effect on the lysosomal activity of
CTSD and subsequent SNCA degradation, and more studies are
necessary to examine this hypothesis. In another model, it was
demonstrated that knockout of GAK results in destabilization of
the lysosomal membrane and leakage of iron, causing DNA
damage.28

Genetic markers around GPNMB were identified and repli-
cated in several GWASs, with approximately 10% risk reduc-
tion.7,9 Interestingly, GPNMB is an important gene in
melanoma,187 a skin malignancy that is associated with PD.188

The GPNMB protein localizes mainly to melanosomes and to a
lesser extent to lysosomes in melanoma cells; however, in other
cells it localizes to lysosomes.31 Furthermore, GPNMB is
involved in phagocytosis, and is essential for recruitment of the
autophagy protein LC3-II to the phagosome. In addition,
GPNMB is necessary for the fusion of the lysosome with the
phagosome leading to the degradation of the phagosome con-
tent.30 Another gene associated with PD in GWAS, TMEM175
(same locus and effects on risk as GAK), is found in the lysosomal
membrane, but its function is unknown.32

Lysosomal Membrane Properties, Autophagy, and
Parkinson Disease: A Novel Hypothesis

SNCA is the major constituent of Lewy bodies, the neuro-
pathological hallmark of PD, and mutations and gene dosage var-
iations in SNCA cause PD.33,110-114 It was suggested that
overexpression or accumulation of SNCA is toxic to cells, con-
tributing to the development of PD.189 The association between
GBA mutations or dysfunction with SNCA accumulation,46,69-73

in addition to other findings, prompted us to hypothesize a novel
mechanism that may explain GBA-associated PD, but may also
explain sporadic PD (Fig. 2).

The receptor for CMA of SNCA is LAMP2A, a lysosomal
transmembrane protein.14 In order to transport SNCA into the
lysosome for further degradation by CTSD,186 the LAMP2A
protein must form complexes on the lysosomal membrane.190 In
its monomeric state, LAMP2A is found in specific membrane
lipid microdomains, and the protein-complex formation process
requires LAMP2A to leave these domains.191 Retention of
LAMP2A within the lipid microdomains may not allow protein-
complex formation, which in turn will prevent the autophagy of
SNCA, resulting in SNCA accumulation.

GBA is located on the surface of the inner membrane of the
lysosome, where it cleaves membrane glucocerebrosides into cer-
amide and glucose. In a cellular model of Gaucher disease, when
GBA is inhibited, the composition of the lysosomal membrane
changes, including increased concentration of glucocerebro-
sides.192 Similar results were observed in a mouse model of
Gaucher disease, demonstrating highly increased concentrations
of glucocerebrosides in lipid rafts.193 This process may prevent
or reduce the formation of LAMP2A protein-complexes, which
will then reduce the autophagy of SNCA, and result in its accu-
mulation. It is possible that alterations in the composition of the
lysosomal membrane may affect other forms of autophagy, such
as microautophagy, macroautophagy and mitophagy, contribut-
ing to PD development. It was already demonstrated, for exam-
ple, that GBA deficiency may lead to defective mitophagy and
mitochondrial damage.194,195

Is it possible that this model can be relevant not only for
GBA-associated PD, but for other forms of PD as well? Is it
possible that other events, such as oxidative stress or aging
affect the composition of the lysosomal membrane and there-
fore affect its ability to internalize SNCA for degradation? It
seems that the answer for both questions may be yes. There is
a growing body of evidence that GBA activity is reduced not
only in GBA-associated PD, but in sporadic PD as
well,74,196,197 suggesting that other genetic or environmental
factors may lead to GBA impairment and to the subsequent
pathological effect. One possible factor is SNCA itself, which
may interact with and inhibit wild-type GBA.71,198 An inter-
esting observation suggests that in the normal process of aging,
the mobilization of LAMP2A to the lysosome membrane is
altered.199 More research is needed to answer these questions
and to determine the exact mechanisms by which dysfunction
of the ALP affects SNCA accumulation and increases the risk
for PD.
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Therefore, this hypothesis may be valid mainly to GBA-associ-
ated PD and to other forms of PD in which GBA activity is
reduced, or to late onset PD in which aging has a similar effect
on the lysosomal membrane. While these patients could be the
majority of patients, it is possible that different ALP subpathways
are involved in other forms of PD. Furthermore, it is possible
that what we call PD, is a group of phenotypically similar yet
pathogenically somewhat different diseases. In PARK2-associated
PD, in which the pathology is limited in most cases to nigral
degeneration only, and in LRRK2-associated PD in which there
is no SNCA accumulation in some cases, a different ALP dys-
functional mechanism may be involved. This could be true as
well for PINK1- and PARK7-associated PD, in which mitophagy
is impaired in a similar way to PARK2-associated PD. Accord-
ingly, future treatment of these forms of PD could be different,
and it is already hypothesized that LRRK2-associated PD may
benefit from kinase inhibitors 200,201 whereas GBA-associated
PD may benefit from enzymatic therapy, once it can cross the
blood-brain barrier.

Conclusion

This review summarizes the knowledge arising from
genetic studies, emphasizing the central role of the ALP and
endolysosomal trafficking in PD. Given the presented evi-
dence, it is likely that lysosomal dysfunction results in a
reduced ability to degrade SNCA and/or defective mitochon-
dria, leading to the loss of dopaminergic neurons seen in PD.
The exact mechanism and why it happens in dopaminergic
neurons rather than others is still to be explained, and several
hypotheses have been raised, such as specific calcium-related
properties of dopaminergic neurons,202 or blockage of CMA
by modified dopamine.122 Whether the ALP can serve as a
cell death-signaling pathway, or whether it is a more pro-sur-
vival mechanism, is still under debate.203-205 Nevertheless,
the contribution of the ALP to the normal function of
cells is clear, and therefore impairment of the ALP may lead
to reduced ability of cells to survive. It is also likely, however,
that the ALP participates in the cell death that occurs in PD.

Figure 2. Hypothesized mechanism for GBA-associated lysosomal dysfunction in Parkinson disease. (A) In a normally functioning lysosome, GBA is associ-
ated with the inner part of the lysosomal membrane, and degrades glucocerebrosides to glucose and ceramide, thus controlling the proper composition
of the membrane. The chaperone-mediated autophagy receptor, LAMP2A, is able to freely move out of lipid rafts, create complexes, and internalize
SNCA into the lysosome for degradation. (B) Impaired GBA activity can affect the composition of the membrane, leading to an increased density of lipid
rafts on the lysosomal membrane. In this scenario, it is more difficult for LAMP2A to create the complexes required for the internalization of SNCA into
the lysosome, leading to SNCA accumulation. This effect of GBA impairment on the lysosomal membrane may interrupt other pathways, and affect mac-
roautophagy and mitophagy, which will lead to the accumulation of damaged mitochondria and increased oxidative stress.
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It is important to note that although this review focuses on
the ALP, it is clear that other pathways and mechanisms are
also involved in PD pathogenesis. Such mechanisms include,
for example, prion-like propagation of SNCA,206 mitochon-
drial dysfunction, neuro-inflammation,207 and calcium
regulation,208 and efforts to find therapeutic interventions
targeting these and other pathways are of great importance
as well.
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