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Sarcoidosis is a multisystem granulomatous disorder invariably affecting the lungs. It is a disease with noteworthy variations
in clinical manifestation and disease outcome and has been described as an “immune paradox” with peripheral anergy despite
exaggerated inflammation at disease sites. Despite extensive research, sarcoidosis remains a disease with undetermined aetiology.
Current evidence supports the notion that the immune response in sarcoidosis is driven by a putative antigen in a genetically
susceptible individual. Unfortunately, there currently exists no reliable biomarker to delineate the disease severity and prognosis.
As such, the diagnosis of sarcoidosis remains a vexing clinical challenge. In this review, we outline the immunological features
of sarcoidosis, discuss the evidence for and against various candidate etiological agents (infective and noninfective), describe the
exhaled breath condensate, a novel method of identifying immunological biomarkers, and suggest other possible immunological
biomarkers to better characterise the immunopathogenesis of sarcoidosis.

1. Introduction

Sarcoidosis is a multisystem, inflammatory disorder of ob-
scure aetiology. Its defining histopathology is the existence
of noncaseating epithelioid granulomas with accompanying
mononuclear cell infiltration and microarchitecture destruc-
tion [1, 2].

Although sarcoidosis involves the lungs in >90% of cases,
it also affects the heart, skin, eye, and central nervous system
[3].This accounts for its heterogeneous clinical manifestation
which ranges from having no symptoms to severe con-
sequences, namely respiratory insufficiency, cardiac death,
neurological disease, and blindness [4].

Sarcoidosis has been reported in all ethnic and racial
groups with the majority of studies recording a peak inci-
dence of 20–39 years of age for both males and females and
a bimodal distribution whereby women have another peak
incidence at 65–69 [4].

Disease remission occurs in as many as two-thirds
of patients, usually in the first 3 years after diagnosis.
Other patients have chronic unremitting sarcoidosis which
may subsequently lead to lung fibrosis [1]. The erratic
clinical course has impelled research into biomarkers that

could delineate disease severity and outcome [5]. To date,
there exist no reliable and practical biomarkers for sar-
coidosis [6]. Moreover, despite earnest research efforts, the
immunopathogenesis and aetiology underpinning sarcoido-
sis remains elusive [3].

This review outlines the current understanding of sar-
coidosis, with reference to ex vivo lymphocyte stimulation in
the peripheral blood andbronchoalveolar lavage fluid (BALF)
of sarcoidosis patients, describes the exhaled breath con-
densate, an innovative method of identifying immunological
markers, and proposes novel immunological markers to
better characterise the immunopathogenesis of sarcoidosis.

2. Immunopathogenesis of Sarcoidosis

2.1. Key Features of the Pathological Process

2.1.1. Immune Paradox. Sarcoidosis can be described as an
“immune paradox.” Peripheral anergy is observed despite
exaggerated inflammation at disease sites [7]. This is demon-
strated by a reduced delayed-type hypersensitivity to tuber-
culin and common antigens [8]. It has been postulated that
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underpinning this paradoxical situation is a disequilibrium
between effector and regulatory lymphocytes (Treg cells),
notably CD4+CD25brightFoxP3+ cells [7].These cells accumu-
late in the periphery of the granuloma andperipheral blood of
patients with active disease and exert anti-proliferative effects
on näıve T cells.They only weakly suppress TNF𝛼 production
[9], therefore allowing granuloma formation. Others argue
that the intense immune response at disease sites results in
activated T cells gathering at these disease sites and conse-
quent peripheral blood lymphopenia [10]. Still others have
suggested that with disease chronicity, immunosuppressive
CD8+ T cells become more abundant peripherally, resulting
in an anergic response [11].

2.1.2. Granuloma Formation. The noncaseating epithelioid
granuloma is the histologic hallmark of sarcoidosis. Its centre
is hypothesized to contain a poorly degraded antigen, sur-
rounded by macrophages that will differentiate to epithelioid
cells which subsequently fuse to form multinucleated giant
cells. CD4+ T helper cells are interspersed in the granuloma
while CD8+ T cells, regulatory T cells, fibroblasts, and B
cells surround the periphery [4, 12]. Birefringent crystals,
Hamazaki-Wesenberg, Schaumann bodies, and asteroid bod-
ies may also be present but are nonspecific [13].

2.2. Immune Reactions in Sarcoidosis

2.2.1. Antigen Presentation. The interplay of antigen-present-
ing dendritic cells (DCs) and näıve CD4+ T-cells is necessary
for granuloma formation [18]. DCs phagocytose the inciting
sarcoid antigen. They journey to lymph nodes where they
mature and prime the adaptive immune system by displaying
the antigen peptide on the surface major histocompatibility
complex (MHC) class II peptide groove. A specific T cell
receptor (TCR) fixes its variable region to the antigen-MHC
complex and is activated [18]. To optimise this activation,
CD28, a costimulatory signalling molecule on T cells, inter-
acts with CD86 on DCs [15]. The DCs also produce a battery
of mediators which facilitates the sarcoid immune reaction
(Figure 1) [20].

2.2.2. T-Helper 1 (T
𝐻
1) Immune Response. The CD4+ T

cells that trigger the granuloma formation are strongly TH1
polarised. Upon TCR activation, the expression of IFN𝛾 and
Tbx21 genes in CD4+ T cells becomes more pronounced.
Interleukin-12 (IL-12) secreted by DCs is a TH1 polarising
cytokine. With the aid of STAT4, IL-12 facilitates IFN𝛾
expression. IFN𝛾 binds to IFN receptors and stimulates
STAT1 which promotes Tbx21 gene expression of T-bet.
T-bet enhances IFN𝛾 gene transcription competence and
ultimately increases the production of IFN𝛾 (Figure 1). T-bet
also up regulates IL-12 𝛽 receptor (IL-12𝛽R) expression and
antagonises Gata3, a transcription factor that regulates TH2
differentiation. This amplifies the responsiveness of CD4+
T-cells to IL-12 and inhibits IL-4 and IL-13 (cytokines that
facilitate the fibroproliferative response) production [16].
IL-18 upregulates IL-12𝛽R and IFN𝛾 expression while IL-
12 increases IL-18 receptor expression on CD4+ T cells.

Therefore, IL-12 and IL-18 act synergistically to promote the
formation of sarcoid granulomas [20–23].

IFN𝛾 is highly expressed in the BALF of sarcoidosis
patients. IFN𝛾 inhibits the expression of macrophage perox-
isome proliferator-activated receptor 𝛾 (PPAR𝛾), a negative
regulator of inflammation. Under normal physiological con-
ditions, macrophages constitutively express PPAR𝛾. PPAR𝛾
promotes macrophage IL-10 production which inhibits
the release of TNF𝛼, IL-12 and matrix metalloproteinase
(MMP) from DCs. In sarcoidosis, IFN𝛾 production inhibits
the expression of the immunosuppressive cytokine, IL-10
(Figure 1). This leads to an increase in the production of
TNF𝛼, IL-12, and MMP and induces chemokines CXCL-9,
CXCL-10, and CXCL-11 production which, through the lig-
ation of a T-cell receptor, CXCR3, induce T-cell chemotaxis.
MMPs cause lung damage and fibrosis and the chemokines
attract more Tcells and myeloid cells into the inflammatory
milieu. Moreover, increased TNF𝛼 and decreased IL-10
expression liberate DCs from the inhibition by macrophages,
initiating a self-amplifying inflammatory loop [19].

TNF𝛼 produced by the DCs also encourages CD4+ T-
cell proliferation and survival, directly through the induction
of T-cell IL-2R [24, 25] and indirectly by causing DC to
mature into antigen presenting cells [26]. IL-15 is capable of
promoting CD4+ T-cell survival by binding to IL-2R. These
IL-15 responses are upregulated in the presence of TNF𝛼 [27].

Finally, CD4+ T-cell activation also increases IL-2 pro-
duction. IL-2 is a local survival, differentiation, and growth
factor of T cells. Autocrine IL-2 production results in the
clonal proliferation of CD4+ T cells (Figure 1) [2, 28].

2.3. Persistent Granulomatous Inflammation. Persistent gran-
ulomatous inflammation can be attributed to the inability of
the immune regulatory mechanisms to limit the duration of
the inflammatory process [12].

2.3.1. Serum Amyloid A Protein. Serum amyloid A (SAA)
proteins are extensively deposited in sarcoid granulomas.
SAA triggers cytokine release by interacting with Toll-like
receptor 2. This results in the amplification of TH1 responses
to local pathogenic antigens. The inflammatory response is
potentiated as SAA proteins readily accumulate and release
more soluble SAA peptides into the surrounding tissue [29,
30].

2.3.2. T Regulatory (𝑇
𝑟𝑒𝑔
) Cells. Treg cells are vital for the

suppression of cell-mediated immune responses. However,
the Treg cells in the sarcoid granulomas (as opposed to
peripheral Treg cells) have undergone extensive amplification
and are therefore impaired in their ability to repress immune
responses.Moreover, they secrete proinflammatory cytokines
(e.g., IL-4) which encourages granuloma formation via mast
cell activation and fibroblast amplification [31, 32].

2.3.3. CD1d-Restricted Natural Killer T (NKT) Cells. NKT
cells have been known to moderate CD4-mediated immune
responses. NKT cell numbers have been noted to bemarkedly
reduced in sarcoid blood and BALF except in patients
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Figure 1: The immunopathogenesis of sarcoidosis (a proposed model). The presumptive sarcoid antigen is engulfed by circulating dendritic
cells. Serum amyloid A proteins can also interact with Toll-like receptor 2 and be presented to T cells via major histocompatibility complex
Class II to specific T cell receptors (TCRs) along with processed antigen peptides. Ligation of costimulatory molecules CD28, CD86, and
BTNL2 optimises the activation of T cells. Thereafter, a myriad of inflammatory mediators is released. Activated T cells are highly TH1

polarised. They release IL-2 which causes clonal proliferation of T cells. Furthermore, upon TCR activation, T-bet production increases.
T-bet upregulates and perpetuates the production of IFN𝛾 which facilitates granuloma formation. Antigen clearance and increased IL-10
levels facilitate disease remission. Disease chronicity results in a predominance of TH2 cytokines which leads to lung remodelling by fibrosis
(adapted from: [2, 5, 12, 14–19]).
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exhibiting Löfgren’s syndrome (acute sarcoidosis charac-
terised by uveitis, arthritis, erythema nodosum, bilateral hilar
lymphadenopathy, and fever) [33]. Since Löfgren’s syndrome
is often associated with disease remission, reduction in the
number of NKT cells can account for the persistence of
sarcoidosis [34].

2.4. Remission and Progression to Fibrosis. Disease remission
occurs with the suppression of macrophage and T-helper cell
activity by IL-10 or when the presumptive antigen has been
completely cleared (Figure 1) [4].

Persistent granulomatous inflammation can lead to fibro-
sis.The immunological mechanisms leading to a fibrotic out-
come remain undetermined. Nonetheless, various cytokines
which are able to support a fibrotic response have been found
at disease sites in patients with sarcoidosis (e.g., transforming
growth factor-𝛽 (TGF-𝛽), MMP, and insulin growth factor-1
(IGF-1)) [35, 36].

It has been proposed that a switch from TH1 to TH2
cytokine predominance may occur in chronic sarcoidosis in
response to persistent inflammation. TH2 cytokines such as
IL-13 increase TGF-𝛽 production (Figure 1). TGF-𝛽 recruits,
activates, and transforms fibroblasts into myofibroblasts
which have been strongly implicated in the development
of fibrosis [17, 37]. Moreover, the TH2 chemokine, CCL2,
enhances fibroblast survival, augmenting the effects of TGF-
𝛽 [38]. Additionally, the macrophages of patients with pul-
monary fibrosis, under the influence of the TH2 cytokine
milieu, express CCL18 chemokines which facilitates lung
remodelling via fibrosis [39, 40].

2.5. Role of Other T Lymphocytes (T
𝐻
17 and NKT Cells).

Although the majority of studies have used the TH1/TH2
model to explain the immunopathogenesis of sarcoidosis,
by focusing solely on this model, there is a propensity to
oversimplify the immunological process and divert research
efforts away from other mechanisms.

TH17 is a novel CD4+ effector T-cell population. High
levels of IL-17+/CD4+ T lymphocytes have been found in the
BALF and granulomas of sarcoidosis patients, particularly
in patients with active disease. They infiltrate the lungs after
being recruited from the blood by the chemokineCCL20 [41].
Recently, Richmond and colleagues [42] verified the speci-
ficity of TH17 cells for mycobacterial antigens, a commonly
implicated antigen for sarcoidosis. These findings suggest a
possible role of TH17 in sarcoidosis disease progression.

NKT cells produce TH1 and TH2 cytokines (IFN𝛾 and IL-
4, resp.). NKT cells are mostly CD4+ and express an invari-
able TCR [33]. Moreover, blood NKT cells from sarcoido-
sis patients, when stimulated with a glycolipid stimulator,
showed diminished levels of IFN𝛾, therefore suggesting that
NKT cells exert regulatory activity which prevents disease
progression [43].

3. Putative Aetiology of Sarcoidosis

The aetiology of sarcoidosis remains unclear. A myriad of
observations have supported the notion that sarcoidosis can

be caused by environmental and infectious agents. Moreover,
based on chronic beryllium disease, an analogous granulo-
matous lung disease, it has been speculated that one or more
antigenic stimuli may be involved in the pathogenesis of
sarcoidosis.Therefore, it is highly likely that the development
of a sarcoidosis reaction to an antigen depends on a combi-
nation of genetic polymorphisms, the host’s immune status,
and exposure to environmental agents [44].

3.1. Genetic Polymorphisms and Host Factors

3.1.1. Findings on Genome-Wide Association. Both family and
genetic host studies have recognised genes that are respon-
sible for this genetic susceptibility. Twin studies prove that
monozygotic twins are more concordant for sarcoidosis than
dizygotic twins. Moreover, familial aggregation of sarcoidosis
can be seen worldwide. The multicentre study entitled A
Case Control Etiologic Study of Sarcoidosis (ACCESS) demon-
strated that sarcoidosis patients were 5 times more probable
than controls to report a parent or sibling with sarcoidosis
[45].

Genetic linkage studies on German families revealed a
strong linkage to chromosome 6p. This led to the discovery
of butyrophilin-like 2 (BTNL2), a costimulatory molecule
within the MHC locus. Single nucleotide polymorphisms
(rs2076530 G → A) in BTNL2 may affect T-cell regulation
and activation [45].

The genome-wide association study conducted by Hof-
mann and colleagues [46] revealed an association for the
annexin A11 gene located on chromosome 10q22.3. The
annexin A11 gene regulates calcium signalling, vesicle traf-
ficking, cell division, and apoptosis. Therefore, its dysfunc-
tion or deletion may implicate apoptotic pathways in sar-
coidosis [46].

3.1.2. Human Leukocyte Antigen (HLA) Genes. HLA class
II are cell surface proteins that prime the adaptive immune
system to antigens. Sarcoidosis is associated with the DR sub-
types of class II antigens. HLA-DRB1∗01 and HLA-DRB1∗04,
are negatively associated with sarcoidosis, whereas HLA-
DRB1∗03, HLA-DRB1∗11, HLA-DRB1∗12, HLA-DRB1∗14 and
HLA-DRB1∗15 have been shown to increase the risk of
sarcoidosis. HLA-DRB1∗03 is associated with Löfgren’s syn-
drome (∼80%of patients with Löfgren’s syndrome experience
disease remission). Finally, the HLA-DRB1∗1501/DQB1∗0602
haplotype was associated with severe and chronic pulmonary
sarcoidosis [6, 47].

3.1.3. Non-HLA Genes. TNF𝛼 is an essential mediator for
granuloma formation. Variants of the TNF gene confer a
1.5-fold increased risk of having sarcoidosis [48]. Apart
from TNF, studies investigating other candidate genes (poly-
morphisms in the complement receptor 1 gene, NOD, and
CCR2 genes) were inconclusive and had poor reproducibility
between populations [49–52].

In some populations, variations in the gene that encodes
for RAGE (a transmembrane receptor) have been associated
with an increased risk of sarcoidosis. However, the close
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proximity of this gene to the MHC region makes it difficult
for one to ascertain if this association is due to linkage with
neighbouring HLA genes [53].

There were no associations between polymorphisms
in genes for vitamin D receptor or serum angiotensin-
converting enzyme [45, 54].

3.1.4. T Cell Receptor (TCR) Genes. The T-cells at sites of
inflammation in sarcoidosis exhibit a restricted repertoire of
TCR 𝛾𝛿 or 𝛼𝛽 genes. The expression of specific V𝛼, V𝛽, or
𝛾𝛿+TCR genes in blood, lung, and at sites of Kveim-Siltzbach
skin reactions implies that sarcoidosis is an antigen-driven
disorder.There is a subpopulation of T cells (AV2S3+ (V𝛼2.3)
CD4+ T cells) from BALF of HLA-DR∗0301 sarcoidosis
patients which is unique to sarcoidosis. Moreover, it has
been shown that the amount of AV2S3+ BALF T cells at
the onset of sarcoidosis correlates positively with prognosis,
suggesting that AV2S3+ T cells may offer some protective
function against sarcoidosis [6].

3.2. Extrinsic Factors. Numerous pathogens have been impli-
cated and investigated in the etiology of sarcoidosis. More-
over, spatial crowding of unrelated sarcoidosis cases suggests
that sarcoidosis can also be a result of exposure to environ-
mental agents [1, 3]. Nonetheless the evidence supporting
specific infectious and environmental factors varies signifi-
cantly (Table 1) [3].

4. Ex Vivo Stimulation of BALF and
Peripheral Blood Lymphocytes

Preliminary ex vivo studies that employed flow cytometry
to investigate peripheral blood lymphocytes in sarcoidosis
patients demonstrated a greater activation of nonstimulated
CD4+ and CD8+ BALF T cells compared to peripheral blood
lymphocytes. This showed that the sarcoid immune response
is largely compartmentalised to disease sites [55].

The TH1/TH2model is under scrutiny as it oversimplifies
the immunopathogenesis of sarcoidosis [56]. For instance,
some studies report that after lymphocyte stimulation, the
proportion of CD4+ T cells expressing IL-4 and IFN𝛾
obtained from the peripheral blood of sarcoidosis patients did
not differ significantly from that of healthy controls [57, 58].
Other studies showed higher TH1 and TH2 levels of cytokine
positive CD4+ T cells compared to healthy controls [59, 60],
emphasising the systemic nature of the disease.The following
segment clarifies this debate.

Under unstimulated conditions, the difference in the
percentages of IL-4 and IFN𝛾 secreting CD4+ lymphocytes
in BALF and peripheral blood of sarcoidosis patients is
insignificant [57, 58]. After BALF CD4+ lymphocytes were
stimulated with ionomycin and phorbol 12-myristate acetate,
there was an appreciable increase in secreted IFN𝛾 but a
decrease in IL-4 expression in sarcoidosis patients compared
to controls [87]. Moreover, increased cytokine profiles have
been verified by increased BALF IFN𝛾+/IL-4+ CD4+ T cell
ratios in sarcoidosis patients. Lower ratioswere demonstrated
in scleroderma and in patients with idiopathic pulmonary

fibrosis. It has also been shown that upon stimulation,
compared with controls, there are increased numbers of
CD4+IFN𝛾+ cells in both BALF and induced sputum of
patients with sarcoidosis [88, 89].

After stimulation, more T cells express TH1 than TH2
cytokines in both the BALF and peripheral blood of sarcoido-
sis patients and more CD4+ T cells in BALF express TH1
receptors (CXCR3, CCR5, IL-12R and IL-18R) than CD4+ T
cells in the peripheral blood. [90]. Although CD4+ T cells
largely express TH1 cytokines, interestingly, following stimu-
lation, only 80% and 40% of CD4+ IL-4+ cells concurrently
produce IFN𝛾 and IL-2 respectively, thus demonstrating
that activated BALF lymphocytes of sarcoidosis patients are
capable of a complex, concurrent production of TH1 and TH2
cytokines [91].

To further explore this dichotomy of blood TH1/TH2
equilibrium, Nureki and colleagues [59] showed that under
unstimulated conditions, TH1 and TH2 chemokines (interfer-
on-inducible protein-10 (IP-10) and thymus and activation-
regulated chemokine (TARC)) were both increased in the
serum of sarcoidosis patients. This was in agreement with
previous findings that demonstrated elevated BALF and
peripheral blood IL-13 (a TH2 cytokine) mRNA levels [92].
Therefore, these findings reflect the systemic nature of sar-
coidosis. Nonetheless, it has been suggested that TH2 cell
preponderance occurs in the peripheral blood of sarcoidosis
patients and that this, together with the generalised intensi-
fication of TH1 activity, gives the appearance of an increase
in both TH1 and TH2 circulating cytokine expression in
sarcoidosis patients compared to healthy controls [59].

TH17 cells have also been implicated in the induction of
granuloma formation [93]. Flow cytometry data indicate that
after stimulation, there is an increase in TH17 related cytokine
levels in both BALF and peripheral blood [41]. Another
study also indicated that, after stimulation, there are lower
levels of IL-17A gene expression in CD4+ T cells in patients
with Löfgren’s syndrome compared to healthy controls [94].
These data, together with data showing heightened TH1
cytokine expression at disease sites, indicate that TH17 cells
have a systemic role in patients with non-Löfgren’s disease
and is involved in sarcoidosis progression [14]. Therefore,
further studies investigating the cytokine profiles in blood
lymphocytes of patients versus healthy controls are required
to assess the TH1/TH2 balance, the regulatory mechanisms
in the peripheral blood of sarcoidosis patients, and the
functional significance of TH17 cells.

5. Exhaled Breath Condensate:
Detection of Immunological Markers

The diagnosis of sarcoidosis is never secure. Clinico-
radiological findings alone are often insufficient to confirm
the diagnosis of sarcoidosis. It needs to be supported by his-
tological evidence showing noncaseating granulomas. This
warrants a tissue biopsy which is invasive [12]. This makes
diagnosing sarcoidosis a vexing clinical challenge, motivating
researchers to look for other novel methods of diagnosing the
disease.
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Exhaled breath condensate (EBC) has been subjected to
intensive research as it provides a noninvasive alternative for
sampling the airway and alveolar space a promising source of
biomarkers for a variety of lung conditions [95–97]. During
exhalation, water evaporation droplets and volatile molecules
(e.g., nitric oxide, carbon monoxide and hydrocarbons)
diffuse as gases from the alveoli and bronchi to the mouth.
They are joined by nonvolatile molecules (e.g., leukotrienes,
prostanoids, urea, and cytokines) from the airway lining fluid
and condense via a refrigeration device to give EBC (Figure 2)
[95, 98].

A number of immunological biomarkers have been
recognised in EBC. However, there exists no sufficiently
sensitive and specific marker for diagnosing and predicting
the prognosis of sarcoidosis [99].

TNF𝛼, PAI-1, and IGF-1 levels in EBC were closely
positively correlated with BALF samples from sarcoidosis
patients. Conversely, IL-6 levels were negatively correlated
with that which is in BALF. The propensity of IL-6 to form
complex molecular forms of higher molecular weight could
account for this discrepancy [100]. Another study detected
TGF-𝛽

1
, PAI-1, TNF𝛼, IL-8 and vascular endothelial growth

factor in sarcoid EBC. However, the small sample size and the
failure tomake comparisons with healthy controls limited the
usefulness of this study [101].

Exhaled eicosanoids (e.g., 8-isoprostane (8-IP)) and cys-
teinyl leukotrienes were also found to be elevated in the BALF
and EBC of sarcoidosis patients [102]. In a later study, high
initial levels of 8-IP were shown to correlate with disease
persistence; therefore, it could serve as a prognostic marker
[103].

Cellular and molecular biomarkers previously discov-
ered in BALF and serum of sarcoidosis patients could also
serve as biomarkers. These include eosinophils, neutrophils,
serum angiotensin converting enzyme (ACE), neopterin,
chitotriosidase, TGF-𝛽, and the chemokine ligand (CCL18)
[28, 40, 57, 104–107]. Other more novel markers include
lysozyme, Kerbs von Lungren 6 antigen, and soluble IL-
2 receptor [108, 109]. Serum levels of these biomarkers
were said to reflect increased parenchymal infiltration and
lymphocytic alveolitis in sarcoidosis and can thus serve as
potential EBC biomarkers. Nonetheless, only a few have been
shown to be sufficiently sensitive and specific [110].

Amongst the above-mentioned biomarkers, ACE is the
most contentious as it has been shown to have poor sensitivity
and specificity [111] and its activity is subject to the effects
of gene polymorphisms. Nevertheless, it is elevated and
measurable in the BALF of sarcoidosis patients and could
therefore serve as a sarcoid biomarker [112].

Given the multifactorial nature of sarcoidosis, no ideal
markers for detecting and monitoring the clinical course
of sarcoidosis exist. It is very likely that a combination of
markers will be required.

Although EBC has advantages over BAL (it is nonin-
vasive, requires little instrumentation, does not introduce
foreign substances into the lung or cause inflammatory
changes, and can be repeatedly performed in sick patients)
[113], the lack of reliable markers and the inability of EBC to
sample specific compartments of the lungs undermine these

One-way mouth piece that
the subject exhales into

Ice/ice chamber

EBC

Glass tube

Stopper

Vacuum

Lid

Saliva trap

Figure 2: Schematic diagram of the EBC collecting apparatus. The
subject blows into the mouth piece which is a one-way valve. The
exhaled breath is channelled into a refrigerated collecting container.

benefits. To date, BALF remains the most relevant biological
material.

6. Interferon Modulators:
Novel Immunological Markers

IFN𝛾 plays a pivotal role in the immunopathogenesis of
sarcoidosis. MicroRNA-29 (miR-29) and T-bet have been
shown to modulate its production [114, 115].

MicroRNAs are noncoding RNA that can inhibit the
production of mRNA. The miR-29 family is made up of four
members. Amongst these four, miR-29a and miR-29b were
found to be downregulated in IFN𝛾-secreting T cells. This
reduction skews the immunological response towards a TH1
lineage by initiating a positive feedback loop which enhances
IFN𝛾 production.This also suggests that the up-regulation of
miR-29a andmiR-29b canmitigate IFN𝛾 expression [115, 116].
Abnormal levels of microRNA have been associated with the
pathogenesis of cancers and fibrotic and obstructive lung
diseases [117–119]. It has also been implicated in the fibrotic
progression of sarcoidosis [120].

As previously mentioned (see immune reactions in sar-
coidosis), T-bet is a transcription factor necessary for IFN𝛾
production. It binds to a number of enhancers and to
the promoter region of the IFN𝛾 gene to promote IFN𝛾
transcription [121]. T-bet expression has been shown to
correlate with IFN𝛾 expression [16, 122, 123] in patients with
multiple sclerosis [114], coeliac disease [124], Crohn’s disease
[125], and Behçet’s disease [126, 127]. Moreover, T-bet mRNA
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has been shown to be elevated in the BALF lymphocytes
of patients with pulmonary sarcoidosis [128]. However, due
to posttranscriptional regulation and disparities in protein
and mRNA turnover rates, mRNA levels are poor proxies
for protein levels [129, 130]. Unfortunately, the literature is
currently deficient of studies that measure T-bet protein
levels in sarcoidosis patients and studies that juxtapose miR-
29 and T-bet protein levels at sarcoidosis disease sites and
in the peripheral blood. Research on these fronts can offer
novel insights into the “immune paradox” associated with
sarcoidosis and can pave the path for novel therapeutic
strategies for the disease.

7. Conclusion

Despite nearly 140 years of extensive research, the aetiol-
ogy and pathogenesis of sarcoidosis and the mechanisms
that regulate the immune reactions in the peripheral blood
remain undetermined. Moreover, given its variable clinical
manifestation and the lack of a reliable diagnostic test with
uniformed reference values and measurements, diagnosing
sarcoidosis remains a clinical conundrum for many physi-
cians. Given that the majority of sarcoidosis patients have
pulmonary involvement, EBC could be used as a non-
invasive method to diagnose sarcoidosis. Besides being a
potential immunological biomarker of sarcoidosis, interferon
modulator levels in EBC and the peripheral blood can be
compared to elucidate the regulatory mechanisms in the
peripheral blood. Results from such studies may also explain
the pathology underpinning the peripheral anergy seen in
sarcoidosis.
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