
uPy: a ubiquitous computer graphics Python API with Biological 
Modeling Applications

L. Autin1, G. Johnson1,2, J. Hake3, A. Olson1, and M. Sanner1

1The Scripps Research Institute, La Jolla, CA, USA

2University of California, San Francisco, CA, USA

3Simula Research Laboratory, Lysaker, Norway, and Department of Bioengineering, UCSD, La 
Jolla, CA, USA

Abstract

In this paper we describe uPy, an extension module for the Python programming language that 

provides a uniform abstraction of the APIs of several 3D computer graphics programs called hosts, 

including: Blender, Maya, Cinema4D, and DejaVu. A plugin written with uPy is a unique piece of 

code that will run in all uPy-supported hosts. We demonstrate the creation of complex plug-ins for 

molecular/cellular modeling and visualization and discuss how uPy can more generally simplify 

programming for many types of projects (not solely science applications) intended for multi-host 

distribution. uPy is available at http://upy.scripps.edu

Keywords

Computer graphics; Python; software plug-in; Scientific data visualization; 3D Molecular 
visualization; Blender; Maya; Cinema4d

Introduction

Today's general-purpose 3D computer graphics software (3DCGS or hosts), such as 

Cinema4D, Maya, and Blender, are designed to model, simulate, animate and render 

everything from planets to people. At the same time, scientific and other domain-competent 

3D software are used to model, simulate, visualize, and analyze data, typically from domain-

specific entities; such entities include for example molecules (molecular graphics), internal 

organs (medical imagery), ecosystems and human-engineered structures. Many recent 

plugins adapt general 3DCGS to handle such domain-specific data; see for instance: 

BioBlender (http://bioblender.eu/), Blender for robotics (http://wiki.blender.org/index.php/

Robotics:Contents), and mMaya1. But, specifically designing a 3DCGS plugin for each 

specific data type is time consuming and often leads to duplicated effort. Furthermore, these 

types of plug-ins and scripts are 3DCGS-dependent, because of the differences in 3DCSG's 

APIs. While there are similarities in the APIs, porting plugins to additional 3DCGS 

generates duplication of effort and code. While each 3DCGS offers low-level API access, 

typically through C++ or 3DCGS-specific scripting languages, over the past 10 years a 

growing number of 3DCGS, including: Autodesk's Maya, Maxon's Cinema4D, Houdini, 

Blender, Modo, RealFlow, and Rhino, are providing high-level API access through the 

HHS Public Access
Author manuscript
IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

Published in final edited form as:
IEEE Comput Graph Appl. 2012 ; 32(5): 50–61. doi:10.1109/MCG.2012.93.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://upy.scripps.edu
http://bioblender.eu/
http://wiki.blender.org/index.php/Robotics:Contents
http://wiki.blender.org/index.php/Robotics:Contents


Python programming language, thus creating the opportunity to develop a Python layer 

abstracting the 3DCSG's APIs and thus, presenting a unified API for plugin developers.

Over the past ten years, Python's has rapidly gained acceptance in both academia and 

industry and a large number of scientific tools have been developed in Python or made 

callable from Python (see for instance The Python Papers Monograph journal2). 3DCGS 

that embed a Python interpreter can leverage these third-party Python modules to cover a 

large range of scientific and domain-specific purposes. Nevertheless, integrating Python 

modules into a 3DCGS requires code that is specific to each 3DCGS's Python API which 

differs greatly both in syntax and design from one 3DCGS to the next. Since 3DCGS share 

many core functionalities and the domain-specific modules have a limited number of input/

output data types, a single Python adaptor can provide a unified interface for plugging these 

modules into a variety of 3DCGS hosts at once. With such a connection made, domain-

specific Python modules can access any host-specific Python wrapped API, and thus apply 

that host's core functionality to the data in order to efficiently/natively: (i) model and deform 

shapes, from spheres and boxes to highly complex polyhedra; (ii) create materials, light 

scenes and cameras; (iii) produce key-frame animations; (iv) generate realistic and other 

advanced renderings of scientific and domain-specific data; and (v) apply advanced physics 

simulations (rigid-body, soft-body, fluid, particle, hair) to the data. 3DCGS also provide 

their own Graphical User Interface (GUI) toolkits for developing GUIs for plug-ins. Thus, 

using the same approach, a single Python adaptor can also be used to customize the user 

interface (UI) of a 3DCGS host to create module-specific GUIs for every host with no code 

redundancy.

We developed a Python module called uPy (for ubiquitous Python), in order to provide a 

unified API for modeling geometry and designing user interfaces across a variety of 

3DCGS. Scripts and plugins developed using this API will run in all the 3DCGS hosts 

supported by uPy, thus facilitating their maintenance, broadening their user-base, and 

promoting their reuse. uPy currently supports the following three popular 3DCGS as host 
applications: Blender2.49, 2.5× & 2.6×, MAXON Cinema4D12 & r13, and Autodesk 

Maya2011 & 2012. In addition, uPy supports our lab's freely distributed Python- and OpenGL-

based 3D visualization engine DejaVu3.

Other software projects sharing similar goals include: (i) the Enthought tool suite (http://

www.enthought.com/), in which the TraitsUI package provides a unified API for creating 

user interfaces based on wxPython/PyQt, and the MayaVI package, which provides some 

3D geometry modeling capabilities. TraitsUI, however, does not support the custom UI tools 

of the uPy host applications. (ii) The Blurdev project (http://code.google.com/p/blur-dev/) 

extends the Autodesk Softimage and 3dsMax software with a Python interpreter. Blurdev 

enables scripting in Python and the integration of 3rd party Python packages, such as Qt, for 

creating plugin interfaces in these host applications. However, Blurdev's approach is limited 

to the Windows Operating Systems. Finally (iii) the Cortex project (http://

code.google.com/p/cortex-vfx/) is a low-level development framework of libraries reusable 

in different host software for abstracting the APIs of various rendering backends including: 

RenderMan, Maya, OpenGL, Houdini and Nuke. There is currently no unifying API for the 

UI of Cortex's rendering backends. Moreoever, building and installing Cortex is not trivial. 

Autin et al. Page 2

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.enthought.com/
http://www.enthought.com/
http://code.google.com/p/blur-dev/
http://code.google.com/p/cortex-vfx/
http://code.google.com/p/cortex-vfx/


Since, Cortex is a C++ library with associated Python bindings, Cortex is amenable to 

interoperate with uPy. Compared to these approaches, uPy is lightweight, operating system 

agnostic, and easy to install as it is written in pure Python (i.e. uPy requires no C or C++ 

extensions to compile). Furthermore, uPy could easily be extended to support the Enthought 

suite, Autodesk Softimage, and 3dsMax as additional host applications, thus enabling the 

interoperation of all of these other software tools.

uPy's unified API enables programmers and users to explore the advantages and drawbacks 

of each host's capabilities and to utilize applications of proprietary tools that may be unique 

to certain hosts. With its simple implementation and architecture, uPy has helped us develop 

new scientific visualization tools covering a broad range of fields, from molecular modeling 

to mescoscale cellular visualization (see below). While we are using uPy for scientific 

visualization, uPy is completely generic and can be used to extend 3DCSGs with 

functionality of any type and from any application domain.

Architecture

Founded on Python, we developed uPy as two independent modules. The first module is a 

modeling Helper class that enables access to all the basic modeling features of the host 

applications. The second module is a user interface (UI) Adaptor class that provides a 

unified API for accessing the host UI system. uPy also provides Tkinter and Qt backends 

allowing the UI of plugins written using uPy to be instantiated in any Python application.

Figure 1 illustrates the simplicity of the uPy architecture in which the independent modules 

(modeling Helper and UI Adaptor) comprise two Python files per host that wrap that host's 

overlapping functions. Extending uPy for a new host application that already embeds a 

Python interpreter requires only the creation of these two files. Each of the two files 

implements host-specific code for a particular set of functions, which abstracts common host 

functionalities, such as widget creation and geometry generation.

Implementation

Although uPy can reduce redundant effort for most general programming pipelines, our lab 

focuses on the scientific domain of molecular and cellular biology, therefore we provide 

four examples of scientific interoperation and describe implementation within this context. 

Writing scientific visualization plug-ins for different applications requires code to: (i) 

generate the data, (ii) create, visualize, and modify the graphical representation of the data 

and (iii) create a GUI that exposes the plug-in's user-settable parameters.

While domain-specific standalone packages can generate the data independent of any host 

API, building a graphical representation and modifying it requires access to each supported 

host-specific API (see Figure 2a). To avoid redundancy, uPy's Modeling Helper class 

wraps the host-specific snippet of code (blue background in figure 2a) under a uPy function 

which has a unique uPy name (yellow background in figure 2a). These higher-level uPy 

functions thus support the creation of host-specific graphical objects using a unified syntax 

(yellow background in figure 2a). The same approach is applied for the creation of GUI 

widgets and dialogs using the UI adaptor class. Figure 2b illustrates the different API 

Autin et al. Page 3

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



functions called to create a button in each host application and the equivalent single call 

using uPy (yellow background in Figure 2b). With this approach, a single code can execute 

the same behavior in every supported host application. For instance, in Figure 3 we depict 

the plug-in code required to create and scale a sphere. The uPy code will run in the different 

host application and will generate a GUI dialog exposing a button that triggers the 

generation of the sphere. The dialog also displays a slider that will scale the generated 

sphere in real-time.

Figure 4 illustrates the different geometries currently accessible from the Modeling Helper. 

These geometries include: (i) text objects, (ii) simple primitives (planes, spheres, cones, 

cylinders, and cubes), (iii) platonic solids, (iv) point based geometry (points, metaballs, 

particles), (v) lines (mesh lines, curve, extruded curve and bones), (vi) complex polyhedral 

meshes, and (vii) object instances. These common geometries are the basis for most 

scientific model visualizations. For example, meshes can be used to represent an isosurface 

computed from volumetric data, or to visualize different molecule representations such as 

surfaces, or ribbon diagrams. For non-scientific applications, meshes may be used most 

commonly to skin a character or generate a landscape. While the basic geometry objects are 

common in any scientific or domain-competent 3D software, more advanced objects such as 

bones/armatures (traditionally used in character animation and robotics to create and control 

joints using inverse/forward kinematics), particles system (used for rendering clouds or fire), 

metaballs (blobby spheres), and instances are less common in theses scientific or domain-

competent 3D software but are ubiquitous in general professional 3D software and have 

proven to be useful additions to domain-specific geometry types for building efficient 

models native to each host. Furthermore, these host features can extend domain-specific 

functionalities. For example, we have used armatures to model and explore protein 

conformation and flexibility, and particle systems to efficiently display a grid of points or 

volumetric data. Instances allow the efficient rendering of multiple copies of a given 

geometry. Instances are defined by a list of 3D transformation matrices or directly translated 

and rotated onto another object's model data, e.g., onto the vertex positions of a mesh. 

Instances can be used to represent atoms of a molecule (instances of sphere primitives), or 

redundant subunits of viral capsids (instances of mesh models). Furthermore, any geometry 

can be associated with a material to apply color and texture. For example, a textured plane 

can display results produced by a graph plotting Python module such as matplotlib (http://

matplotlib.sourceforge.net/) or any plotting library.

The Modeling Helper class provides support for generating geometries as well as support 

for selecting and updating geometries (modify vertices/points, edges and faces) and for 

transformations (position, rotation and scale).

Figure 5, demonstrates the different widgets and layouts supported in the UI adaptor, for all 

host applications. The UI adaptor translates most of the basic widgets commonly used for 

designing a modern GUI. The UI adaptor currently supports: menu bars, check boxes, 

buttons, labels, string/integer/float input fields, text area input fields, integer and float 

sliders, color chooser fields that trigger system-native color choosers, and pull down menus. 

The UI adaptor also provides access to message and file dialogs that allow for console 

Autin et al. Page 4

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/


reporting and native file browsing. These widgets can be arranged in row layouts, and 

grouped into collapsible or tabbed subsections.

The list of supported features can easily be extended. To add support for a new feature, a 

programmer creates an empty function in the uPy Modeling Helper base-class to declare 

the feature name in uPy. The actual implementation of the feature is provided by overriding 

this new empty function in each host-specific Modeling Helper subclass with the 

appropriate snippet of host-specific code. If a feature cannot be implemented within a given 

host API the empty function will be called and no operation will be performed. Rather than 

limiting development to the lowest-common-denominator hosts, this architecture enables 

programmers to write many types of scripts for high/specific-functioning hosts and 

automatically culls the scripts for hosts with limited functionality. Once created, the new 

function can then be called across all host applications with a single line of code.

Applications

Here we describe several software plugins that we have developed using uPy in order to 

make them available in a wide range of 3DCGS. Software plugins described below include: 

(i) ePMV, an embedded Python molecular viewer, (ii) GAMer a mesh improvement tool, 

(iii) Tetra, a tetrahedral mesh visualization tool, and (iv) autoFill/autoCell, a biological 

mesoscale modeling and visualization tool. While these plugins relate to our research 

interests, uPy can be used more generally to create plugins that expose any Python-callable 

computational method inside any of the supported hosts, or to generate uPy scripts and 

plugins from scratch that reach a broad user-base across multiple hosts without redundant 

effort.

ePMV – embedded Molecular Viewer

The Python Molecular Viewer3 (PMV) is a suite of Python packages for visualization and 

analysis of molecular structure. PMV's core functionality for reading, writing, and 

manipulating molecular data (adding charges, radii, hydrogen atoms etc.) and generating 

geometrical objects from molecular data (CPK, ribbons, surfaces, etc.) can be accessed 

independently of PMV's native GUI in any program providing a Python interpreter.

Users in the molecular illustration community have explored the creation of 3DCGS-specific 

extensions for dealing with molecular data, leading to the re-implementation of many 

features, long-existing in PMV. We used uPy to create a PMV plugin: ePMV4 that provides 

a richer and more easily extensible set of capabilities than any previous molecular plugin for 

3DCGS. Moreover, ePMV is usable within any uPy supported host.

ePMV uses the uPy Modeling Helper to translate PMV's molecular representations into 

host-native geometric objects to be displayed in the host's 3D viewport, leveraging all of the 

host's rendering capabilities (i.e. materials, textures, lights, animations, etc). Moreover, 

ePMV retains the correspondence between the host's geometric object and the underlying 

atomic and molecular representation. Figure 6a shows the ePMV GUI, which provides an 

easy and intuitive interface to ePMV's capabilities and which was developed with the uPy 

Autin et al. Page 5

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



UI adaptor in order to be usable across all host applications supported by uPy. More details 

about ePMV can be found at http://epmv.scripps.edu/.

When ePMV is instantiated in a particular host, this host's computational capabilities 

become available for manipulating ePMV's molecular data. For instance, we leveraged 

Cinema 4D's bullet-based (http://bulletphysics.org) fast collision detection mechanism to 

implement interactive manual ligand-receptor docking. Here, ePMV provides the docking 

mechanism where the user, guided by an “energy score,” moves the ligand molecule relative 

the receptor. The host provides the method for handling collisions of rigid and/or soft 

bodies. When the molecules are treated as soft bodies, they can deform for an induced fit. 

Since ePMV interfaces with our Augmented Reality software component5, the user can 

position the receptor and ligand via handheld markers tracked by a camera (Figure 6b).

Developing ePMV as a uPy plugin (i.e. using uPy to create GUI and geometry objects, and 

to handle user interactions) allows ePMV to run in a wide range of hosts, thus enabling a 

larger number of potential users to access ePMV in the 3D software host they are most 

comfortable with, already own/use, or that they simply prefer. uPy also facilitates the 

maintenance and extension of ePMV, as the code duplication associated with a host-specific 

ePMV-type plugin approach does not occur.

GAMer– Mesh Improvement Software

GAMer (Geometry-preserving Adaptive MeshER) is a mesh generation library that 

produces high-quality simplex meshes of surfaces and volumes6. GAMer is used for: (i) 

improving meshes (coarsening and smoothing); and (ii) generating quality tetrahedral 

meshes (using TetGen, http://tetgen.berlios.de/), for use in finite element simulations. 

GAMer can be used as a stand-alone command line tool. However, visual feedback during 

mesh improvement has proven very helpful. Originally, GAMer was wrapped to become 

callable from Python and integrated as a dedicated plug-in for Blender 2.49b. With the new 

Blender 2.6 arriving along with an increase in GAMer demand by non-Blender users, the 

plug-in was re-written only once using uPy to facilitate migration to Blender 2.5 and 2.6, 

and to make GAMer available in the other supported hosts.

Figure 7 shows how the GAMer plug-in can be used on geometry acquired from manual 

segmentation of an electron tomography data set from a mouse heart cell11. In Figure 7a we 

see portions of two subcellular features from the segmented surface mesh after it has been 

imported into Blender. On the left we see a part of the sarcoplasmic reticulum and on the 

right we see part of a T-tubule. In Figure 7b we have applied the mesh improvement 

algorithms, both coarsening and smoothing, and in Figure 7c we have merged the surface 

mesh with a surrounding box mesh. The latter is a non-trivial feature provided by Blender. 

In Figure 7d we have used tools exposed by the uPy-based GAMer plug-in to mark and 

color certain regions on the surface mesh. When a volumetric mesh is generated, these 

regions become boundary domains, which can be used to declare boundary conditions in a 

finite element computation (see calcium simulation below). The uPy-based GAMer plugin 

communicates data (meshes) between the hosts and the GAMer module via the Modeling 
Helper. This process is exposed to the end user by the UI Adaptor interface to provide a 

Autin et al. Page 6

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://epmv.scripps.edu/
http://bulletphysics.org
http://tetgen.berlios.de/


comprehensive GUI that looks the same across all supported hosts. Figure 7e shows the uPy-

based GAMer plug-in used for the mesh improvements and the boundary selection in 

Blender 2.6 and Blender 2.49b respectively.

CSMOL– Cardiac Myocyte Calcium Dynamics

Meshs and boundaries generated from the uPy-based GAMer plug-in are used as the domain 

for simulating calcium (Ca2+) diffusion in cardiac ventricular myocytes. With the recent 

availability of sub-micron resolution myocyte structural data from confocal and electron 

microscopy7, a simulation tool, CSMOL, was developed for modeling reaction-diffusion 

models for calcium in rat and rabbit myocytes. CSMOL was used to model half-sarcomere 

sub-domains of both rat and rabbit ventricular myocytes and to identify inhomogeneities in 

calcium flux that are dependent on the geometric and topological features of the cell.

CSMOL results are usually analyzed using volumetric visualizers such as GMViewer or as 

projected data via MATLAB. These applications provide graphical insight into the Ca2+ 

concentration as a function of time and position. However, they are not directly integrated 

into a common platform, complicating the workflow for the average scientific user. We 

developed a standalone application with uPy to facilitate the visualization of CSMOL 

simulation results. The core of the application: (i) accesses the raw data from CSMOL 

(gmv); (ii) produces the tetrahedral mesh; and (iii) colors the mesh according to the 

compartment and the different Ca2+ concentration and flux values. uPy enabled us to rapidly 

create a visualization tool for this data. This prototype consists of a Python module that 

handles the CSMOL data (i.e. parsing) and communicates it to the Modeling Helper, which 

generates the colored tetrahedral representation of the simulated volume (parsed CSMOL 

data). This workflow is exposed to the user through a dialog developed using the UI 

Adaptor. The dialog enables the user to load different tetrahedral meshes, color them 

according to various properties, and split them based on properties.

We found that for this application, using uPy was particularly advantageous, as it allowed us 

to switch between hosts at different stages of the analysis to take advantage of the strengths 

each could offer. The initial, interactive analysis was performed in DejaVu3, where the 

availability of arbitrary 3D clipping planes and the ability of animating vertex-based colors 

greatly facilitated the analysis of the change of Ca flux over time in the different 

compartments (see Figure 8 and movie 1). High quality rendering could then be generated in 

other hosts to produce more effective images and advanced animations for publication and 

communication.

autoFill– Mesoscale Modeling and Visualization

The autoFill software program synthesizes 3D models of densely filled volumes and 

surfaces with arbitrarily shaped geometries (including procedurally defined structures). A 

specialization of autoFill, called autoCell, models the biological mesoscale, an intermediate 

scale (10-7–10-8m) between molecular and cellular biology that is difficult to visualize with 

experimental methods. autoCell works by packing molecular shapes into larger cellular 

frameworks while satisfying chemical and biological constraints. The autoFill project can be 

followed at http://autofill.scripps.edu.

Autin et al. Page 7

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://autofill.scripps.edu


In general, autoFill positions ingredient objects, into, onto, and around larger volumes/

compartments with various methods and degrees of control according to autoFill recipe 

files. The most common type of ingredient preparation requires a user to generate a specific 

filetype called a sphereTree (.sph file). autoFill uses this sphereTree for efficient collision 

detection between ingredients and containers. The sphereTree algorithm identifies a set of 

spheres approximating an object's shape. We have used uPy to create a plugin that expands 

the original sphereTree clustering algorithm's functionality to be available from any host. An 

advantage of using uPy is that the sphereTree clustering algorithm can be used on any 3D 

model type available in any host application, including, for instance, models generated by: 

the host (Figure 9a); plugins such as ePMV (Figure 9b); or imported from other formats that 

are highly useful, but not traditionally accessible to molecular modeling software.

With all ingredients and recipes prepared and defined (shape, concentration, behavior, etc.), 

autoFill packs the ingredients into a specified volume. During packing, autoFill produces a 

list of transformation matrices for each placed ingredient, which becomes the output file. To 

efficiently visualize the results, we developed a Python script that calls uPy's Modeling 
Helper functions to generate the master geometry for each unique ingredient and deposit 

visible instances of each ingredient's geometry according to the autoFill output 

transformation matrices. Ingredient geometries can be molecular meshes, simplified 

representations (e.g. primitive spheres, cylinders, and boxes), curve points for fibrous 

molecules, and grids points for volumetric data (see examples in Figure 10A).

To help the visualization and the development of autoFill analysis, we implemented uPy 

scripts for: the visualization of packing at run-time and different object coloring modes for 

debugging; the visualization of size-dependent available volumes, distance heat-mapping, 

packing order, and graphs of distribution and randomness statistics for analysis of results 

(see examples in Figure 10B).

Using uPy to develop autoFill result visualization tools enabled us to exploit the capabilities 

offered by different hosts. For instance, the DejaVu host optimized for viewport interactivity 

allows for realtime manipulation of a data-heavy model of HIV in full detail (see figure 10C 

and movie 2 of the rotation of an HIV virus). Other hosts, proved useful to set up autoFill 

recipes, e.g., to model certain ingredients, and to produce high quality ray-traced images and 

animations.

High quality host rendering options produce massive yet detailed images for large and dense 

volume such as blood serum. In order to illustrate such large volumes, difficult to visualize 

in real time, we used Cinema 4D to render a high resolution Gigapan image viewable at 

http://gigapan.org/gigapans/85568 This zoomable web interface shows a 1μm2 cuboid filled 

with molecular detail from a blood serum recipe to enable easier study, communication, and 

iterative improvement of the model by experts in the subject matter without having to 

produce multiscale viewers de novo.

Discussion and Conclusions

The modular nature of the Python programming language is conducive to the creation of re-

usable software components. Moreover, the rapidly growing number of large applications 

Autin et al. Page 8

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gigapan.org/gigapans/85568


and frameworks, either developed in Python or that embed a Python interpreter, creates a 

significant opportunity to re-use software components and make software interoperate in 

unprecedented ways. uPy supports this evolution by providing a unified API for writing 

scripts and plug-ins for a variety of host 3DCGS, creating new domain-competent 

applications.

uPy has proven to be a useful module for: (i) prototyping, developing, and maintaining 

complete plug-ins for all of the different supported hosts with reduced redundant effort, (ii) 

exploring the advantages, drawbacks and possible enhancements of various hosts, and (iii) 

expanding the functionality of individual Python wrapped applications by uniting them to 

the now standard host functionalities such as physics, particles, inverse kinematics, and 

Hollywood caliber animation and rendering. uPy enables software from two distinct 

communities, scientific and computer graphics, to interoperate in ways that can enhance the 

efforts of both.

Nevertheless, using uPy has raised some issues that have to be considered for any project. 

While every host application comes with its own set of strengths and weaknesses we found 

that all of them run into problems when displaying large numbers of spheres or polygonal 

meshes. This problem is well known in the computer graphics community and solutions 

exist, including: distance-dependent level-of-detail adjustment, field-of-view culling, 

employing particles with billboard imposters, low-polygon objects with normal textures 

applied, etc. While these techniques are not typically available in domain-specific modeling 

and visualization applications, the professional 3D software hosts already support many of 

these solutions and are likely to be among the first to integrate new techniques as they 

become available that will reduce these and other issues, minimizing the need for 

workarounds.

In the examples that we have described the uPy API has been restricted to the set of features 

common to all supported host applications. The number of common features is likely to 

shrink as the list of supported host applications grows. As described in the Methods 

paragraph, uPy currently supports basic types of geometric objects and a finite set of 

widgets, but it is possible to extend uPy beyond theses common primitives. For instance, 

Platonic solids are only natively supported in MAXON Cinema4D. To overcome this 

limitation, we implemented a Platonic solid modeler in the Modeling Helper base-class, thus 

making it available in all host-specific Modeling Helper classes. The Cinema4D subclass 

overrides this generic implementation to use its native one. This approach can be applied for 

a variety of functions missing in one or more of the supported host applications. Another 

example is the lack of Noise functions in the Maya Python API, while Blender and 

Cinema4D provide such functions. Again, the Modeling Helper class can provide a generic 

implementation of a missing function like this that can be overridden by the native versions. 

These implementations can be coded from scratch, or can be based on third party packages 

such as the Python Computer Graphics kit (cgkit http://cgkit.sourceforge.net/), which 

provides a complete noise module. As the core functionality of some hosts such as Maya are 

available as 3rd party Python packages, uPy's approach makes it possible to embed Maya 

functionality into any other host.

Autin et al. Page 9

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cgkit.sourceforge.net/


Currently uPy cannot be used to develop plugins that require the execution of OpenGL code 

or plugins that rely on reacting to mouse interactions in the host's 3D viewport beyond 

identifying currently selected objects and object positions. However, adding support for 

handling such events can be achieved, since all currently supported host applications provide 

the necessary APIs, with the exception, that the Cinema4D Python API does not currently 

support OpenGL code execution.

With regard to performance, while uPy is written in pure Python, it is used to encapsulate 

the hosts' native calls and thus does not reduce performance when compared to using the 

host's Python APIs directly.

The main advantage of using uPy is that uPy plugins are usable in a variety of host 

applications. This has several beneficial consequences: 1) users can utilize their domain 

specific plugins in the host that they are most familiar with; 2) the same plugin can run in 

different hosts at different stages of a project pipeline (e.g. for large studios with multiple 

hosts) or for scientific projects, at different stages of the analysis (for instance one host may 

work better when interactivity is critical verses when high-quality rendering is the goal); and 

finally, 3) the plugin is usable by a broader audience.

From the domain-specific methods-development point of view, uPy exposes computational 

methods in more environments without having to write more than one plugin. From the 3D 

graphics software development point of view, uPy extends capabilities across the set of 

supported hosts (i.e. implementing a feature in the uPy base class). From the application 

end-user point of view, uPy offers a choice among the hosts with the possibility to reproduce 

work in any of the other supported host applications as well.

We believe that uPy can help strengthen and broaden the connections between the computer 

graphics community and the information-visualization, scientific-visualization, visual-

analytics, and other scientific communities by facilitating the development of new plugins 

and applications.

Acknowledgments

We would like to thank Peter Kekenes-Huskey for providing data and his help during the development of the Ca 
Simulation View plugins. This project was supported by grants from the National Center for Research Resources 
(5P41RR008605-19), the National Institute of General Medical Sciences (8 P41 GM103426-19) from the National 
Institutes of Health, the National Biomedical Computational Resource NIH grant 8P41GM103426-19 and partly 
supported by Centre of Excellence grant from the Research Council of Norway to the Centre for Biomedical 
Computing at Simula Research Laboratory.

References

1. McGill G. Molecular movies… coming to a lecture near you. Cell. 2008; 133(7):1127–1132. 
[PubMed: 18585343] 

2. The Python Papers Monograph. 2006; 2 ISSN 1837-7092. 

3. Sanner MF. Python: a programming language for software integration and development. J Mol 
Graph Model. 1999; 17:57–61. [PubMed: 10660911] 

4. Johnson GT, Autin L, et al. ePMV Embeds Molecular Modeling into Professional Animation 
Software Environments. Structure. 2011; 19:293–303. [PubMed: 21397181] 

Autin et al. Page 10

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Gillet A, et al. Tangible interfaces for structural molecular biology. Structure. 2005; 13:483–491. 
[PubMed: 15766549] 

6. Yu Z, et al. Feature-Preserving Adaptive Mesh Generation for Molecular Shape Modeling and 
Simulation. Journal of Molecular Graphics and Modeling. 2008; 26(8):1370–1380.

7. Hayashi T, et al. Three-dimensional electron microscopy reveals new details of membrane systems 
for Ca2+ signaling in the heart. J Cell Sci. 2009; 122(7):1005–1013. [PubMed: 19295127] 

Autin et al. Page 11

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. uPy unites scientific software with various hosting applications
This diagram represents the feature coverage offered by uPy across the different Python 

wrapped hosts. The host-specific modeling and UI functions are exposed by a uPy Modeling 

Helper class and a uPy UI Adaptor class for each supported host.

Autin et al. Page 12

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. uPy improves coding efficiency
Different hosts require the use of these different lines of code (blue background) to generate 

a single sphere (a) and to create a GUI button (b) via their APIs. A single uPy call (shown in 

the yellow fields) can replace all of the native calls in the blue fields to generate a sphere or 

a button in any and all of the uPy wrapped hosts with the same results that the native code 

would redundantly produce. In this manner, 5 lines of uPy code effectively replace the 31 

lines of code a programmer would have to write to make a sphere and a button in all 5 hosts.

Autin et al. Page 13

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Simple example: create a Sphere-Builder widget in 5 different hosts with a single uPy 
script file
The folder hierarchy of uPy shown in this screengrab represents the Python class hierarchy. 

Two files, a Modeling Helper and a User Interface Adaptor, exist for each hosting 

application (B). uPy consists of two main modules (Helper and Adaptor) that automatically 

recognize the host software as shown in the Sphere.py example code (A). This code 

produces homogenous results as demonstrated in the screenshots from various hosts shown 

on the right (C).

Autin et al. Page 14

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. uPy supports common geometry types
A screenshot from Cinema 4D shows the current common denominator (CD) geometries, 

i.e. geometries supported by the Modeling Helper available for all host applications. These 

geometries include: (i) Text Objects, (ii) Basic Objects (planes, spheres, cones, cylinders, 

and cubes), (iii) Platonic Objects, (iv) Point Objects (points, metaballs, particles), (v) Lines 

Objects (mesh lines, curves, extruded curves and bones), (vi) Mesh Objects (volume 

isosurfaces, molecular surfaces, and molecular ribbons), and (vii) Instances Objects (sphere 

instances at geometry vertices to decorate, platonic instances at vertex coordinates, sphere 

instances at molecular atomic coordinates, spheres and cylinders instanced at molecular 

atoms and bond coordinates).

Autin et al. Page 15

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. The same uPy code generates a common UI across all supported hosts
The dialog windows show the lowest common denominator widgets and layouts as provided 

by the UI Adaptor. The widgets are labeled according their respective type i.e. data input, 

buttons and menus. The title of each dialog window labels the particular host.

Autin et al. Page 16

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. uPy allows deep plugins like ePMV to support hundreds of functions and GUI options
(a) View of ePMV UI windows and sub-windows inside the host Cinema4D. The main 

window controls the current molecular representation. The sub-windows expose options, 

detailed-commands, and extensions. (b) ePMV interoperates a large variety of host and 
external algorithms on the same data set. The left images show the initial state of an 

imported or constructed model, and the right images show a change in the model state as 

induced by each labeled method.

Autin et al. Page 17

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. GAMer improves polyhedral meshes
A roughly segmented surface (a) can be smoothed (b), merged with a bounding box (c), and 

used for selecting a boundary region (d). GAMer segments different surfaces (e) inside of 

Blender 2.6 (top view) and blender 2.49b (bottom view).

Autin et al. Page 18

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. CSMOL visualizes calcium dynamics simulations with tetrahedral meshing from 
GAMer
A cylindrical membrane feature (t-tubule) from muscle cells is colored red to indicate high 

calcium as compared to initial concentrations in blue. (a) View in DejaVu of the cell interior 

using splitting tools and real time cutting planes. (b) View in Cinema 4D of the same cell 

surface and interior more usable for publication of a static image thanks to enhanced 

rendering features. (c) View of a two perpendicular plane slices in Maya.

Autin et al. Page 19

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. uPy exposes the capabilities of a Python SphereTree generator
(a) A tree of five Spheres (one trunk with 5 branches) generated to approximate a torus 

geometry clustered stochastically about the coordinates of the torus's vertices. (b) Tree of 

three Spheres (one trunk with 3 branches) clustered about the atomic coordinates provided in 

the protein databank file 1crn to approximate the molecule's shape in a coarse but efficient 

manner suitable for use in generating a coarse mesoscale model with autoCell (see figure 

10).

Autin et al. Page 20

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. uPy interfaces with autoFill to construct, visualize, and analyse multiscale models of 
complex 3D volumes including biological cellscapes
(A) Cylinders populate the surfaces of a red-orange and a yellow-orange mesh. Sphereoids 

fill the orange mesh and pyramids the green while cuboids fill the space outside either 

volume while avoiding existing “P” meshes. AutoFill quickly positions these objects with 

zero to minimal overlap as allowed by the user. (B) uPy enables many of autoFill's result 

analysis output and analysis tools to display interactively. (C) A lightweight autoFill Result 

Viewer builds, hides, reveals, and replaces various components of a multiscale autoFill 

model (here the HIV virus), directly from a result file, using the most efficient instancing 

systems available to each host to speed up viewport interaction and to reduce filesize.

Autin et al. Page 21

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


