
VAV2, a guanine nucleotide exchange factor for Rac1, regulates 
glucose-stimulated insulin secretion in pancreatic beta cells

Rajakrishnan Veluthakal1,3, Ragadeepthi Tunduguru4, Daleep Kumar Arora5, Vaibhav 
Sidarala1,2, Khadija Syeda1,2, Cornelis P. Vlaar6, Debbie C. Thurmond3,4, and Anjaneyulu 
Kowluru1,2

1Beta Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, 4646 John R, Detroit, MI 
48201, USA

2Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne 
State University, Detroit, MI, USA

3Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University 
School of Medicine, Indianapolis, IN, USA

4Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 
Indianapolis, IN, USA

5Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, 
Oklahoma City, OK, USA

6Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, 
Medical Sciences Campus, San Juan, Puerto Rico

Abstract

Aims/hypothesis—Rho GTPases (Ras-related C3 botulinum toxin substrate 1 [Rac1] and cell 

division cycle 42 [Cdc42]) have been shown to regulate glucose-stimulated insulin secretion 

(GSIS) via cytoskeletal remodelling, trafficking and fusion of insulin-secretory granules with the 

plasma membrane. GTP loading of these G proteins, which is facilitated by GDP/GTP exchange 

factors, is a requisite step in the regulation of downstream effector proteins. Guanine nucleotide 

exchange factor VAV2 (VAV2), a member of the Dbl family of proteins, has been identified as 

one of the GDP/GTP exchange factors for Rac1. Despite recent evidence on the regulatory roles of 

VAV2 in different cell types, roles of this guanine nucleotide exchange factor in the signalling 

events leading to GSIS remain undefined. Using immunological, short-interfering RNA (siRNA), 
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pharmacological and microscopic approaches we investigated the role of VAV2 in GSIS from islet 

beta cells.

Methods—Co-localisation of Rac1 and VAV2 was determined by Triton X-114 phase partition 

and confocal microscopy. Glucose-induced actin remodelling was quantified by live cell imaging 

using the LifeAct-GFP fluorescent biosensor. Rac1 activation was determined by G protein linked 

immunosorbent assay (G-LISA).

Results—Western blotting indicated that VAV2 is expressed in INS-1 832/13 beta cells, normal 

rat islets and human islets. Vav2 siRNA markedly attenuated GSIS in INS-1 832/13 cells. 

Ehop-016, a newly discovered small molecule inhibitor of the VAV2–Rac1 interaction, or siRNA-

mediated knockdown of VAV2 markedly attenuated glucose-induced Rac1 activation and GSIS in 

INS-1 832/13 cells. Pharmacological findings were recapitulated in primary rat islets. A high 

glucose concentration promoted co-localisation of Rac1 and VAV2. Real-time imaging in live 

cells indicated a significant inhibition of glucose-induced cortical actin remodelling by Ehop-016.

Conclusions—Our data provide the first evidence to implicate VAV2 in glucose-induced Rac1 

activation, actin remodelling and GSIS in pancreatic beta cells.
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Introduction

Insulin secretion from pancreatic beta cells is principally regulated by ambient glucose 

concentrations. However, potential cellular mechanisms underlying the stimulus–secretion 

coupling of glucose-stimulated insulin secretion (GSIS) are only partially understood. GSIS 

occurs largely via the generation of soluble second messengers, such as cyclic nucleotides 

and biologically active lipids, as well as an increase in intracellular calcium concentrations 

[1–4].

Small G proteins (Ras-related C3 botulinum toxin substrate 1 [Rac1] and cell division cycle 

42 [Cdc42]) play key regulatory roles in cytoskeletal remodelling to promote mobilisation of 

secretory granules to the plasma membrane for fusion and the release of their cargo into 

circulation [5–7]. Published evidence affirms the involvement of Cdc42, Rac1 and Arf6 in 

GSIS [5–11]. Functional activation – deactivation of these G proteins is modulated by a 

variety of regulatory factors/proteins. At least three classes of such factors/proteins have 

been described, including: (1) guanine nucleotide exchange factors (GEFs), which facilitate 

the conversion of GDP-bound (inactive) forms of G proteins to their GTP-bound (active) 

forms; (2) GDP-dissociation inhibitors (GDIs), which prevent the dissociation of GDP from 

G proteins, and hence are considered inhibitory in the G protein activation cascade; and (3) 

GTPase activating proteins, which promote the conversion of the GTP-bound, functionally 

active G proteins to their respective GDP-bound inactive conformation by activating the 

intrinsic GTPase activity of candidate G proteins to complete the activation – deactivation 

cycle [6]. Several recent studies have identified and studied GEFs for Cdc42, Rac1 and 

Arf6, which are implicated in GSIS. They include T-lymphoma invasion and metastasis-

inducing protein 1 (Tiam1), Rho guanine nucleotide exchange factor 7 (Cool-1/βPIX) and 
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cytohesin-2 (ARNO), which have been shown to increase GTP loading onto Rac1, Cdc42 

and Arf6, respectively [6, 10, 12, 13]. Furthermore, Rho-GDI has been shown to regulate 

Cdc42 and Rac1 signalling pathways in islet beta cells, leading to GSIS [14, 15].

In addition to Tiam1 (a GEF for Rac1), guanine nucleotide exchange factor VAV2 (VAV2) 

has been identified as a GEF in the regulation of Rac1 functions in many cell types [16–18]. 

VAV2 belongs to the mammalian Vav family of GEFs: Vav1 is exclusively expressed only 

in haematopoietic cells [19], whereas VAV2 and VAV3 are ubiquitously expressed [19]. 

VAV2 is relatively unstudied. In general, there is little information on its role in cellular 

function; in particular, its expression levels and role in regulating GSIS have not been 

examined in islet beta cells. Several domains that span the VAV2 protein are important for 

various signalling events and also exhibit tyrosine-phosphorylation-dependent GEF activity 

[20–22]. Several Src family tyrosine kinases (SFKs) such as Lck and Fyn [23, 24], Syk 

family tyrosine kinases (Syk and Zap70) [24, 25], and receptor tyrosine kinases [26, 27] 

have been implicated as mediators of VAV2 tyrosine phosphorylation. Recent studies have 

shown that activation of tyrosine-protein kinase Yes (an Src family kinase) is indispensable 

for Cdc42 activation in a glucose-specific manner in pancreatic beta cells [28]. The aim of 

the current study, therefore, was to understand the roles of VAV2 in islet function, including 

GSIS. We addressed this by quantifying GSIS in beta cells in which VAV2 expression was 

suppressed via an siRNA approach. Findings from these experiments were further validated 

by a pharmacological approach involving Ehop-016, a novel small molecule inhibitor of 

VAV2–Rac1 interaction (electronic supplementary material [ESM] Fig. 1) [29]. 

Collectively, findings from these investigations implicate VAV2, and perhaps the glucose-

induced tyrosine phosphorylation of VAV2, in the process of Rac1-mediated cortical actin 

remodelling and GSIS.

Methods

Antisera against VAV2 and β-actin were obtained from Santa Cruz Biotechnology (Santa 

Cruz, CA, USA) and Sigma-Aldrich (St Louis, MO, USA), respectively. Enhanced 

chemiluminescence kits were obtained from Amersham Biosciences (Piscataway, NJ, USA). 

Rac1 antiserum was obtained from BD Transduction Laboratories (San Jose, CA, USA). 

Donkey anti-mouse Alexa Fluor 488 and donkey anti-rabbit Alexa Fluor 568 conjugated 

secondary antibodies were obtained from Life technologies (Grand Island, NY, USA). The 

rat insulin ELISA kit was obtained from American Laboratory Products Co (Windham, NH, 

USA). The G protein linked immunosorbent assay (G-LISA) kit used for the Rac1 activation 

assay was obtained from Cytoskeleton (Denver, CO, USA). Vav2 siRNA and scrambled 

siRNA were obtained from Thermo Scientific (Waltham, MA, USA). Ehop-016 was 

synthesised as previously described [29]. SU6656 was obtained from Calbiochem (San 

Diego, CA, USA).

INS-1 832/13 cells, rat islets and human islets

INS-1 832/13 cells were cultured as previously described [8, 10]. Islets from normal male 

Sprague Dawley rats (~6 weeks old; Harlan Laboratories, Oxford, MI, USA) were isolated 

by the collagenase digestion method [8, 10]. All protocols were reviewed and approved by 
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the Institutional Animal Care and Use Committee at Wayne State University. Human islets 

were obtained from PRODO Laboratories (Irvine, CA, USA). Studies involving human 

islets were conducted according to the guidelines established by the US Department of 

Health and Human Services/NIH and approved by the Biosafety Committee at the John D. 

Dingell VA Medical Center.

Insulin release assay

INS-1 832/13 cells or rat islets were incubated overnight with either vehicle or Ehop-016 (5 

μmol/l) in low glucose (LG; 2.5 mmol/l) and low serum (LS; 2.5%) medium. Following a 60 

min pre-incubation in KRB, the cells were further stimulated with either LG (2.5 mmol/l) or 

high glucose (HG; 20 mmol/l) for 45 min at 37°C with or without Ehop-016. Insulin 

released was quantified by ELISA [8, 10].

Transfection studies with siRNA

INS-1 832/13 cells were transfected with ON-TARGETplus SMARTpool Vav2 siRNA or 

scrambled siRNA at a final concentration of 80 nmol/l using Lipofectamine RNAiMAX 

transfection reagent (Life technologies, Grand Island, NY, USA). The efficiency of VAV2 

knockdown was determined by western blot analysis at 48 h post-transfection.

Rac1 activation assay

Activated Rac1 was quantified by the Rac1 activation G-LISA assay kit in INS-1 832/13 

cells treated with Ehop-016 or transfected with Vav2 siRNA [30].

Live cell imaging studies

INS-1 832/13 cells were seeded on MatTek (Ashland, MA, USA) glass bottom culture 

dishes at a density of 400,000 cells per 35 mm dish. At ~50% confluency, cells were 

transfected with the LifeAct-GFP plasmid using Lipofectamine 2000 transfection reagent 

(Invitrogen, Carlsbad, CA, USA) [31]. Live cell imaging was performed on cells at 48 h 

post-transfection. Briefly, cells were pre-incubated overnight in LS-LG medium with or 

without Ehop-016 (5 μmol/l). After 24 h, cells were pre-incubated in KRB buffer for 1 h 

with or without Ehop-016. Images were captured every 2 min, starting from 0–20 min after 

the addition of 20 mmol/l glucose [31].

Subcellular fractionation: Triton X-114 phase partitioning assay

Lysates derived from INS-1 832/13 cells treated with LG or HG were centrifuged at 100,000 

g for 60 min at 4°C to obtain total membrane (pellet) and soluble (supernatant) fractions. 

The hydrophilic and hydrophobic phases of the total membrane fractions were isolated using 

Triton X-114 as previously described [14].

VAV2–Rac1 co-localisation by confocal immunofluorescence microscopy

INS-1 832/13 cells were plated on glass coverslips. After 24 h, the cells were incubated in 

LS-LG medium overnight and then with KRB for 1 h prior to incubation with LG or HG for 

15 min at 37°C. Following this, cells were washed in PBS, fixed in ice-cold methanol for 20 

min at 20°C and then washed in PBS. Non-specific binding sites were first blocked for 1 h 
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with 5% donkey serum and then cells were incubated with mouse anti-Rac1 monoclonal 

antibody (1:200 dilution) for 1 h, washed, and then incubated overnight with rabbit anti-

VAV2 polyclonal antibody (1:100 dilution). After washing in PBS, cells were incubated for 

1 h with Alexa Fluor 488 to detect Rac1. To detect VAV2, cells were incubated with Alexa 

Fluor 568. PBS with 5% donkey serum was used for antibody dilution. Cells were then 

washed and proteins were visualised by confocal scanning laser microscopy, as previously 

described [9].

Statistical analysis

The statistical significance of differences between control and experimental conditions was 

determined by the Student’s t test and ANOVA. A p value of < 0.05 was considered 

statistically signi cant.

Results

VAV2 is expressed in INS-1 832/13 cells, rodent and human islets and regulates GSIS

Data shown in Fig. 1a suggest that VAV2 is expressed in INS-1 832/13 cells, rat islets and 

human islets. Levels of VAV2 in all three cells were comparable, as determined by protein 

to β-actin ratios. We next asked whether VAV2 regulates GSIS by quantifying the latter in 

INS-1 832/13 cells in which endogenous VAV2 expression was depleted via Vav2 siRNA. 

Data in Fig. 1b, c demonstrate a ~60% reduction in VAV2 in Vav2 siRNA transfected cells 

relative to cells transfected with scrambled siRNA. More importantly, GSIS is markedly 

reduced in these cells following knockdown of VAV2 (Fig. 1d), suggesting that VAV2 plays 

a regulatory role in GSIS.

Ehop-016 attenuates GSIS from INS-1 832/13 cells and normal rodent islets

We further examined the roles of VAV2 in GSIS in INS-1 832/13 cells and normal rat islets 

using Ehop-016, a novel small molecule inhibitor of the VAV2–Rac1 GTPase interaction 

(ESM Fig. 1) [29]. We quantified GSIS in INS-1 832/13 cells (Fig. 2a) and normal rat islets 

(Fig. 2b) incubated with or without Ehop-016. Our findings indicated significant inhibition 

of GSIS by Ehop-016 in both cell types studied, further confirming our observations 

described in Fig. 1. Together, the data in Figs 1 and 2 suggest that VAV2 plays a regulatory 

role in GSIS. These data further indicate that INS-1 832/13 cells reliably model VAV2-

mediated regulation of GSIS as exhibited by primary rat islets.

Inhibition of VAV2 suppresses glucose-induced Rac1 activation in INS-1 832/13 cells

A large number of studies have demonstrated that GSIS involves activation of Arf6, Cdc42 

and Rac1, with these activation events being necessary steps for the cytoskeletal remodelling 

to facilitate the movement of granules from the intracellular location towards the plasma 

membrane [5–7]. Since VAV2 is a known regulator of Rac1 [18–20], we next asked whether 

glucose-induced activation of Rac1 is sensitive to inhibition of VAV2. To address this, we 

quantified glucose-induced Rac1 activation in INS-1 832/13 cells incubated in the absence 

or presence of Ehop-016. Data in Fig. 2c indicate a significant increase in Rac1 activation by 

stimulatory concentrations of glucose. Furthermore, Ehop-016 completely inhibited glucose-

induced activation of Rac1 under these conditions, without significantly affecting basal 
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levels of Rac1 activation (Fig. 2c). Furthermore, we noticed significant inhibition of 

glucose-induced Rac1 activation following siRNA-mediated knockdown of VAV2 (Fig. 2d). 

Collectively, our findings in INS-1 832/13 cells and normal rodent islets suggest that GSIS 

involves an activation step involving VAV2 that is upstream of Rac1 activation.

We also assessed the regulatory roles of VAV2 in KCl-induced insulin secretion in INS-1 

832/13 cells, and observed that KCl-induced insulin secretion is modestly inhibited by 

Ehop-016 (ESM Fig. 2). More importantly, unlike stimulatory glucose (Fig. 2d), KCl failed 

to activate Rac1 (ESM Fig. 2) in both control and Vav2 siRNA transfected cells (ESM Fig. 

2). Even though Rac1 activity was lower than under basal conditions (i.e. control cells 

treated with LG) in cells transfected with scrambled and Vav2 siRNA, this was not due to 

decreased levels of Rac1 in these cells (additional data not shown). These observations are 

compatible with previous observations that Rac1 activation is dispensable for KCl-induced 

insulin secretion [6,8].

Glucose promotes the association between VAV2 and Rac1: evidence from Triton X-114 
phase partition assay and immunofluorescence methods

GSIS involves the mobilisation of Rac1 and Cdc42 to the membrane for interaction with 

various effector proteins. Therefore, we investigated the subcellular association (e.g. 

targeting) of Rac1 and VAV2 with hydrophilic and hydrophobic compartments in INS-1 

832/13 cells treated with or without stimulatory glucose. Triton X-114 phase partitioning 

was used to isolate the cytosolic and membrane compartments, and to further segregate the 

hydrophobic and hydrophilic compartments comprising the total membrane fraction (ESM 

Fig. 3), as previously described and validated [14]. Data in Fig. 3a suggest that VAV2 is 

distributed in both the hydrophobic and hydrophilic compartments under basal as well as 

high-glucose exposure conditions. In contrast, Rac1 was predominantly associated with the 

cytosolic compartment under basal glucose conditions, and glucose stimulation promoted 

the association of Rac1 with the hydrophilic phase of the membrane (Fig. 3b). It is well 

established that GDI binds Rho GTPases (e.g. Rac1) through their C-terminal lipid anchors 

[32] and retains them in the cytosol [32, 33]. Available evidence also suggests that 

activation of Rho GTPases occurs in the cytosol, leading to their membrane association 

following dissociation from the cytosolic GDI protein [14, 15]. Our findings suggest that 

VAV2-mediated activation of Rac1 might occur in the cytosolic compartment followed by 

its translocation to the hydrophilic phase of the membrane in glucose-stimulated beta cells. 

These findings were further confirmed by confocal immunofluorescence microscopy (Fig. 

3c,d). Compatible with the translocation data shown in Fig. 3a,b, we noted increased co-

localisation of VAV2 (in red) with Rac1 (in green) in the cytosolic compartment (indicated 

by yellow colour; arrows). Thus, our findings from two distinct methods support the 

hypothesis that stimulatory concentrations of glucose promote co-localisation of VAV2 and 

Rac1.

The VAV2–Rac1 axis mediates glucose-induced filamentous actin (F-actin) remodelling in 
beta cells

Previous studies have demonstrated that the second-phase of insulin secretion, requires the 

movement of granules from intracellular site to the plasma membrane, which involves 

Veluthakal et al. Page 6

Diabetologia. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reorganisation of the F-actin cytoskeletal network barrier; Rac1 is implicated in second-

phase GSIS [15]. To determine the requirement of VAV2 in the reorganisation of cortical F-

actin, the LifeAct-GFP biosensor of F-actin was used as an imaging agent in INS-1 832/13 

cells treated with Ehop-016 during GSIS. LifeAct-GFP is a 17 amino acid peptide from the 

Abp140 actin-binding protein linked to the N-terminus of green fluorescent protein (GFP) 

previously shown to specifically bind to F-actin without significantly affecting F-actin 

dynamics [34, 35]. In INS-1 832/13 beta cells, the glucose-induced depolymerisation of F-

actin (i.e. disappearance of F-actin staining) became evident within 5 min and continued 

progressively for up to ~20 min (Fig. 4a; ESM movies 1, 2). In contrast, Ehop-016 abolished 

the F-actin depolymerisation, as observed by intact F-actin staining in the entire cell (Fig. 

4b; ESM movies S3, 4). These data support a role for VAV2-induced Rac1 activation in 

actin depolymerisation in beta cells, consistent with its role in facilitating insulin secretion.

SU6656, a tyrosine kinase inhibitor, attenuates glucose-induced phosphorylation of VAV2 
in beta cells

Several previous studies have demonstrated that tyrosine phosphorylation of VAV2 is 

important for GDP/GTP exchange activity on downstream targets such as Rac1 [21]. To test 

this hypothesis in beta cells, we utilised SU6656, a selective inhibitor of SFKs. We have 

observed a significant increase in phosphorylation of VAV2 under stimulatory 

concentrations of glucose. Treatment with SU6656 abolished glucose-induced VAV2 

phosphorylation (Fig. 5), suggesting that upstream SFK activation by glucose is important 

for the VAV2-mediated Rac1 activation signalling step. Taken together, our data suggest 

that VAV2-mediated activation of Rac1 represents one of the key signalling steps involved 

in actin cytoskeleton remodelling and facilitation of GSIS from pancreatic beta cell.

Discussion

The main objective of this study was to investigate the role of VAV2, a known GEF for 

Rac1, in GSIS. Our findings suggest that the molecular biological and pharmacological 

inhibition of VAV2 results in the inhibition of glucose-induced activation of Rac1 and GSIS 

in INS-1 832/13 cells and primary rodent islets, thus suggesting novel roles for VAV2–Rac1 

signalling in GSIS. It is well established that Cdc42 and Rac1 play essential roles in 

cytoskeletal remodelling, vesicular transport and fusion with the plasma membrane [5, 6]. 

Using a variety of experimental approaches, we previously described regulatory roles for 

Rac1 in islet function and GSIS [6, 8, 36–38]. We demonstrated that inhibition of Rac1 

function significantly attenuated glucose-, but not KCl-induced insulin secretion in clonal 

beta cells and rodent islets [8, 38]. We also reported that pharmacological or molecular 

biological inhibition of Tiam1, a known GEF for Rac1, significantly inhibits GSIS [12]. 

These data suggested that Tiam1 is one of the GEFs involved in glucose-induced activation 

of Rac1 and insulin secretion.

What then are the roles of VAV2 in this signalling cascade? Our current findings clearly 

raise an interesting possibility that other GEFs, such as VAV2, regulate GSIS. It is likely 

that both Tiam1 and VAV2 exert distinct regulatory functions leading to the activation of 

Rac1 and downstream signalling steps, including activation of the phagocyte-like NADPH 
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oxidase (Nox2) leading to GSIS [6, 38, 39]. Based on compelling experimental evidence, it 

was concluded that Nox2 is one of the regulatory proteins involved in insulin secretion [6, 

38–41]. Rac1 is one of the components of the Nox2 holoenzyme, and it has been shown that 

Rac1 associates with other members of this holoenzyme upon GTP binding and activation 

[6, 30, 38]. Therefore, we propose that both Tiam1 and VAV2 serve as GEFs for Rac1 in 

mediating GSIS. It is noteworthy that pharmacological inhibition of both the Tiam1–Rac1 

and VAV2–Rac1 pathways using NSC23766 and Ehop-016, respectively, yielded much 

greater inhibition of GSIS compared with inhibition of either of these pathways alone (ESM 

Fig. 4). These data indicate independent roles for these pathways (i.e. different downstream 

signalling events) in the induction of GSIS. Additional studies are needed to further validate 

this model. Liu and associates suggested novel regulation of Rac1 and redox signalling in 

response to fluid stress in endothelial cells [42]. They reported the concerted actions of 

Tiam1 and VAV2 in linking components of the polarity complex (vascular endothelial–

cadherin–neutrophil cytosol factor 2 [p67phox]–partitioning defective 3 homolog [Par3]) to 

the NADPH oxidase module. Data from these investigations suggest that VAV2 is required 

for GTP loading onto Rac1, whereas Tiam1 serves as an adaptor protein for the polarity 

complex, which directs the localised activation of Rac1. Thus, it is likely that the Tiam1/

VAV2 module regulates GSIS at different levels via regulating distinct signalling steps.

Emerging evidence suggests that the regulation of Tiam1 and VAV2 functions by tyrosine 

phosphorylation is catalysed by SFKs. For example, using pharmacological and molecular 

biological approaches, Servitja and associates demonstrated regulatory roles for Tiam1 and 

VAV2 in Src-induced cell transformation via regulation of Rac1 activation [43]. Earlier 

studies pointed out that phosphorylation of Vav on tyrosine residues [19–22] activates its 

GEF activity [26, 27]. The phosphorylation step is mediated by the Vav structural domain 

(Src homology 2), which facilitates the interaction of Vav proteins with membrane and 

cytoplasmic tyrosine kinases [19–22].

Our current studies demonstrate significant inhibition of glucose-induced VAV2 

phosphorylation by SU6656. Indeed, recent investigations by Yoder et al [28] provide 

compelling evidence for YES tyrosine kinase activation as an early signalling event (~1 

min) involved in the activation of the small G protein Cdc42 (~3 min) in glucose-stimulated 

islet beta cell. Likewise, studies of Garrett et al have demonstrated a requirement for 

tyrosine phosphorylation of VAV2 in vascular endothelial growth factor-induced Rac1 

activation in endothelial cells [44]. Together, these findings implicate a tyrosine 

phosphorylation step upstream to the activating GEFs (Tiam1/VAV2) for Rac1 activation 

and associated downstream signalling events. It is also likely that phosphorylation of VAV 

could be mediated via binding of the VAV2 pleckstrin homology domain region to 

biologically active lipid second messenger products of phosphatidylinositol-3-kinase [45] 

because these lipid second messengers are known to promote activation and translocation of 

Rac1 in beta cells [46]. Future studies are needed to test these putative mechanisms to more 

precisely determine the molecular roles for the Tiam1/VAV2 axis in pancreatic beta cells. 

Our current findings also suggest that VAV2-mediated Rac1 activation is important for actin 

cytoskeletal reorganisation and mobilisation of insulin granules towards the plasma 

membrane for their fusion and release. In the pancreatic beta cell, actin microfilaments 

juxtaposed to or beneath the plasma membrane are thought to restrict the localisation of 
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secretory vesicles to release sites in the absence of stimulatory levels of glucose. Our data 

might suggest that VAV2 –Rac1 binding is directly required for glucose-induced actin 

depolymerisation. Alternatively, these data may suggest that VAV2–Rac1 activation is 

downstream of events related to Cdc42 and PAK1 activation, both of which occur within the 

first 5 min of GSIS and are required for actin remodelling in the beta cell. Indeed, Cdc42 

activation occurs downstream of YES kinase activation, an SFK-mediated tyrosine 

phosphorylation event. In conclusion, our findings provide the first evidence in real time for 

a VAV2 –Rac1 signalling axis in actin cytoskeletal remodelling and GSIS in isolated beta 

cells, and form the basis for future investigations to precisely define the roles of this Tiam1/

VAV2–Rac1 pathway in physiological insulin secretion in the islet.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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G-LISA G protein linked immunosorbent assay

HG High glucose LG Low glucose

LS Low serum

Rac1 Ras-related C3 botulinum toxin substrate 1

SFK Src family of tyrosine kinases

siRNA Short-interfering RNA

Tiam1 T-lymphoma invasion and metastasis-inducing protein 1

VAV2 Guanine nucleotide exchange factor VAV2

Veluthakal et al. Page 9

Diabetologia. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Jitrapakdee S, Wutthisathapornchai A, Wallace JC, MacDonald MJ. Regulation of insulin secretion: 
role of mitochondrial signaling. Diabetologia. 2010; 53:1019–1032. [PubMed: 20225132] 

2. Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. 
Cell Metab. 2013; 18:162–185. [PubMed: 23791483] 

3. Berggren PO, Leibiger IB. Novel aspects on signal transduction in the pancreatic beta cell. Nutr 
Metab Cardiovasc Dis. 2006; 16(suppl 1):S7–S10. [PubMed: 16530130] 

4. Komatsu M, Takei M, Ishii H, Sato Y. Glucose-stimulated insulin secretion: a newer perspective. J 
Diabetes Investig. 2013; 4:511–516.

5. Wang Z, Thurmond DC. Mechanisms of biphasic insulin granule exocytosis-roles of cytoskeleton, 
small GTPases and SNARE proteins. J Cell Sci. 2009; 122:893–903. [PubMed: 19295123] 

6. Kowluru A. Small G proteins in islet β-cell function. Endocrine Rev. 2010; 31:52–78. [PubMed: 
19890090] 

7. Kalwat MA, Thurmond DC. Signaling mechanisms of glucose-induced F-actin remodeling in 
pancreatic islet β cells. Exp Mol Med. 2013; 45:1–12.

8. Veluthakal R, Kaur H, Goalstone M, Kowluru A. Dominant-negative alpha-subunit of farnesyl-and 
geranyltransferase inhibits glucose-stimulated, but not KCl-stimulated, insulin secretion in INS 
832/13 cells. Diabetes. 2007; 56:204–210. [PubMed: 17192483] 

9. Wang Z, Oh E, Thurmond DC. Glucose-stimulated Cdc42 signaling is essential for the second phase 
of insulin secretion. J Biol Chem. 2007; 282:9536–9546. [PubMed: 17289663] 

10. Jayaram B, Syed I, Kyathanahalli CN, Rhodes CJ, Kowluru A. Arf nucleotide binding site opener 
[ARNO] promotes sequential activation of Arf6, cdc42 and Rac1 and insulin secretion in INS 
832/13 beta-cells and rat islets. Biochem Pharmacol. 2011; 81:1016–1027. [PubMed: 21276423] 

11. Lawrence JT, Birnbaum MJ. ADP-ribosylation factor 6 regulates insulin secretion through plasma 
membrane phosphatidylinositol 4,5-biphsphate. Proc Natl Acad Sci USA. 2003; 100:13320–
13325. [PubMed: 14585928] 

12. Veluthakal R, Madathilperambil SV, McDonald P, Olson LK, Kowluru A. Regulatory roles for 
Tiam1, a guanine nucleotide exchange factor for Rac1, in glucose-stimulated insulin secretion in 
pancreatic beta-cells. Biochem Pharmacol. 2009; 77:101–113. [PubMed: 18930714] 

13. Kepner EM, Yoder SM, Oh E, et al. Cool-1/βPIX functions as a guanine nucleotide exchange 
factor in the cycling of Cdc42 to regulate insulin secretion. Am J Physiol Endocrinol Metab. 2011; 
301:1072–1080.

14. Kowluru A, Veluthakal R. Rho guanosine diphosphate-dissociation inhibitor plays a negative 
modulatory role in glucose-stimulated insulin secretion. Diabetes. 2005; 54:3523–3529. [PubMed: 
16306371] 

15. Wang Z, Thurmond DC. Differential phosphorylation of RhoGDI mediates the distinct cycling of 
Cdc42 and Rac1 to regulate second phase insulin secretion. J Biol Chem. 2010; 285:6186–6197. 
[PubMed: 20028975] 

16. Hornstein I, Alcover A, Katzav S. Vav proteins, masters of the world of cytoskeleton organization. 
Cell Signal. 2004; 16:1–11. [PubMed: 14607270] 

17. Swat W, Fujikawa K. The Vav family: at the crossroads of signaling. Immunol Res. 2005; 32:259–
265. [PubMed: 16106078] 

18. Cook DR, Rossman KL, Der CJ. Rho guanine nucleotide exchange factors: regulators of Rho 
GTPase activity in the development and disease. Oncogene. 2013; 33:4021–4035. [PubMed: 
24037532] 

19. Bustelo XR. Regulatory and signaling properties of the Vav family. Mol Cell Biol. 2000; 20:1461–
1477. [PubMed: 10669724] 

20. Bustelo XR. The VAV family of signal transduction molecules. Crit Rev Oncog. 1996; 7:65–88. 
[PubMed: 9109498] 

21. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR. Phosphotyrosine-dependent 
activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature. 1997; 
385:169–172. [PubMed: 8990121] 

Veluthakal et al. Page 10

Diabetologia. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Schuebel KE, Movilla N, Rosa JL, Bustelo XR. Phosphorylation-dependent and constitutive 
activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J. 1998; 17:6608–6621. 
[PubMed: 9822605] 

23. Han J, Das B, Wei W, et al. Lck regulates Vav activation of members of the Rho family of 
GTPases. Mol Cell Biol. 1997; 17:1346–1353. [PubMed: 9032261] 

24. Michel F, Grimaud L, Tuosto L, Acuto O. Fyn and ZAP-70 are required for Vav phosphorylation 
in T cells stimulated by antigen-presenting cells. J Biol Chem. 1998; 273:31932–31938. [PubMed: 
9822663] 

25. Deckert M, Tartare-Deckert S, Couture C, Mustelin T, Altman A. Functional and physical 
interactions of Syk family kinases with the Vav proto-oncogene product. Immunity. 1996; 5:591–
604. [PubMed: 8986718] 

26. Bustelo XR, Ledbetter JA, Barbacid M. Product of vav proto-oncogene defines a new class of 
tyrosine protein kinase substrates. Nature. 1992; 356:68–71. [PubMed: 1311423] 

27. Margolis B, Hu P, Katzav S, et al. Tyrosine phosphorylation of vav proto-oncogene product 
containing SH2 domain and transcription factor motifs. Nature. 1992; 356:71–74. [PubMed: 
1531699] 

28. Yoder SM, Dineen SL, Wang Z, Thurmond DC. YES, a Src family kinase, is a proximal glucose-
specific activator of cell division cycle control protein 42 (Cdc42) in pancreatic islet β cells. J Biol 
Chem. 2014; 289:11476–11487. [PubMed: 24610809] 

29. Montalvo-Ortiz BL, Castillo-Pichardo L, Hernandez E, Humphries-Bickley T, De la Mota-
Peynado A, et al. Characterization of Ehop-016, a novel small molecule inhibitor of Rac GTPase. J 
Biol Chem. 2012; 287:13228–13238. [PubMed: 22383527] 

30. Kowluru RA, Kowluru A, Veluthakal R, et al. Tiam1-Rac1 signaling axis-mediated activation of 
NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. 
Diabetologia. 2014; 57:1047–1056. [PubMed: 24554007] 

31. Tunduguru R, Chiu TT, Ramalingam L, Elmendorf JS, Klip A, Thurmond DC. Signaling of the 
p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake 
in skeletal muscle cell. Biochem Pharmacol. 2014; 92:380–388. [PubMed: 25199455] 

32. del Pozo MA, Kiosses WB, Alderson NB, Meller N, Hahn KM, Schwartz MA. Integrins regulate 
GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol. 2002; 
4:232–239. [PubMed: 11862216] 

33. Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell 
Signal. 1999; 11:545–554. [PubMed: 10433515] 

34. Kalwat MA, Yoder SM, Wang Z, Thurmond DC. A p21-activated kinase (PAK1) signaling 
cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic β 
cells. Biochem Pharmacol. 2013; 85:808–816. [PubMed: 23246867] 

35. Lopez JP, Turner JR, Philipson LH. Glucose-induced ERM protein activation and translocation 
regulates insulin secretion. Am J Physiol Endocrinol Metab. 2010; 299:E772–E785. [PubMed: 
20739507] 

36. Kowluru A, Li G, Rabaglia ME, Segu VB, Hofmann F, et al. Evidence for differential regulation of 
Rho subfamily of GTP-binding proteins in glucose-and calcium-induced insulin secretion from 
pancreatic beta-cells. Biochem Pharmacol. 1997; 54:1097–1108. [PubMed: 9464452] 

37. Kowluru A, Veluthakal R, Rhodes CJ, Kamath V, Syed I, et al. Protein farnesylation-dependent 
Raf/extracellular signal-related kinase signaling links to cytoskeletal remodeling to facilitate 
glucose-induced insulin secretion in pancreatic beta-cells. Diabetes. 2010; 59:967–977. [PubMed: 
20071600] 

38. Kowluru A. Friendly, and not so friendly, roles of Rac1 in islet beta-cell function: lessons learnt 
from pharmacological and molecular biological approaches. Biochem Pharmacol. 2011; 81:965–
975. [PubMed: 21300027] 

39. Syed I, Kyathanahalli CN, Kowluru A. Phagocyte-like NADPH oxidase generates ROS in INS 
832/13 cells and rat islets: role of protein prenylation. Am J Physiol Regul Integr Comp Physiol. 
2011; 300:756–762.

Veluthakal et al. Page 11

Diabetologia. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Morgan D, Rebelato E, Abdulkader F, Graciano MF, Oliveira-Emilo HR, et al. Association of 
NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells. Endocrinology. 
2009; 150:2197–2201. [PubMed: 19147679] 

41. Kowluru A, Kowluru RA. Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in 
models of glucolipotoxicity and diabetes. Biochem Pharmacol. 2014; 88:275–283. [PubMed: 
24462914] 

42. Liu Y, Collins C, Kiosses WB, Murray AM, Joshi M, et al. A novel pathway spatiotemporally 
activates Rac1 and redox signaling in response to fluid shear stress. J Cell Biol. 2013; 201:863–
873. [PubMed: 23733346] 

43. Servitja JM, Marinissen MJ, Sidhi A, Bustelo XR, Gutkind JS. Rac1 function is required for Src-
induced transformation. Evidence of a role for Tiam1 and Vav2 in Rac activation by Src. J Biol 
Chem. 2003; 278:34339–34346. [PubMed: 12810717] 

44. Garrett TA, Van Buul JD, Burridge K. VEGF-induced Rac1 activation in endothelial cells is 
regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res. 2007; 313:3285–3297. 
[PubMed: 17686471] 

45. Han J, Luby-Phelps K, Das B, et al. Role of substrates and products of PI 3-kinase in regulating 
activation of Rac-related guanosine triphosphatases by Vav. Science. 1998; 279:558–560. 
[PubMed: 9438848] 

46. McDonald P, Veluthakal R, Kaur H, Kowluru A. Biologically active lipids promote trafficking and 
membrane association of Rac1 in insulin-secreting INS 832/13 cells. Am J Physiol Cell Physiol. 
2007; 292:C1216–20. [PubMed: 17035298] 

Veluthakal et al. Page 12

Diabetologia. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
SiRNA-mediated knockdown of VAV2 attenuates GSIS in INS-1 832/13 cells. (a) VAV2 

levels in INS-1 832/13 cells and rat and human islets. (b) Cells were transfected with either 

scrambled or Vav2 siRNA for 48 h. Western blotting indicated efficient knockdown of 

VAV2. (c) Densitometric analysis showed a ~60% reduction in VAV2 levels in cells 

transfected with Vav2 siRNA. Data represent means ± SEM (n=3) and are expressed as 

percentage of control ***p<0.001 vs scrambled siRNA. (d) Following transfection, INS-1 

832/13 cells were stimulated with HG and insulin released was quantified by ELISA. Data 

represent means ± SEM (n=3) and are expressed as percentage of control. *p<0.05 vs LG 

with scrambled siRNA, †p<0.05 vs HG with scrambled siRNA
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Fig. 2. 
VAV2 mediates glucose-induced insulin secretion and Rac1 activation. (a) INS-1 832/13 

cells were incubated in LS-LG medium with or without Ehop-016 (5 μmol/l) or vehicle and 

stimulated further with HG. Insulin released was quantified by ELISA. Data represent 

means ± SEM (n=3) and are expressed as percentage of control. *p<0.05 vs 2.5 mmol/l 

glucose without Ehop-016, †p<0.05 vs HG without Ehop-016. (b) Normal rat islets were 

incubated overnight with or without Ehop-016 (5 μmol/l) and stimulated with HG. Insulin 

released was quantified by ELISA. Data represent means ± SEM (n=3) and are expressed as 

percentage inhibition of GSIS by Ehop-016. *p<0.05 vs HG without Ehop-016. (c) INS-1 

832/13 cells were incubated overnight in LS-LG medium with or without Ehop-016 (5 

μmol/l) and stimulated (15 min) with HG. Activated Rac1 was quantified by G-LISA. Data 

represent means ± SEM (n=3) and are expressed as percentage of control. *p<0.05 vs LG 

without Ehop-016, †p<0.05 vs HG without Ehop-016. (d) INS-1 832/13 cells were 

transfected with either scrambled siRNA or Vav2 siRNA for 48 h and stimulated with either 

LG or HG for 15 min in KRB at 37°C. Activated Rac1 was quantified by G-LISA. Data 
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represent means ± SEM from three independent experiments and are expressed as the fold 

change. *p<0.05 vs HG with or without scrambled siRNA
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Fig. 3. 
Glucose promotes an association between VAV2 and Rac1 in INS-1 832/13 cells. (a, b) 

Cells were incubated overnight in LS-LG medium and then stimulated (15 min) further with 

HG. The total soluble fraction and hydrophilic (HPL) and hydrophobic (HPB) phases of the 

particulate fractions were isolated using the Triton X-114 phase partitioning method. The 

abundance of VAV2 (a) and Rac1 (b) in these fractions was determined by western blotting. 

Data represent means ± SEM (n=3) and are expressed as the fold change over LG. *p<0.05 

vs LG. NS, not significant. (c, d) Cells were incubated overnight in LG-LS medium and then 

stimulated further with HG for 15 min in KRB at 37°C. The expression patterns of both 

Rac1 (green) and VAV2 (red) are similar under both LG (c) and HG (d) conditions, whereas 

regions of yellow colour appearing as a distinct punctate pattern (indicated by arrows) in 

HG-treated cells demonstrate the possibility of Rac1 and VAV2 co-localisation in the 

cytosolic compartment. Scale bars, 13 μm
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Fig. 4. 
Ehop-016 inhibits glucose-induced actin remodeling in INS-1 832/13 cells. (a, b) Cells were 

transfected with LifeAct-GFP and 48 h later were pre-incubated overnight in LG-LS RPMI 

1640 medium. The next day, cells were pre-treated with DMSO (a) or Ehop-016 (b) in KRB 

for 1 h and live cell imaging was captured every 2 min for 20 min starting directly after the 

addition of HG. Representative images from three experiments consisting of at least 12 cells 

for each condition are shown. A total of 24 cells were analysed for each condition. In (a) 

arrows demonstrate the disappearance of cortical actin when cells were treated with 20 

mmol/l glucose at different time intervals. In (b) arrows demonstrate intact cortical actin in 

cells treated with Ehop-016 and then exposed to 20 mmol/l glucose. Scale bars, 10 μm
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Fig. 5. 
Glucose induces tyrosine phosphorylation of VAV2 in INS-1 832/13 cells. Cells were 

incubated in LS-LG medium overnight prior to 1 h incubation with vehicle or SU6656 (20 

μmol/l) in KRB. Cells were then stimulated with either LG or HG for 10 min in KRB at 

37°C in the presence or absence of SU6656. Phosphorylation of VAV2 was detected by 

western blotting, using anti-phospho-VAV2 serum and band intensities were quantified by 

densitometry. Data represent means ± SEM (n=3) and are expressed as the fold change in 

the phospho-VAV2:total VAV2 ratio. *p<0.05 vs LG without SU6656, †p<0.05 vs HG 

without SU6656
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