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Summary

Although genetically engineered mouse (GEM) models are often used to evaluate cancer 

therapies, extrapolation of such preclinical data to human cancer can be challenging. Here we 

introduce an approach that uses drug perturbation data from GEM models to predict drug efficacy 

in human cancer. Network-based analysis of expression profiles from in vivo treatment of GEM 

models identified drugs and drug combinations that inhibit the activity of FOXM1 and CENPF, 

which are master regulators of prostate cancer malignancy. Validation of mouse and human 

prostate cancer models confirmed the specificity and synergy of a predicted drug combination to 
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abrogate FOXM1/CENPF activity and inhibit tumorigenicity. Network-based analysis of 

treatment signatures from GEM models identified treatment-responsive genes in human prostate 

cancer that are potential biomarkers of patient response. More generally, this approach allows 

systematic identification of drugs that inhibit tumor dependencies, thereby improving the utility of 

GEM models for prioritizing drugs for clinical evaluation.

Graphical abstract

Introduction

Recent large-scale genomic analyses have led to the identification of “actionable” driver 

genes of specific cancers that are therapeutically accessible, including oncogene and non-

oncogene dependencies (Al-Lazikani et al., 2012; Garraway and Lander, 2013; Luo et al., 

2009; Rubio-Perez et al., 2015). However, the accurate and efficient identification of drugs 

and drug combinations that inhibit such drivers within specific tumor contexts represents a 

major challenge, particularly for transcriptional regulators that, in general, are 

pharmacologically inaccessible. Genetically engineered mouse (GEM) models are well-

suited to empower investigations of targeted inhibitors in the context of the native tumor 

microenvironment in vivo (Abate-Shen and Pandolfi, 2013; Politi and Pao, 2011; Sharpless 

and Depinho, 2006). However, species differences with respect to tumor histology, 

physiology, pharmacology, and metabolism often preclude direct extrapolation of preclinical 

findings from mouse models to human cancer.

In the current study, we introduce an innovative regulatory network-based method that uses 

expression profiles from drug-treated GEM models to predict drugs and drug combinations 

that specifically inhibit the activity of established human cancer dependencies. We focus this 

proof-of-concept study on prostate cancer, a disease characterized by heterogeneity of its 

causal mechanisms and range of disease outcomes (Chang et al., 2014; Cooperberg et al., 
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2005; Roychowdhury and Chinnaiyan, 2013; Shen and Abate-Shen, 2010). In particular, 

while most locally invasive prostate tumors are curable, recurrent or aggressive tumors 

initially respond to androgen deprivation therapy but ultimately relapse to castration-

resistant metastatic disease, which is nearly always fatal (Ryan and Tindall, 2011; Scher and 

Sawyers, 2005). While treatment options for castration-resistant metastatic prostate cancer 

have significantly improved in recent years (Mukherji et al., 2014; Rathkopf and Scher, 

2013; Wong et al., 2014), none of the available treatments are as yet curative.

We have recently generated genome-wide reverse engineered regulatory networks 

(henceforth interactomes) for both mouse and human prostate cancer (Aytes et al., 2014). 

Interrogation of these interactomes identified FOXM1 and CENPF as master regulators (i.e., 

key driver genes), which function synergistically to elicit synthetic lethality and are robust 

predictors of poor patient outcome (Aytes et al., 2014). Here, we show that interrogation of 

in vivo drug perturbation signatures from GEM models represents an effective strategy for 

systematic identification of specific drugs and drug combinations that inhibit the 

transcriptional activity of FOXM1/CENPF. Strikingly, drug combinations that revert 

transcriptional activity of these proteins are highly effective in abrogating tumorigenesis in 

vivo and well-correlated with patient outcome. We propose that this computational method 

can be generalized for more effective utilization of preclinical data from GEM models to 

predict optimal drug and drug-combinations and thereby dramatically improve the 

utilization of GEM models to prioritize compounds for clinical investigation.

Results

Systematic inference of FOXM1/CENPF inhibitors in vivo

The current methodology is predicated on our previous analyses showing that expression of 

the target genes of a given master regulator (MR) (its regulon) represents an effective 

reporter to predict the activity of the MR for a given cancer phenotype (Aytes et al., 2014; 

Carro et al., 2010; Chen et al., 2014). Here we have extended this concept to evaluate 

whether such regulon can be used as a reporter to quantitatively measure the ability of a 

drug or drug combination to inhibit the activity of the corresponding MR. In general, 

reversion of MR activity would correspond to the ability of a given drug to down-regulate 

its activated target genes and up-regulate its repressed targets (Fig. 1A). As a proof-of-

concept for this approach, we evaluated drugs for their ability to inhibit the master regulator 

pair, FOXM1/CENPF, which we have previously established to be a key synthetic lethal 

dependency of prostate tumor malignancy (Aytes et al., 2014). In particular, we tested 

whether candidate therapeutic agents could be prioritized based on in vivo perturbation by 

assessing their ability to “reverse” the FOXM1/CENPF regulon. We focused on the 

activated targets shared of FOXM1/CENPF, since the number of repressed targets is too few 

for analysis. However, both activated and repressed targets may be used in general.

To assess this strategy, we used a drug perturbation dataset that includes drugs with known 

to prostate cancer-relevance, such as those that inhibit the androgen receptor, or key 

signaling pathways such as PI3-kinase/mTOR or MAP-kinase, or standard chemotherapy 

(see (Aytes et al., 2014) and Detailed Experimental Procedures). In vivo drug perturbation 

studies were performed using multiple GEM models representative of advanced prostate 
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cancer (see (Aytes et al., 2014) and Detailed Experimental Procedures) to avoid potential 

bias introduced by any individual model. The in vivo drug perturbation data were analyzed 

by Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) to assess the 

inhibition (i.e., reversion) of FOXM1/CENPF shared target genes; analyses were performed 

separately for the mouse and human targets (Fig. 1B). Using GSEA, we obtained a 

Normalized Enrichment Score (NES) for each drug signature and each GEM model, which 

we define as the Reversion Score (RSFOXM1/CENPF), to assess the compound's ability to 

inhibit FOXM1/CENPF activity in a specific GEM model (Table S1). From these analyses, 

a Global Reversion Score (GRSFOXM1/CENPF) was assigned for each drug by integrating 

each of the GEM-specific RSFOXM1/CENPF scores, using a metric based on Stouffer's 

integration formulation (Whitlock, 2005) (Fig. 1B; Fig. S1; see Detailed Experimental 

Procedures). Thus, drugs that most effectively inhibit FOXM1/CENPF activity are those 

having the most negative GRSFOXM1/CENPF. Notably, FOXM1/CENPF target genes from 

either mouse or human yielded equivalent GRSFOXM1/CENPF (Fig. 1B; Table S1), indicating 

conservation of the predicted drug response between mouse and human prostate cancer.

Among the individual drugs tested in the GEM models, the two with the most significant 

negative GRSFOXM1/CENPF were rapamycin and PD0325901. These drugs inhibit the PI3-

Kinase/mTOR and MAP-kinase signaling pathways, respectively, which are frequently 

dysregulated in advanced prostate cancer (Aytes et al., 2013; Kinkade et al., 2008; Taylor et 

al., 2010). Specifically, the global reversion scores for rapamycin were GRSH = -13.9 

(human targets) and GRSM = -16.9 (mouse targets) and for PD0325901 were GRSH = -8.1 

and GRSM = -9.9 (Fig. 1B; Table S1). In contrast to rapamycin and PD0325901, other drugs 

including docetaxel, a standard of care chemotherapy for advanced prostate cancer (Pienta 

and Smith, 2005), were not predicted to be effective for inhibiting the FOXM1/CENPF 

regulon (GRSH = 5.8 and GRSM = 5.6; Fig. 1B; Fig. S1).

Systematic inference of drug synergy

Next, we tested whether this computational approach could be extended to infer drug 

combinations that cooperate to inhibit MR activity, again using FOXM1 and CENPF as a 

proof-of-concept. These analyses are based on the hypothesis that effective drug 

combinations should induce a more significant reversal of MR-specific regulon expression, 

compared to the individual drugs (Fig. 1C; see Detailed Experimental Procedures). Notably, 

such logic can be implemented based on individual drug signatures, without requiring in 

vivo signatures from drug combinations, which vastly increases the experimental efficiency 

for prioritizing drug combinations based on in vivo preclinical data.

To estimate a global synergistic reversion score (GSRS) for each drug-pair, we assessed the 

predicted reversion score for all possible combinations of two drug treatments across each of 

the GEM models. First, the synergistic reversion score (SRS) was calculated for each GEM 

model as an F-score that first maximizes the number of unique targets affected by each drug, 

and then the total number of targets affected by both drugs (Fig. 1C; see Detailed 

Experimental Procedures). These analyses identified several combinations, most of which 

included rapamycin or PD0325901, which were predicted to be more effective than the 

individual compounds based on their GSRSs (Fig. 1D; Table S2). In particular, the 
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rapamycin + PD0325901 combination was predicted to have the strongest global inhibition 

of the FOXM1/CENPF regulon, both with respect to total number of targets affected by both 

drugs and the number of unique targets affected by each drug, resulting in the most 

significant negative global synergistic reversion score (GSRSH = —23.4; p-value < 0.001 

compared to a random model; see Detailed Experimental Procedures). This theoretical 

prediction was validated by assessment of FOXM1/CENPF target genes that were reverted 

by rapamycin or PD0325901 following drug treatment in vivo (Fig 1E).

Experimental validation of drug specificity and synergy in cell culture

Based on these computational predictions, we performed experimental validation to assess 

whether rapamycin and/or PD0325901 specifically inhibit the FOXM1/CENPF regulon in 

relevant mouse and human prostate cancer cell culture models, and if so, whether these 

drugs affect cell growth and tumorigenicity in a FOXM1/CENPF-dependent manner. First, 

we validated the underlying computational prediction that treatment with rapamycin and 

PD0325901 reverts the expression of shared target genes of FOXM1/CENPF. Using real-

time PCR, we found that treatment with rapamycin and PD0325901, but not docetaxel, 

inhibited expression of both FOXM1 and CENPF as well as their shared target genes in 

several human and mouse prostate cancer (Fig. 2A; Fig. S2A). This inhibition of target 

genes was coincident with inhibition of the corresponding signaling pathways, namely PI3-

Kinase/mTOR and MAP-kinase in the mouse and human cells (Fig. S2B, C). Notably, 

inhibition of colony formation was significantly greater when the drugs were combined than 

when used individually (Fig. 2B, C), which supports the computational prediction of 

rapamycin + PD0325901 synergy.

To address the specificity of the rapamycin + PD0325901 drug combination for inhibition of 

FOXM1/CENPF activity, we assessed whether this combination was preferentially more 

potent in contexts having high levels of FOXM1/CENPF activity. First, we surveyed the 

expression and activity of FOXM1/CENPF in a series of human and mouse cell lines; 

“activity” was determined experimentally by analyses of the expression of FOXM1/CENPF 

shared target genes (Fig. 2D; Fig. S2D-F). These studies revealed that PC3 cells have the 

highest levels of FOXM1/CENPF activity whereas LNCaP cells have lower levels (Fig. 2D). 

Correspondingly, human prostate cancer cells with higher levels of FOXM1/CENPF activity 

had greater response to rapamycin + PD0325901 treatment, as evident from the strong 

inhibition of activity and colony formation, whereas LNCaP cells, which have low levels of 

FOXM1/CENPF activity, had a modest response to rapamycin + PD0325901 (Fig. 2B-D). 

In contrast, this relationship to FOXM1/CENPF activity was not observed following 

docetaxel treatment of these cells (Fig. 2B-D). Similar findings were observed in mouse 

prostate cancer cells wherein response to rapamycin + PD0325901 treatment was correlated 

with the relative levels of FoxM1/Cenpf activity (Fig. S2D, E).

Moreover, the dependence on FOXM1/CENPF in the human prostate cancer cells was 

evident by the reduction in the IC50 for rapamycin + PD0325901, but not docetaxel, 

following the silencing of both FOXM1 and CENPF in human prostate cancer cell lines with 

high levels of activity (Fig. S3). Conversely, overexpression of FOXM1 and CENPF in a 

non-prostate cancer cell line, HEK293, resulted in an increase in the IC50 for rapamycin + 
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PD0325901, but not docetaxel (Fig. S3). Taken together, these findings validate the 

computational prediction that FOXM1/CENPF activity is specifically inhibited by 

rapamycin + PD0325901.

Experimental validation of drug efficacy and specificity in vivo

The synergistic effects of combined treatment with rapamycin + PD0325901 were even 

more dramatic in vivo. In particular, we performed preclinical studies using NPK mice 

(Nkx3.1CreERt2; Ptenflox/flox; KrasLSL-G12D/+), which model aggressive, metastatic prostate 

cancer that is dependent on FOXM1/CENPF activity (Aytes et al., 2013; Aytes et al., 2014). 

Tumor-bearing NPK mice were treated with rapamycin and/or PD0325901, or docetaxel, for 

five days (i.e., the dynamic response cohort) or one month (i.e., the therapeutic response 

cohort) (Fig. 3A; Table S3). Mice were then either sacrificed for analysis or monitored for 

the effects of drug treatment on survival and metastasis (i.e., the survival response cohort) 

(Fig. 3A; Table S3).

Whereas treatment with either drug individually had a modest therapeutic benefit at the 

various endpoints, the combination of rapamycin + PD0325901 had a profound effect at all 

tumor endpoints in the therapeutic response cohort (Fig. 3B-E). In particular, treatment with 

rapamycin + PD0325901, but not docetaxel, resulted in profound abrogation of the 

histological phenotype, coincident with inhibition of relevant signaling pathways, as evident 

by immunohistochemistry (Fig. 3B). Moreover, tumors treated with rapamycin + 

PD0325901, but not docetaxel, displayed a significant decrease in cellular proliferation (p < 

0.0001) (Fig. 3C), as well as significant reduction in tumor burden, as measured by tumor 

weight (p = 0.003) and tumor volume using MRI (p < 0.01) (Fig. 3D,E). Furthermore, these 

effects on phenotype and tumor burden were accompanied by a significant improvement in 

survival (p < 0.0001) (Fig. 3F), as well as a 3-fold reduction in the incidence of disseminated 

tumor cells in the bone marrow and a 4-fold reduction in the incidence of lung metastases 

(Fig. 3G,H). Together, these findings validate the concept that treatment with rapamycin + 

PD0325901 inhibits growth of FOXM1/CENPF-dependent tumors.

Relationship of mouse drug treatment signatures to human cancer

Given the striking reduction in tumor and metastatic burden following treatment with 

rapamycin + PD0325901, we evaluated whether this combination might be sufficient to 

broadly inhibit molecular processes associated with advanced, FOXM1/CENPF-dependent 

prostate cancer. We addressed this question by analyzing signatures obtained by differential 

gene expression analysis of NPK prostate tumors treated with vehicle or rapamycin + 

PD0325901 for 1 month (i.e., the therapeutic response cohort; Table S3), which resulted in 

extensive abrogation of the tumor phenotype (see Fig. 3). We compared this “therapeutic 

response” signature to a reference mouse “tumor” signature, corresponding to differential 

gene expression between phenotypically wild-type prostates and NPK prostate tumors, 

which captures the transition from normal prostate to fully malignant prostate cancer (Table 

S3). Strikingly, genes that were differentially expressed in the “therapeutic response” 

signature were strongly negatively-enriched in the mouse “tumor” signature (NES= -8.58; p 

< 0.001) (Fig. S4A). Further evidence that rapamycin + PD0325901 treatment results in 

broad inhibition beyond their respective target signaling pathways was provided by 
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biological pathway analysis. In particular, pathways that were significantly inhibited (i.e., 

reverted) following treatment of the NPK tumors with rapamycin + PD0325901, but not 

docetaxel, include several that are important for tumor progression and are not directly 

related to mTOR/PI3K/MAP kinase signaling (Fig. 4A; Table S4).

To evaluate molecular processes that are inhibited immediately following drug treatment, 

we analyzed a “dynamic response” signature, representing a time point wherein the drugs 

are active but the tumor phenotype has not yet been abrogated (Fig. 3A; Table S3; and data 

not shown). In particular, this short-term treatment with rapamycin + PD0325901 resulted in 

reversion of FOXM1/CENPF targets, as predicted by our computational approach (Fig. S4B 

and see Fig. 1E). Comparison of this “dynamic response” signature to a reference mouse 

“malignancy signature,” based on comparison of non-malignant prostate tumors from NP 

mice to fully malignant NPK tumors (Aytes et al., 2013), revealed a striking negative 

enrichment (i.e., strong reversion) (NES= -8.34; p < 0.001) (Fig. 4B), suggesting that the 

rapamycin + PD0325901 combination inhibits molecular processes associated with NPK 

tumor malignancy even prior to their overt effects on the tumor phenotype.

To assess conservation of these molecular changes with human prostate cancer, we 

performed GSEA to compare a humanized version of the mouse “dynamic response” 

signature with human prostate cancer signatures (see Detailed Experimental Procedures). 

We used three independent human prostate cancer signatures, each of which is based on 

distinct clinical endpoints (Table S3): (i) a malignancy signature based on the Taylor dataset 

(Taylor et al., 2010), which compares patients having low Gleason score and no biochemical 

recurrence (n = 39) to those with high Gleason score and a short time to biochemical 

recurrence (n = 10) (Aytes et al., 2013); (ii) a metastasis signature based on the Balk dataset 

(Stanbrough et al., 2006), which compares hormone-naïve prostate tumors (n = 22) to bone 

metastases from castration-resistant prostate cancer (n = 29) (Aytes et al., 2014); and (iii) a 

survival signature based on the Sboner dataset (Sboner et al., 2010), which compares 

transurethral resections from patients who survived for nearly 200 months (n=12) to those 

who died of prostate cancer within 12 months (n=6) (Wang et al., 2013). Strikingly, the 

mouse “dynamic response” signature was strongly negatively enriched when compared with 

each of these human signatures, indicating that genes that are consistently overexpressed in 

aggressive prostate cancer are inhibited following drug treatment: Taylor signature (NES = 

—5.48, p < 0.001), Balk signature (NES = —5.26, p < 0.001), and Sboner signature (NES = 

—6.40, p < 0.001) (Fig. 4C). In contrast, the docetaxel treatment response signature was 

either minimally or not negatively enriched in these human signatures (Fig. S4C).

We then asked whether the mouse “dynamic response” signature could reverse a “FOXM1/

CENPF activity” signature in human prostate cancer. This “FOXM1/CENPF activity” 

signature, defined using Sboner dataset (Sboner et al., 2010), corresponds to differential 

gene expression between patient samples having low- versus high-levels of FOXM1/CENPF 

activity, which was measured by enrichment of the FOXM1/CENPF regulon in each patient 

using single-sample MAster Regulator INference algorithm (ssMARINa) as in ((Aytes et al., 

2014) and see Detailed Experimental Procedures). GSEA comparing the “FOXM1/CENPF” 

activity signature with the mouse “dynamic response” signature showed strong negative 

enrichment (NES = -6.43, p < 0.001) (Fig 4D), which supports the concept that patients with 

Mitrofanova et al. Page 7

Cell Rep. Author manuscript; available in PMC 2016 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the high levels of FOXM1/CENPF activity should respond more effectively to rapamycin + 

PD0325901 treatment. Notably, similar comparison with a docetaxel treatment response 

signature did not indicate such relationship (NES = 0.37, p = 0.77) (Fig. S4D).

We further evaluated the correlation between FOXM1/CENPF activity levels and predicted 

treatment response in each patient in the Sboner dataset using ssMARINa and GSEA, 

respectively. We found that inferred FOXM1/CENPF activity levels and predicted treatment 

response were strongly correlated (Spearman's rho = 0.51, p < 2.2 × 10-16) (Fig 4E), which 

was not the case for the docetaxel treatment response (Fig. S4E). Taken together, these 

computational analyses suggest that the molecular programs (i.e., genes and pathways) 

specifically inhibited (reverted) by rapamycin + PD0325901 in the mouse model are 

conserved with those that drive aggressive human prostate cancer, and in particular in 

patients having high levels of FOXM1/CENPF activity.

Conservation of treatment response in mouse and human prostate cancer

Given the conservation in the molecular programs affected by drug treatment in the GEM 

models and human prostate cancer, we next asked whether we could use the mouse 

treatment response signature to identify genes predicted to be associated with treatment 

response in humans. First, we identified candidate rapamycin + PD0325901-responsive 

genes by interrogating the mouse prostate cancer interactome (Aytes et al., 2014) with the 

“dynamic response” signature using the standard MARINa algorithm to identify master 

regulators (MRs) of treatment responses in the mouse (Lefebvre et al., 2010). We then 

compared these MRs with the orthologous human genes to identify those predicted both to 

be regulated by FOXM1/CENPF in human prostate cancer and to be down-regulated by 

drug treatment; we refer to these as “predicted treatment-responsive genes” and distinguish 

them from other FOXM1/CENPF target genes that are not predicted to be responsive to the 

treatment (Fig. 5A). Notably, real-time PCR analyses confirmed that the expression levels of 

these predicted treatment-responsive genes were indeed inhibited by rapamycin + 

PD0325901 in human prostate cancer cell lines, whereas the expression levels of the 

predicted non-responsive genes was not inhibited by such treatment (Fig. 5B).

These treatment-responsive genes (including TOP2A, UHRF1, ASF1B, MCM4, WHSC1, 

MCM2, SUV39H1, BLM, BRCA1, CCNA2, E2F1, and MYBL2) have known functions in 

DNA repair, epigenetic modifications, cell cycle, proliferation, and/or survival, which are all 

associated with cancer malignancy. Notably, each of these is overexpressed in advanced 

human prostate cancer, and their activity levels are associated with disease outcome, as 

shown by univariate analyses using a COX proportional hazard model on the Sboner dataset 

(Fig. 5C,D). Moreover, analyses based on the Balk dataset revealed robust activity levels of 

the treatment-responsive genes in metastatic samples compared to primary tumors (Fig. 5E).

We further demonstrated the association of the activity levels of the treatment-responsive 

genes with drug response on a patient-by-patient basis using ssMARINa on the Sboner 

dataset (Fig 5F). In particular, the average activity levels of treatment-responsive genes were 

strikingly correlated with the rapamycin + PD0325901 drug response (Spearman rho = 0.57, 

p < 2.2 × 10-16) (Fig. 5F), similar to that observed for the FOXM1/CENPF activity (see Fig. 

4D). Most notably, multivariate Kaplan-Meier survival analysis using the Sboner dataset to 
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evaluate disease-specific survival revealed that patients with higher activity levels of the 

treatment-responsive genes have a shorter time to prostate cancer-specific death compared to 

patients with lower activity levels (Long-Rank p-value = 1.7 × 10-5) (Fig. 5G). Importantly, 

the activity of the treatment-responsive sub-network of the FOXM1/CENPF regulon was 

more significant than the FOXM1/CENPF regulon (Log-Rank p-value=1.3 × 10-4) and also 

outperformed a random comparable set of genes with respect to the Cox proportional hazard 

model (p-value for improvement <0.001) and Kaplan-Meier survival analysis (p-value for 

improvement <0.015) (see Detailed Experimental Procedures). Taken together, these 

findings suggest that computationally-predicted treatment-responsive genes can be used to 

identify patients that are likely to benefit from treatment with drugs that co-target the PI3-

kinase/mTOR and MAP-kinase signaling pathways, and provides a proof-of-concept for the 

overall approach.

Discussion

In this study, we introduce a generalizable computational approach to extrapolate in vivo 

preclinical treatment data from GEM models to inform on human cancer treatment. Our 

method infers drug efficacy based on the ability of a given drug to revert the transcriptional 

regulon of key dependencies that drive the tumor phenotype. Importantly, we show that this 

method can be used to prioritize drug combinations based on analysis of individual 

compounds, which greatly enhances the value of in vivo preclinical analyses of compounds 

in mice. We demonstrate this approach with a proof-of-concept study based on identification 

of drugs and drug combinations that inhibit the activity of FOXM1/CENPF, which were 

chosen for their established relevance for lethal prostate cancer (Aytes et al., 2014). 

However, this approach should be applicable to identify candidate drugs and drug 

combinations for many other driver gene(s) of interest and not limited to prostate cancer. 

Notably, the molecular programs affected by drug treatment in the GEM model are well-

conserved with human prostate cancer, which supports the concept that analyses of drug 

treatment data from mouse models can be used to identify treatment responsive genes for 

human prostate cancer. Thus, we have described a method to identify drugs and drug 

combinations that specifically inhibit cancer driver genes, as well as to identify potential 

biomarkers to predict the efficacy of drug treatments for individual patients.

Several features of our approach distinguish it from other strategies previously used to 

screen for drug response in human cancer. First, most other approaches have been based on 

analyses of cancer cell lines in culture (e.g., (Barretina et al., 2012; Garnett et al., 2012)), 

whereas our study is based on drug perturbation of GEM models in vivo. Thus, we evaluate 

drug efficacy in the context of the native tumor microenvironment and intact immune 

system, which are now widely recognized as being essential for drug response in vivo, 

particularly given recent advances in immunotherapy. Although the tumor context of any 

individual GEM model is unlikely to fully recapitulate that of human cancer, we address this 

limitation by analyzing multiple distinct GEM models to avoid idiosyncratic GEM-specific 

biology. Indeed, we have observed a remarkable concordance of the molecular 

consequences of drug treatment between our “consensus” analyses of mouse models and 

human prostate cancer.
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A second distinguishing feature of our approach is its ability to identify synergistic drug 

combinations based on single agent treatment data. From a practical standpoint, the number 

of drugs that can be feasibly evaluated using in vivo perturbations in a series of GEM 

models is limited. Therefore, the ability to evaluate the efficacy of drug combinations by 

profiling a relatively small number of single drugs (e.g., the 100 most relevant compounds) 

would allow assessment of a very large potential combination therapy space (e.g., 4,950 

combinations), thus affording significant economy of scale.

A third important feature is that our computational method identifies drugs based on their 

ability to inhibit specific drivers of the tumor phenotype, rather than on overall toxicity or 

inhibition of more general tumor-related parameters. In particular, the method evaluates the 

efficacy of drug response based on inhibition of the transcriptional regulon of specific 

master regulators of interest. Furthermore, our computational analysis of treatment response 

in the GEM models in vivo has also identified treatment-responsive genes that are conserved 

in human prostate cancer. We propose that such treatment-responsive genes may serve as 

surrogate biomarkers to infer the potential efficacy of drug treatments in patients. In 

particular, our current findings suggest that previous analyses may have underestimated the 

value of molecular inference of preclinical data from GEM models for not only predicting 

optimal drug combinations but also for identifying molecular markers for predicting 

treatment response to such drugs.

The PI3-kinase/mTOR and MAP-kinase signaling pathways are known to be dysregulated in 

many advanced prostate cancers (Aytes et al., 2013; Kinkade et al., 2008; Taylor et al., 

2010). Currently, drugs that target these pathways (albeit not rapamycin and PD0325901) 

are being evaluated in numerous clinical trials for prostate cancer and many other solid 

tumors, including combination therapy regimes. Results from the current study as well as 

previous work (Aytes et al., 2014) suggest that aberrant levels of FOXM1 and CENPF, as 

assessed by immunostaining of tumor samples, may identify patients who would likely 

benefit from treatment with agents that target the PI3-kinase/mTOR and/or MAP-kinase 

signaling pathways. In addition, our study suggests that the treatment-responsive genes we 

have identified could provide intermediate biomarkers to assess short-term efficacy of 

combination therapy in patients, a strategy that can be readily generalized to other targets 

and therapies. Thus, our studies may inform or modulate the design of clinical trials or help 

provide a mechanistic basis for clinical findings.

Beyond prostate cancer, our computational methodology may be beneficial to identify drugs 

that target key actionable targets in vivo for a wide range of tumor types, oncogene and non-

oncogene dependencies, and therapeutic agents, including both FDA-approved and 

experimental compounds. Since many cancer types now have relevant GEM models that are 

being used in many preclinical studies, it would be advantageous to use our approach to 

apply these preclinical data from GEMs to analyze treatment response in human cancer.
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Experimental Procedures

Computational prediction of drug synergy

Computational inference of drugs that inhibit FOXM1 and CENPF activity was done using 

their shared target genes predicted from the mouse or human prostate cancer interactomes 

and using in vivo drug perturbation data, which were described in (Aytes et al., 2014). 

Target gene reversion (i.e., inhibition) was assessed using GSEA for each drug across each 

GEM model. Global reversion scores (GRS) for each drug were then inferred by integrating 

the reversion scores across each GEM model using a metric based on the Stouffer 

integration formulation (Whitlock, 2005). Optimal drug combinations were predicted from 

the single-agent in vivo drug perturbation data by determining the synergistic reversion 

scores (SRS) for each drug using an F1 statistical measure, which maximizes the number of 

unique targets affected by each drug as well as the total number of targets affected by two 

drugs. Global synergistic reversion scores (GSRSs) were then estimated as an average SRS 

weighted by the number of mouse models in which a drug pair was estimated to be effective 

(i.e, to share a non-zero SRS). Details of the computational methods used to compute GRS 

and GSRS are provided in the Detailed Experimental Procedures, and the data in Tables S1 

and S2.

Efficacy of drug treatment

Cell culture studies were done as described previously (Aytes et al., 2014) using human 

prostate cancer cell lines obtained from ATCC and mouse cell lines derived from the GEM 

models used herein ((Aytes et al., 2013) and manuscript in preparation). Rapamycin and 

docetaxel were purchased from LC labs; PD0325901 was provided by Pfizer. Cell culture 

assays were performed in a minimum of two independent experiments each done in 

triplicate; data are represented by the mean ± SD. For in vivo studies, tumor-bearing NPK 

mice (Aytes et al., 2013) or allografted NPK tumors were treated with vehicle or rapamycin 

(10 mg/kg) and/or PD0325901 (10 mg/kg), or docetaxel (10 mg/kg) as described (Kinkade 

et al., 2008). At the time of sacrifice, tissues were collected for histopathological and 

molecular analysis as described (Aytes et al., 2013; Kinkade et al., 2008). GraphPad Prism 

software (Version 5.0) was used for statistical analyses and to generate data plots. A 

complete list of primers used in this study is provided in Table S5.

Cross-species computational analysis of drug treatments signatures

Gene expression profiles based on Illumina expression arrays as in (Aytes et al., 2014) were 

used to generate drug treatment signatures for the mouse tumors or allografts, as detailed in 

Table S3. For comparison of mouse treatment signatures with human signatures, the mouse 

genes were mapped to their corresponding human orthologs. Single-sample computation of 

FOXM1/CENPF activity levels or drug treatment across human patients was inferred for 

each patient sample using single sample MaRINA (ssMARINa) as described (Aytes et al., 

2014) and see Detailed Experimental Procedures. COX proportional hazard model and 

Kaplan-Meier analysis were done using the “surv” and “coxph” functions from the 

survcomp package in R v2.14.0.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Computational prediction of drugs that inhibit FOXM1/CENPF activity in vivo
(A) Shown is the strategy for prediction of single drugs. Drug reversion scores were 

calculated based on the degree to which target genes that are activated (red) by a master 

regulator (MR) are inhibited (blue) following drug treatment, and conversely the degree to 

which target genes that are repressed (blue) by the MR are activated (red) following drug 

treatment (see Detailed Experimental Procedures). (B) Heat-map representations of GSEA 

used to calculate drug reversion scores across a series of GEM models with a series of drugs, 

as indicated (see Detailed Experimental Procedures). GSEA were done using the mouse in 

vivo drug perturbation signatures as the reference and human or mouse FOXM1/CENPF 

target genes inferred from their respective prostate cancer interactomes, as indicated, as the 

query gene set. Global reversion scores (GRS) were calculated for each drug by combining 

the individual NES for each GEM model using a metric based on the Stouffer integration 

formulation (see Detailed Experimental Procedures). Arrows point to the two drugs with the 

highest GRSs. (C) Shown is the strategy for prediction of drug synergy. Pairwise 

combinations of data from individual drug treatments (as in A) were assessed to predict 

drugs that effectively revert FOXM1/CENPF target genes when used in combination. 

Scenario 1 illustrates two drugs that inhibit (i.e., revert) many target genes, thereby resulting 

in strong reversion. Scenario 2 illustrates two other drugs that inhibit (i.e., revert) relatively 
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few target genes, thereby resulting in weak reversion. (D) Heat-map representation depicting 

global synergistic reversion scores (GSRS) for each possible pair of drugs across the series 

of GEM models based on FOXM1/CENPF human target genes. GSRSs were calculated by 

combining the synergistic reversion scores for targets affected by the drug combinations (see 

Detailed Experimental Procedures). Heat-map intensity (blue) represents the predicted 

degree of reversion (GSRS); arrows indicate drug pairs with the highest combined GSRS. (E) 

Heat-map showing the relative expression levels of FOXM1/CENPF target genes reverted 

by treatment with rapamycin or PD0325901 versus vehicle; also shown are genes that are 

not reverted (i.e., non-responsive) to these drugs.

Figure S1 is related to Figure 1; computational predictions of GRS and GSRS scores are 

provided in Tables S1 and S2, respectively.

Mitrofanova et al. Page 15

Cell Rep. Author manuscript; available in PMC 2016 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Validation of drug efficacy, synergy, and specificity in prostate cancer cells
(A) Real-time PCR of mRNA expression levels of FOXM1 and CENPF and their shared 

target genes following treatment with rapamycin and/or PD0325901, or docetaxel in DU145 

human prostate cancer cells (top) or NPK mouse prostate tumors (bottom). (B, C) Colony 

formation assays in the indicated human prostate cancer cells, PC3, DU145, 22Rv1, and 

LNCaP, following treatment with rapamycin (Rap) and/or PD0325901 (PD), or docetaxel 

(Doc). (B) Representative colony formation assays. (C) Quantification of independent 

assays performed in triplicate. (D) (Left) Relative Activity of FOXM1/CENPF in human 

prostate cancer cells lines. Activity levels were calculated based on expression levels of 10 

FOXM1/CENPF target genes (see Fig. S2F). (Right) Relative drug response assessed for 

FOXM1/CENPF activity levels in the human prostate cancer cell lines following treatment 

with rapamycin + PD0325901 (Rap + PD), or docetaxel (Doc). Differences between 

treatment groups were assessed using Student's t-test. When indicated, p values are 

represented as * <0.01, ** < 0.001, and ***, <0.0001. Bars represent mean +/- standard 

deviation (SD).

Figures S2 and S3 are related to Figure 2.
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Figure 3. Validation of drug synergy and specificity in vivo
(A) Shown is the design of preclinical studies. NPK mice were induced to form tumors by 

delivery of tamoxifen at 2 months of age as in (Aytes et al., 2013). Mice were treated with 

rapamycin and/or PD032590, or docetaxel for 5 days (dynamic response cohort) or one 

month, following which mice were sacrificed for analyses (therapeutic response cohort) or 

monitored for survival (survival response cohort). (B-E) Analysis of the therapeutic 

response cohort following treatment with rapamycin (Rap) and/or PD0325901 (PD), or 

docetaxel (Doc) as indicated (n = 5 mice/treatment group). (B) Representative sections of 

hematoxylin and eosin (H&E) staining or immunohistochemical staining for the indicated 

markers of the PI3K/mTOR or MAP-Kinase signaling pathways; scale bars represent 100 

μm. (C) Relative cellular proliferation following drug treatment as determined by the percent 

of Ki67 positive cells relative to total epithelial cells. (D) Prostate weight (in grams) 

following drug treatment. (E) Longitudinal MRI imaging showing representative MRI 

images following drug treatment with tumor volumes indicated. The panel to the right 

represents the net change in tumor volume following 1 month of drug treatment. (F-H) 

Shown is analysis of the survival response cohort. (F) Survival analysis showing the 

improvement in survival following treatment with rapamycin and PD0325901 (Rap + PD) 

compared with the vehicle-treated mice. (G) Percentage of mice with disseminated cells in 

the bone marrow and (H) percentage of mice with lung metastases following treatment with 

vehicle (Veh) or rapamycin + PD0325901 (Rap + PD) (n = 10 mice/treatment group). 

Differences between groups were assessed using Student's t-test; bars represent mean +/-

standard deviation (SD). On panel F, p-value corresponds to a Log-rank test.
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Figure 4. Cross-species analyses of drug treatment response
(A) Heat-map depiction showing representative pathways that are significantly changed 

following treatment with rapamycin + PD0325901 (Rap + PD) or docetaxel (Doc) relative to 

vehicle treatment (Veh). Pathway analysis was done by GSEA using a “humanized” version 

of the dynamic response allograft tumor signature (see Table S3 and Detailed Experimental 

Procedures). A complete list of pathways is provided in Table S4. (B-D) GSEA using as the 

query gene set the mouse rapamycin + PD0325901 dynamic treatment response signature 

(Panel B) or a “humanized” version of this signature (Panels C and D); normalized 

enrichment score (NES) and associated p-values are shown. In panel B, the reference is 

mouse “malignancy” signature, which represents differentially expressed genes from NP 

versus NPK mouse tumors as reported in (Aytes et al., 2013). In panel C, the references are 

three independent human tumor signatures (i.e., Taylor, Balk, or Sboner), each of which 

compare differentially expressed genes representing less aggressive versus more aggressive 

prostate cancer specimens (Table S3). In panel D, the reference signature represents 

differentially expressed genes in patients from the Sboner dataset having low versus high 

levels of FOXM1/CENPF activity, which was inferred using single sample MARINa 

(ssMARINa) (see Detailed Experimental Procedures). (E) Heat-map showing the correlation 

in human patients from the Sboner dataset of FOXM1/CENPF activity levels (top) with the 
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corresponding predicted drug treatment response for rapamycin + PD0325901 (bottom). As 

above, FOXM1/CENPF activity was estimated for each patient using ssMARINa. The 

treatment response for each patient was inferred using a “humanized” version of the mouse 

dynamic treatment signature (see Detailed Experimental Procedures). Correlation (rho) and 

associated p-value were estimated using Spearman's correlation coefficient.

Figure S4, and Tables S3 and S4 are related to Figure 4.
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Figure 5. Conservation of treatment responsive genes in human prostate cancer
(A) FOXM1/CENPF sub-network of human target genes predicted to be responsive or non-

responsive to treatment with rapamycin + PD0325901 based on comparison with treatment 

response for the mouse model. Relative change in activity following drug treatment is 

indicated by levels of “blue” for genes predicted to be reverted by the drugs and levels of 

“red” for those predicted to be activated or unaffected (i.e., non-responsive). (B) Real-time 

PCR showing the actual change in expression levels of FOXM1/CENPF target genes 

following treatment with vehicle or rapamycin + PD0325901. The “predicted treatment 

responsive genes” correspond to those represented by the blue circles in panel A, and the 

“predicted non-responsive genes” to the other genes. PCR was done using DU145 cells; 

differences were assessed using t-test (p-values are represented as * <0.01, ** < 0.001, and 

***, <0.0001) and bars represent mean +/-standard deviation (SD). (C-E) Association of 

predicted treatment responsive genes with lethal prostate cancer and disease outcome. (C) 

Summary table showing the significance of elevated expression levels in metastases versus 

primary tumors in the Taylor and Balk datasets (columns on the left; p-value was calculated 

using t-test). The column on the right shows a COX regression model indicating the 

association based on master regulator activity levels of the predicted treatment responsive 

genes with prostate cancer-specific survival estimated for patients in the Sboner dataset; 

COX p-value was calculated using Wald test. (NA, sufficient targets not represented; NS, 

not significant). (D) Oncoprint visualization from cBioportal showing the percent of 

alterations of the predicted treatment responsive genes in metastases samples from the 

Taylor dataset. (E) Heat-map showing the master regulator activity levels of treatment 

responsive genes in primary tumors versus bone metastases from the Balk dataset. (F) Heat-
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map comparing the master regulator activity levels of the treatment responsive genes (upper 

rows) across each patient in the Sboner dataset with inferred treatment response for each 

patient (Rap +PD, bottom row). The activity levels and the treatment response for each 

patient were estimated using single-sample MARINa (ssMARINa) and GSEA, respectively 

(see Detailed Experimental Procedures). The correlation between the average activity levels 

of all treatment responsive genes and the predicted response was estimated using Spearman's 

correlation coefficient. (G) Kaplan-Meier survival analysis based on the master regulator 

activity levels of predicted treatment responsive genes in the Sboner dataset using prostate 

cancer-specific survival as the endpoint. The p-value was estimated using a log-rank test of 

the difference in outcome between patients with higher activity levels (red) and those with 

lower/no activity (blue).
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