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Abstract

A disturbance in the integration of information during mental processing has been implicated in 

schizophrenia, possibly due to faulty communication within and between brain regions. Graph 

theoretic measures allow quantification of functional brain networks. Functional networks are 

derived from correlations between time courses of brain regions. Group differences between SZ 

and control groups have been reported for functional network properties, but the potential of such 

measures to classify individual cases has been little explored. We tested whether the network 

measure of betweenness centrality could classify persons with schizophrenia and normal controls. 

Functional networks were constructed for 19 schizophrenic patients and 29 non-psychiatric 

controls based on resting state functional MRI scans. The betweenness centrality of each node, or 

fraction of shortest-paths that pass through it, was calculated in order to characterize the centrality 

of the different regions. The nodes with high betweenness centrality agreed well with hub nodes 

reported in previous studies of structural and functional networks. Using a linear support vector 

machine algorithm, the schizophrenia group was differentiated from non-psychiatric controls 

using the ten nodes with highest betweenness centrality. The classification accuracy was around 

80%, and stable against connectivity thresholding. Better performance was achieved when using 

the ranks as feature space as opposed to the actual values of betweenness centrality. Overall, our 

findings suggest that changes in functional hubs are associated with schizophrenia, reflecting a 

variation of the underlying functional network and neuronal communications. In addition, a 

specific network property, betweenness centrality, can classify persons with SZ with a high level 

of accuracy.
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INTRODUCTION

Schizophrenia (SZ) is a severe psychiatric brain disorder that affects about 1% of the 

population (Harrison, 1999; Insel, 2010; Ripke et al., 2013; Tandon et al., 2008). Symptoms 

of SZ suggest brain disturbances which affect many systems, and include hallucinations, 

delusions, disorganized thinking, loss of motivation, cognitive impairment and blunted 

emotional expression. While the etiology of schizophrenia remains poorly understood, it has 

been hypothesized that pathological connectivity among brain regions results in the loss of 

the functional integration and neural plasticity required for adaptive behavior (Andreasen et 

al., 1996; Friston, 1998; Stephan et al 2006).

In the last decade, the disconnectivity hypothesis of SZ has been examined using MRI 

measures of functional connectivity. The majority of these studies focused on the “default 

mode” network (DMN) (Raichle et al., 2001; Raichle and Snyder, 2007), and found 

abnormalities in schizophrenia in various aspects including altered amplitude, temporal 

frequency, and spatial extent/location. (Garrity et al., 2007; Ongür et al., 2010; Pomarol-

Clotet et al., 2008; Zhou et al., 2008a). For instance, from resting-state fMRI data, DMN 

spatial extent was found to be significantly greater in the dorsal anterior cingulate cortex 

(Ongür et al., 2010). In an auditory oddball task, aberrant “default mode” functional 

connectivity was reported in the frontal, anterior cingulate, and parahippocampal gyri 

(Garrity et al., 2007). Besides DMN, investigation of other networks also revealed altered 

functional connectivity between brain regions (Liang et al., 2006; Zhou et al., 2008a; Zhou 

et al., 2008b). For instance, decreased functional connectivity among insula, prefrontal lobe 

and temporal lobe was observed along with increased connectivity from many cerebral 

cortical regions towards cerebellum (Liang et al., 2006).

The introduction of graph theoretical approaches applied to the brain has allowed 

quantitative analysis of local and global network properties derived from functional and 

structural brain imaging (Bullmore and Sporns, 2009; Lynall et al., 2010; Sporns, 2010; 

Supekar et al., 2008; van den Heuvel et al., 2013). This approach therefore is well suited for 

characterizing possible network alterations in schizophrenia. Methodologically, functional 

connectivity matrices (also referred to as a functional network) are usually derived from 

resting state fMRI data. In those, the strength of functional connections is usually 

characterized by the correlation of time courses between brain regions (Biswal et al., 1995). 

Brain network analyses have revealed a disruption of the functional and structural network 

structure in schizophrenia (Liu et al., 2008; Rubinov and Bullmore, 2013) including 

decreased clustering and small-worldness, and reduced presence of high-degree hubs. In 

addition, local differences of reduced degree and clustering were found in medial parietal, 

premotor and cingulate, and right orbitofrontal cortical nodes (Lynall et al., 2010). In 

another study applying independent component analysis (ICA) on resting state fMRI data, 

significantly lower clustering coefficient and lower small-world connectivity were also 

found for the network of independent components in schizophrenia patients (Anderson and 

Cohen, 2013). Abnormal rich club organization was also found for schizophrenia, which is 

potentially associated with altered functional brain dynamics.
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Functional connectivity has usually been compared between groups of patients and control 

subjects (Lynall et al., 2010; Pettersson-Yeo et al., 2011). It is unclear whether network 

alterations have sufficient sensitivity and specificity to SZ to allow classification of 

individual subjects as affected or not. Supervised machine learning techniques may permit a 

much better degree of classification accuracy than convention statistical approaches, such as 

discriminant analysis. Previous studies have reported the potential of combining network 

features and machine learning for classification. For instance, a support vector machine 

classifier was able to differentiate older adults from younger adults based on resting state 

functional connectivity (Meier et al., 2012). In another study using a small set of edges 

showing high discriminative power, an unsupervised-learning classifier was also successful 

in discriminating schizophrenic patients from healthy controls with a high accuracy (Shen et 

al., 2010). Using a similar feature extraction approach, multiclass pattern analysis on 

functional connectivity also discriminated schizophrenic patients and their healthy siblings 

with a modest accuracy rate (Yu et al., 2013). In another study classifying schizophrenia 

patients based on functional network connectivity, the correlations between various ICA 

components were computed to be used as features and worked well for several linear and 

non-linear classification methods that are commonly used (Arbabshirani et al., 2013). 

Despite good classification performance in these previous works, the feature selection for 

classification was usually based on the strength of functional connectivity rather than 

network characteristics. There is only one study to our knowledge using network measures 

of clustering coefficient and small-worldness to classify schizophrenia (Anderson and 

Cohen, 2013), which yielded a classification accuracy of 65%.

Accuracy may be affected by the types of network measures utilized, and the criteria for 

quantifying connections. Functional connectivity networks have both positive and negative 

values as a result of pairwise correlations of time-series. The interpretation of negative 

connections is not yet completely understood, despite efforts to jointly analyze negative and 

positive connections (Deco et al., 2014; Goñi et al., 2014; Rubinov and Sporns, 2011). 

While thresholding the network is a plausible approach, it has been noted that most network 

metrics are very sensitive to doing so (Rubinov and Sporns, 2010). For instance, nodal 

degree or total degree decreases when a high percentage of connections are dropped. The 

clustering coefficient, small-worldness, global efficiency also changes accordingly. For this 

reason, we tested nodal betweenness centrality of the resting state functional networks, 

which turned out to be relatively unaffected by thresholding to compare the schizophrenic 

subjects (SZ) and non-psychiatric controls (NC).

Betweenness centrality (BC) is a network centrality measure that quantifies the influence of 

a node in connecting other nodes in a network (Freeman, 1977). It represents the fraction of 

all shortest paths in the network that pass through a given node (Rubinov and Sporns, 2010). 

The nodes with the highest BC are usually known as highly central or hubs (Buckner et al., 

2009)(although other definitions of centrality exist). Previous studies have reported a 

reduction of betweenness centrality for frontal hubs in structural networks of schizophrenia 

patients (van den Heuvel et al., 2010). Because abnormal topological organizations of 

structural and functional brain networks have been reported for schizophrenia (van den 

Heuvel et al., 2013; Zhang et al., 2012), we hypothesized that there is a change of the nodal 

betweenness centrality in the magnitude and order (rank) that could be strongly associated 
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with SZ and hence a key feature for our machine learning approach. Furthermore, the 

differences in BC are likely to be more substantial for the hubs (Rubinov and Bullmore, 

2013). In order to better assess these changes, a collective analysis of an extensive set of 

nodes is desirable.

Based on this rationale, we employed a linear support vector machine (SVM) algorithm 

using nodal betweenness centrality as the feature space. The aim of this study was to test 

whether SVM could differentiate schizophrenia based on prior information of BC for a set 

of SZ and NC subjects. SVM is an unsupervised machine learning algorithm that has been 

widely used in classification and regression analysis. It has been successfully applied in 

neuroscience for multivoxel pattern analysis and differentiating different brain states (Cox 

and Savoy, 2003). By selecting highly discriminative feature set from all functional 

connectivity between 116 brain regions, SVM was able to discriminate schizophrenia from 

non-psychiatric controls with a high accuracy (Shen et al., 2010).

The purpose of this study was to classify SZ from non-psychiatric controls by applying 

support vector machine to betweenness centrality measures of the functional network. We 

also compared the performance of using different features derived from betweenness 

centrality. Because of large variability of functional connectivity (Wang et al., 2011), we 

expect that the rank of BC for a subset of nodes might be the best choice to distinguish 

schizophrenia from normal subjects.

METHODS

Subjects

27 SZs (8 female, mean age 36.7 ± 9.9 years) and 36 NCs (7 male, mean age 29.3 ± 6.5 

years) were recruited and completed the study protocol. The subjects were provided verbal 

written informed consent. The study was approved by Institutional Review Board of Indiana 

University. Eight SZ subjects and 7 NC subjects were excluded from this study due to 

excessive head motion. Subjects used in the classification analysis included 19 SZs (6 

female, 33.1± 10.9 years) and 29 NCs (15 female, mean age 28.1 ± 8.4 years). Diagnosis of 

schizophrenia was based on the Structured Clinical Interview for the DSM-IV Axis I 

Disorders (SCID-I) (First et al., 1995) and medical chart review. The SCID-I for non-

psychiatric controls was used to determine that there was no history of Axis I disorders in 

the NCs. Current drug or alcohol abuse or dependence or a loss of consciousness lasting 

more than 5 minutes were exclusionary criteria for all participants. All subjects passed a 

urine screening for illicit substances at the time of the scan.

MRI data acquisition

Subjects were scanned on a Siemens TIM Trio 3 T MRI scanner using a 32-channel head 

coil. The high resolution (1 mm3) anatomical scan was performed in the sagittal plane with 

an MP-RAGE sequence with the following parameters: matrix = 256×256, FOV = 256×256 

mm, TE/TR = 2.67/1800 ms, TI = 900 ms. A total of 200 volumes of resting state fMRI data 

were acquired with EPI sequences for 8 minutes and 20 seconds with the following 

parameters: TR/TE = 2500/30 ms, FOV = 220 mm, 128×128 matrix, oblique plane with 
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slice thickness = 3.6 mm, number of slices = 36, iPAT factor = 2. During the resting state 

fMRI scan, the subjects were at rest with eyes closed and instructed not to think of anything 

in particular.

Head motion characterization

All functional data were motion corrected in FSL (http://fsl.fmrib.ox.ac.uk/). We computed 

the mean relative translational motion and rotational motion between consecutive volumes 

from the output of motion correction. The mean translational or mean rotation was 

computed as

where N is the number of volumes and a, b, c are the three degree of freedom for 

translational motion or rotational motion. A subject was excluded from the analysis if more 

than half volumes exceed 0.5 mm of absolute translational motion or 1 degree of rotational 

motion relative to the mid time point.

Characterization of the functional network

In conjunction with the anatomical image, the functional images were parcellated using a 

parcellation scheme recently proposed by Shen et al. (Shen et al., 2013). This parcellation 

divides the cerebral cortex into 278 ROIs, and was derived from resting state functional data 

of the healthy subjects by maximizing functional homogeneity within each ROI. After 

regressing out head motion, white matter and the CSF time signal, and band-pass filtering 

between 0.01–0.10 Hz, time courses were extracted from 278 brain ROIs and averaged. The 

functional network was computed from the pairwise Pearson correlation coefficients, giving 

rise to a square symmetric matrix (278×278). The resulting functional connectivity matrix 

has both positive and negative edges. Since the meaning of negative edges is not clear and 

negative edges prevent the assessment of several network features, a threshold was applied 

to the network to obtain a sparse network that has only positive connectivity measures. We 

tested a number of thresholds from 10% to 45% in a 5% increment, which kept a certain 

percentage of the total number of edges. We did not go beyond 45% threshold as negative 

edges started to arise for some subjects. As a result, the number of edges (or functional 

connectivity values that remained after the threshold procedure) stayed the same for all 

subjects, but the actual edge weights varied across subjects.

Betweenness centrality (BC)

BC is a centrality measure defined as the fraction of all shortest paths in the network that 

pass through a given node (Freeman, 1977). It was computed using the Brain Connectivity 

Toolbox (https://sites.google.com/site/bctnet/)(Rubinov and Sporns, 2010). Each node has a 

BC index; we used BC information of all nodes (which can be noisy) as well as a small set 

of selected nodes with high betweenness centrality. For the latter approach, we combined the 

networks of all the subjects to obtain an average pooled network and thresholded it by 

retaining only 30% of the edges with highest weights. Then the BC of each node of this 
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mean network was computed. The nodes were then ordered based on their centrality from 

low to high. To determine how many nodes should be chosen for comparing the two groups, 

the BC values were plotted against the ranks (ranking BC from low to high). As shown in 

Fig. 1, there are two regimes showing linear relation between BC values and ranks and a 

transition zone. The first linear regime comprises BC ranks from 1 to 200 and follows a 

small slope; the second linear regime comprises BC ranks from 269 to 278, and has a much 

greater slope. We selected the nodes within regime 2 as it has the largest BC difference 

between nodes, and therefore less sensitive to confounds and noise. This selection resulted 

into ten nodes with highest BC, which were called hubs throughout this manuscript. Note 

that they are not necessarily hubs in terms of degree (Lynall et al., 2010; Rubinov and 

Sporns, 2010) or in terms of other existent centrality measurements (Zuo et al., 2012).

Support Vector Machine

For the particular case of supervised two-class classification, SVM starts with the selection 

of some features as the basis for classification. These features form a high dimensional 

space. The next step is the classifier training. Linear SVM uses some models to find an 

optimal solution of a hyperplane that separates the classes and maximizes their margins. 

SVM can then be applied on a new vector in the feature space to predict which class it is 

associated with. Linear SVM analysis was performed on the nodal betweenness centrality 

data using the Matlab toolbox from LIBSVM that is freely available online (http://

www.csie.ntu.edu.tw/~cjlin/libsvm/). The computed BC is susceptible to the variability of 

the constructed functional network and the effectiveness of the SVM may also suffer from 

large inter-subject variability. Therefore, we compared four different feature spaces: BC 

values of all nodes, BC values of selected hubs, BC ranks of all nodes and BC ranks of 

selected hubs. We adopted the ‘leave-one-out scheme’ to evaluate the accuracy rate of 

differentiating schizophrenia from non-psychiatric controls. For each NC or SZ subject, we 

used the remaining subjects (NC and SZ) as a training set, calculating the SVM parameters 

and applying new SVM model on the separated subject to predict if it belongs to SZ or NC 

group. An overall prediction rate was obtained by averaging the prediction accuracy (0 for 

wrong and 1 for correct) of each subject. For different methods, the regularization parameter 

was adjusted to obtain the highest prediction accuracy rate. As a control, two approaches 

were employed to test SVM in different conditions. First, we tested whether the hub nodes 

were differentially relevant for classification. We used different sets of nodes other than the 

hub nodes in SVM while keeping the same number of features. Second, we tested if there is 

a true difference in SZ and NC. Hence, we mixed all the subjects in the training set 

(mislabeling) and later performed SVM in the exact same way.

RESULTS

Betweenness centrality of each node was calculated for the average functional network. We 

reordered nodes based on their BC values. Figure 1 shows the BC values as a function of 

their ranks. The top ten nodes (solid dots) with highest betweenness centrality were 

considered as hubs. Because these nodes have the largest span of BC values as compared to 

any other ten nodes with continuous ranks, they were used for classifying the two groups.
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Before performing the SVM analysis, head motion was analyzed based on motion correction 

output to investigate if there was any correlation between the head motion and nodal BC 

values. Figure 2A compares both mean translational (blue) and rotational (red) motions 

between the SZ and NC groups. Error bars denote standard errors within each group. The SZ 

group had more motion than the non-psychiatric controls. The two sample t-test shows a 

significant difference for rotation (p = 0.001) and translation (p = 0.01). The variation of the 

motion is also larger for the schizophrenia subjects. The correlation coefficients between 

translational/rotational head motion and nodal BC values for all NC subjects are shown in 

Fig. 2B. The nodes are sorted based on their BC ranks of the average functional network of 

all subjects. The correlation coefficients fluctuate in the range of −0.5 to 0.5, with values 

0.0003±0.1844 for translational motion and 0.0043±0.1897 for rotational motion. It can be 

seen that the level of fluctuation between nodes stays similar in the whole BC range and 

there is no apparent correlation between the correlation coefficients and BC rank (−0.05 for 

translational motion, −0.04 for rotational motion). Thus, while head motion was 

significantly different between NC and SZ groups, it did not yield significant effect on nodal 

betweenness centrality, and therefore will not affect our BC based SVM analysis.

The thresholded average functional network obtained is shown in Figure 3 as graphs. The 

position of the nodes represents the center of mass of the actual location of ROIs in the 

parcellation projected on one plane (coronal or sagittal). The size of the node is proportional 

to the square root of its BC value. Only 5% of all the edges were retained for better viewing. 

Even with this threshold, the network is connected as a whole component. In other words, 

there are no isolated nodes or sub-networks. The nodes with high BC values are widely 

distributed over the brain. There are many intra-hemispheric connections (as shown in the 

sagittal views) as well as a significant number of inter-hemisphere connections, especially in 

the parietal and occipital lobes. It should be noted that the nodes with higher betweenness 

centrality do not necessarily have higher degree.

Besides the hubs, nodes with high betweenness centrality could also be key components in 

brain functional connectivity. Hence, we examined their physical location in the brain for 

the top 10% of nodes with highest centrality and the result is shown in Figure 4. The limbic 

system occupies a large portion of the nodes, including the cingulate gyrus, hippocampal 

formation, and amygdala. In this picture some core components of the default mode network 

can be seen in the frontal, parietal and posterior cingulate area (Buckner et al., 2008). The 

location of the ten hub nodes are highlighted in red, including lingual gyrus, posterior 

cingulate, cerebellum posterior lobule, insula, cingulate gyrus, precuneus, superior parietal 

lobe, fusiform gyrus, and middle frontal gyrus. Their MNI coordinates are listed in Table 1.

Prediction accuracies of support vector machine analysis using different methods at 20% 

threshold are shown in Table 2. Although all methods achieve relatively high overall 

accuracy rates above 70% and high accuracy rate for NC (specificity), the specific accuracy 

on schizophrenic subjects (sensitivity) is lower than 60% when betweenness centrality of all 

the nodes were included in the analysis. If only taking the ten hub nodes, using ranks of 

betweenness centrality rather than the actual values gave rise to slightly higher prediction 

rate. Figure 5 compares prediction accuracies of SVM analysis at different threshold. Fig. 

5A is the result using BC ranks of all nodes; Fig. 5B is the result of using BC values of all 
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nodes; Fig. 5C and 5D are the results for BC ranks and BC values of the ten hub nodes. 

Because there are more NC subjects, the prediction accuracy is always higher for NC. The 

classification accuracy stays the same for all thresholds if all nodes are used. With only hub 

nodes, the performance of the classifier is very stable for a thresholding range between 30% 

to 45%, with a sensitivity of 74% and a specificity of 83% by using BC ranks for SVM, and 

a sensitivity of 68% and a specificity of 76% by using BC values for SVM. Poor 

performance was found for thresholds lower than 20%. Comparing Fig. A and B, there is an 

advantage of using BC ranks over BC values, and the edge of advantage of using BC ranks 

almost held for all thresholds.

As a control, we performed SVM by using alternative methods. Fig. 6A shows the 

prediction rates as we chose every 10 nodes with continuous ranks of betweenness centrality 

starting from lowest to highest. Although many node sets give rise to high overall accuracy 

rate, only three achieve accuracy rates above 0.6 in predicting SZ. Fig. 6B is the result of 

randomizing NC and SZ subjects prior to SVM classification. For 100 trials, the 

performance varies, with an average classification accuracy of 0.56, and a sensitivity of 

0.30.

DISCUSSION

We showed that by using a small fraction of nodes with highest betweenness centrality, a 

classifier based on support vector machines can predict whether a subject belongs to the 

schizophrenia or healthy-control group with a reasonably high accuracy around 80%. The 

classification accuracy is very close or superior to previous results in classifying 

schizophrenia patients (Anderson and Cohen, 2013; Arbabshirani et al., 2013; Shen et al., 

2010) as shown in Table 3. The prediction rate, however, goes down significantly for most 

other nodes. If putting the nodes in the order of BC values and dividing them into subsets 

with equal size of 10 nodes, only three sets achieve accuracy rates above 0.6 in predicting 

SZ. Our results suggest that alterations in the properties of the hub nodes may be a key 

network feature in schizophrenia, and support a disconnection model of the disorder.

With higher classification accuracy than clustering coefficient and small-worldness, the 

power of classification using ranks of BC indicates a dramatic change of betweenness 

centrality order for the hubs in schizophrenia. This implies a reorganization of network 

topology, which has been reported by previous analysis on the functional and structural 

network (Rubinov and Bullmore, 2013; van den Heuvel et al., 2013). For the top ten nodes 

with highest centrality on the average functional network, some regions such as nodes at 

posterior cingulate and superior parietal lobe belong to the default brain network. Other 

regions such as nodes at precuneus, posterior cingulate, and lingual gyrus have been 

identified as hubs from the structural brain network (Nijhuis et al., 2013). In a latest review 

of schizophrenia and abnormal brain network hubs by Rubinov and Bullmore (Rubinov and 

Bullmore, 2013), they summarized nine network analyses of schizophrenia that showed 

alteration of hubs in SZ patients. In general, both studies of structural and functional 

network analysis identified hubs in frontal, temporal and parietal association areas, and 

insular area. This agrees well with our findings of those nodes having high betweenness 

centrality (Fig. 4). The six structural network analyses reported an overall reduction of hub 
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nodes for schizophrenia. In three studies on functional networks using degree centrality, 

increased hubs were reported in some areas mixed with a decrease of hubs in other areas, 

which is also in line with our findings of BC value changes in the disorder. Figure 5 shows 

higher classification power with only ten hub nodes, indicating some of the hub nodes play 

an important role in distinguishing schizophrenia from normal controls. Including all nodes 

in the SVM analysis becomes destructive due to increasing noise. Despite that, the results 

depicted in figure 5 do not rule out topological reorganization of other nodes. Figure 6A 

shows that BC ranks of some other nodes may also have some classification ability but not 

as good as the hubs.

Most of the hub nodes that distinguish schizophrenia from non-psychiatric controls were 

believed to show relevance in schizophrenia by many other studies. As key nodes in the 

default-mode network, posterior cingulate and precuneus, along with cingulate gyrus, 

showed different activation levels between non-psychiatric controls and schizophrenia 

patients in an auditory oddball task (Garrity et al., 2007). Many deficits observed in 

schizophrenia are associated with insula functions including the processing of both visual 

and auditory emotional information, pain, and neuronal representations of the self (Wylie 

and Tregellas, 2010). Disruption of large-scale brain networks modulated by anterior insula 

was found in schizophrenia (Moran et al., 2013). Gray matter volume reduction was 

reported for middle frontal gyrus (Kikinis et al., 2010), accompanied by abnormality of 

white matter tracts connecting middle frontal gyrus to inferior frontal gyrus and striatum 

(Quan et al., 2013). In a quantitative meta-analysis of resting state functional MRI and 

positron emission tomography data, hyperactivation in bilateral lingual gyrus was found in 

schizophrenic patients (Kühn and Gallinat, 2013). Impaired eyeblink conditioning has 

suggested impaired functioning of the cerebellum in schizophrenia (Bolbecker et al., 2013). 

All these studies investigated brain deficits and abnormalities in schizophrenia from 

different perspectives; together they have formed a comprehensive picture which is now 

partly unveiled by network-based classification.

A challenge of using functional connectivity networks for classifying schizophrenia is the 

high variability that they present (Wang et al., 2011). One source of such high variability 

comes from the subject head movements (Van Dijk et al., 2012). Head motion can introduce 

spurious correlation while decreasing the true correlation. More importantly, the patients and 

non-psychiatric controls may have different levels of head motion, which imposes 

systematic biases in the constructed functional network. Figure 2 shows that the motion 

behavior is different between the two groups. It is a natural concern that motion may play a 

role in the classification. There are two possible effects of motion, one is a bias of 

classification toward non-psychiatric control or SZ patients; the other is overall low 

prediction rate. To test the bias due to motion, we compared the motion of those classified as 

a non-psychiatric control and the motion of those classified as SZ. Figure 7A and 7B show 

the results and p-values of two-sample t-tests for translational and rotational motion. There 

is no apparent suggestion that motion biased the classification toward SZ or NC. In addition, 

motion is a global effect. If motion significantly biased the classification, we should obtain 

high prediction accuracy for any ten nodes, which is not the case, as shown in Fig. 6A. To 

test the second effect, we compared the magnitude of motion with the classification 

performance for all the subjects at threshold of 30%. Figure 7C and 7D display the motion 
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parameters and prediction performance of all subjects. The head motion showed larger 

variance and slightly higher mean values for wrong prediction, suggesting a trend that larger 

motion lead to wrong prediction, but no statistical difference on the performance was found.

The other source of variability is the intrinsic dynamics of functional connectivity (Chang 

and Glover, 2010). It was suggested that a minimum scan time of around 13 minutes is 

needed to account for the intrinsic variability (Birn et al., 2013). However, this condition 

was not met in our study due to difficulty to keep subjects alert for very long time. The high 

variability imposes some constraints on the choice of network metrics for classifying 

schizophrenia. Betweenness centrality stands out as a good feature for SVM for a number of 

reasons. First, a nice feature of betweenness centrality is that it is quite insensitive to 

thresholding. This is not surprising. The reason is that most of the shortest-paths heavily rely 

on the edges with highest weights (in our case in those edges with highest functional 

connectivity), and hence the impact of removing the edges with lowest weights should be 

minor. In fact, there is little difference for BC between threshold 20% and 45%. That is why 

the classification accuracy is constant for different thresholds when all nodes are used. This 

feature makes the classification more robust. Second, the top ten BC values have a much 

larger slope than others, making them or the order even more robust against noise and other 

variability. That is why using only the top ten nodes resulted in higher prediction accuracy. 

Third, performance can be further improved by using the rank of BC rather than BC itself. 

This is not surprising because the rank is less susceptible to inter-subject variability due to 

motion effects or intrinsic neuronal dynamics. The absolute value of BC is influenced by the 

actual values of correlation; the rank of BC, however, is a relative measure, and therefore 

less affected by any global effect of noise.

In summary, our results show that the nodes with high betweenness centrality in the 

functional connectivity network can be used to classify schizophrenia and non-psychiatric 

controls with a linear support vector machine algorithm. The prediction accuracy can be as 

high as 79% in overall and 74% for detecting schizophrenia by simply using the ranks of BC 

of these nodes, better than SVM method using clustering coefficient and small-worldness. 

The nodes with high BC values coincide well with previously reported regions showing 

abnormalities in schizophrenia. Because betweenness centrality is purely a network measure 

that characterizes the influence of a node in the connection to other nodes, our results 

suggest schizophrenia is associated with abnormality of brain networks and the hub nodes 

plays most important roles in the network abnormality.
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Figure 1. 
Betweenness centrality as a function of ranks. The graph clearly shows two zones where BC 

values increases linearly with ranks. Zone 1 is approximately from rank 1 – 200; zone 2 is 

from rank 269–278. The top 10% nodes with highest BC are marked with solid circles.
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Figure 2. 
Comparison of both mean translational (blue) and rotational (red) motions between the SZ 

and NC groups (A); standard errors of motion within each group are indicated by the error 

bars. Correlation coefficients between motion parameters and BC values are shown in (B).
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Figure 3. 
Mean functional networks with 5% edges retained. The location of the nodes represents the 

coordinates of parcellated regions in MNI template. The size of the nodes is proportional to 

the square root of their BC values.
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Figure 4. 
Top 10% nodes with highest betweenness centrality displayed on the MNI template. The Z 

coordinates in mm are shown on top of corresponding slices. Ten nodes with highest 

betweenness centrality used for SVM analysis are colored in red, all others are colored in 

blue.
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Figure 5. 
Classification accuracy using ranks of betweenness centrality of all nodes (A); values of 

betweenness centrality of all nodes (B); ranks of betweenness centrality of top ten hub nodes 

(C); and values of betweenness centrality of top ten hub nodes (D).

Cheng et al. Page 18

Schizophr Res. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
(A) shows classification accuracy using different sets of nodes in SVM while keeping the 

same number of features. The figure shows the prediction rates as we choose every 10 nodes 

with order of betweenness centrality starting from 9. Although many node sets give rise to 

high overall accuracy rate, only three sets achieve accuracy rates above 0.6 in predicting SZ. 

(B) shows the classification accuracy for 100 trials by randomly mixing SZ and NC subjects 

and performing SVM classification while still using the original labeling. The classification 

accuracy dramatically drops.
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Figure 7. 
Motion effects on the SVM classification. (A) and (B) compare translational motion and 

rotational motion on those classified as NC and those classified as SZ. (C) and (D) compare 

translational motion and rotational motion on those classified correctly and those classified 

incorrectly. Results were from the network with threshold of 0.30.
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Table 1

Corresponding brain regions, MNI coordinates and Talairach coordinates [x y z] of the ten nodes with highest 

betweenness centrality on the mean network with 30% threshold.

Brain Region MNI coordinate Talairach coordinate

Middle Frontal Gyrus [52 150 119] [−40 24 41]

Fusiform Gyrus [67 61 63] [−25 64 −5]

Superior Parietal Lobe [52 62 121] [−40 −61 47]

Precuneus [97 70 106] [5 −54 33]

Cingulate Gyrus [85 120 122] [−7 −5 45]

Insula [132 134 73] [40 7 0]

Cerebellum Posterior Lobule [130 61 24] [38 −66 −38]

Posterior Cingulate [103 70 87] [11 −55 16]

Posterior Cingulate [82 69 93] [−10 −55 21]

Lingual Gyrus [105 68 68] [13 −57 −1]
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Table 2

Classification accuracy rate for different SVM feature spaces, with 30% edges remaining. Based on BC, four 

sets of nodes were evaluated, namely centrality of all nodes, centrality of top ten nodes, rank of centrality of 

all nodes, and rank of centrality of top ten nodes.

Centrality,
all nodes

Centrality,
top ten
hubs

Rank of
centrality, all

nodes

Rank of
centrality,

top ten hubs

Overall accuracy 73% 73% 75% 79%

Specifity 93% 76% 90% 83%

Sensitivity 42% 68% 53% 74%
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Table 3

Summary of reported sensitivity and specificity in classifying schizophrenia patients based on resting state 

functional connectivity.

Number of subjects specificity sensitivity

Shen et al. (2010) Patients:32
Controls: 20

75% 93.75%

Yu et al. (2013) Patients: 24
Healthy siblings: 25

Controls: 22

87% 66.7%

*Arbabshirani et al., (2013) Patients:28
Controls: 28

100% 67%

Anderson and Cohen (2013) Patients:74
Controls: 72

65%

Our work Patients:19
Controls: 29

83% 74%

*
: many classification algorithms were tested in the paper, the result here is for linear SVM with reduced set of features (27 features), which is not 

the best compared to other nonlinear algorithms.
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