Respiratory “linear” electron flows (black arrows) proceed from NADH in the mitochondrial matrix to H2O via the CoQ pool and the enzyme complexes I, II, III, and IV, forming ubiquinol (CoQH2) as an intermediary product. The electron flows via complexes I, III and IV occur (mostly) via tunnelling or micro-diffusion of CoQ/CoQH2 in I-II-IV supercomplexes rather than via the larger mobile CoQ pool [72]. “Non-linear” electron flows (dark blue arrows) proceed from electron donors (e.g. NAD(P)H) via several quinone dehydrogenases to the CoQ pool, and to H2O from CoQH2 via AOX. Plasma membrane electron transport occurs from NAD(P)H to H2O via one or more type of NAD(P)H-CoQ reductases, the plasma membrane CoQ pool and Ecto-NOX. CoQH2 ROS scavenging occurs continuously in O2 metabolism primarily via chain breaking of lipid peroxidation (LPO) caused by O2
•− and H2O2. Abbreviations: AOX, alternative oxidase; cyt-c, cytochrome c; DHAP, dihydroxyacetone phosphate; DHO, dihydroorotate; DHODH, dihydroorotate dehydrogenase; Ecto-NOX, external quinone oxidase; ETFred/ox, reduced/oxidised electron-transferring-flavoprotein; ETFDH, electron-transferring-flavoprotein dehydrogenase reduced/oxidised; Ecto-NOX, external quinone oxidase; GPDH, glycerol-3-phosphate dehydrogenase; G-3-P, glycerol-3-phosphate; H2O2, hydrogen peroxide; LPO, lipid peroxidation; pmNDH/mNDH, plasma membrane/mitochondrial NAD(P)H dehydrogenases; OA, orotate; O2
•−, superoxide.