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The present study provides a new account of how fluid intelligence influences academic perform-
ance. In this account a complex learning component of fluid intelligence tests is proposed to play a 
major role in predicting academic performance. A sample of 2, 277 secondary school students com-
pleted two reasoning tests that were assumed to represent fluid intelligence and standardized math 
and verbal tests assessing academic performance. The fluid intelligence data were decomposed 
into a learning component that was associated with the position effect of intelligence items and a 
constant component that was independent of the position effect. Results showed that the learning 
component contributed significantly more to the prediction of math and verbal performance than 
the constant component. The link from the learning component to math performance was espe-
cially strong. These results indicated that fluid intelligence, which has so far been considered as ho-
mogeneous, could be decomposed in such a way that the resulting components showed different 
properties and contributed differently to the prediction of academic performance. Furthermore, 
the results were in line with the expectation that learning was a predictor of performance in school.
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Introduction

Numerous studies have demonstrated that intelligence is a main 

predictor of academic performance (e.g., Deary, Strand, Smith, & 

Fernandes, 2007; Watkins, Lei, & Canivez, 2007). Fluid intelligence 

that has been found to be especially closely related to general intel-

ligence (Kvist & Gustafsson, 2008; McArdle & Woodcock, 1998) has 

frequently played a leading role in studies on the relationship with 

academic performance. Although this relationship has been regarded 

as a well-established fact, the source of the relationship still seems to 

be in need of a convincing account. Cattell’s (1963, 1987) investment 

hypothesis stating that individuals invest their fluid intelligence to 

acquire strategies and knowledge can be considered as an attempt to 

provide an account. More recently, the research has shifted to focus 

on the underlying cognitive processes. Attempts have been made to 

understand why and how complex cognitive processes influence stu-

dents’ academic performance (e.g., Ferrer & McArdle, 2004; Krumm, 

Ziegler, & Buehner, 2008). This paper adds another approach to this 

line of research: Fluid intelligence is decomposed into components 

showing different cognitive properties and contributing differently to 

the prediction of academic performance.

The position effect observed in 
intelligence tests
The new approach originates from the position effect research. This 

effect has frequently been observed in items of intelligence tests. It de-

notes the dependency of responses to items on the position of the items 
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within a test (Schweizer, Troche, & Rammsayer, 2011). Since intelli-

gence tests are composed of a number of items showing a high degree 

of similarity, there is a high possibility of observing the position effect 

among the items within a test (e.g., Kubinger, Formann, & Farkas, 1991; 

Schweizer et al., 2011; Schweizer, Schreiner, & Gold, 2009). Further, a 

few empirical studies have suggested that learning serves as the source 

of the position effect in intelligence items (Embretson, 1991; Ren, 

Wang, Altmeyer, & Schweizer, 2014; Verguts & De Boeck, 2000). This 

position effect provides the outset to investigate the question whether 

the assumed learning processes underlying the position effect could 

account for the relationship between fluid intelligence and academic 

performance.

The research on the position effect has a long history starting in 

the 50s (Campbell & Mohr, 1950). The work by Knowles (1988) who 

observed that in personality scales item reliability increases as a func-

tion of the item serial position was especially enlightening. The posi-

tion-related change was also found in ability tests such as the Raven’s 

Standard Progressive Matrices (Kubinger et al., 1991). The results of 

these studies indicate that the response to the items becomes increas-

ingly consistent as testing continues. The more recent focus of this line 

of research is to represent the position effect observed in intelligence 

items by means of advanced confirmatory factor analysis (CFA) models 

(e.g., Ren, Goldhammer, Moosbrugger, & Schweizer, 2012; Schweizer 

et al., 2009). These CFA models decomposed the variance of intelli-

gence test data into a position component that is associated with the 

position effect, and a constant component that is independent of the 

item positions. The research work by Schweizer et al. (2011) indicated 

that the constant component of fluid intelligence may represent basic 

cognitive processes and was highly correlated with general intelligence. 

However, the nature of the position component received little attention 

in this study.

Complex learning as source of 
the position effect accounts for 
academic performance 
There are reasonable grounds suggesting learning as the source of the 

position effect. First, the position effect appears to be associated with 

the similarity among the items of a test and the similarity provides 

opportunities for test-takers to detect the regularities and extrapolate 

them from one item to the next one. Since items of many fluid intel-

ligence tests are dominated by only a few underlying rules (Carpenter, 

Just, & Shell, 1990), it is quite likely that test-takers are able to infer 

these rules and improve their ability to solve the items as testing con-

tinues. Second, previous research work conducted in the framework 

of IRT suggested that such kind of learning did occur in completing 

items of an intelligence test even without direct external feedback (e.g., 

Fischer & Formann, 1982; Verguts & De Boeck, 2000). 

The nature of learning associated with the position effect of intel-

ligence items was made explicit by a more recent study in considering 

both associative learning and complex learning (Ren et al., 2014). While 

associative learning represents an individual’s ability to form and main-

tain new associations between the knowledge items stored in memory, 

complex learning mainly reflects an individual’s ability to acquire and 

develop a series of goal-directed strategies based on the use of abstract 

rules (cf. Anderson, Fincham, & Douglass, 1997). The study by Ren 

et al. (2014) related the position and constant components of Raven’s 

Advanced Progressive Matrices (Raven’s APM), a well-known marker 

of fluid intelligence, to measures of associative learning and complex 

learning. Based on a sample of 220 university students the results of the 

study demonstrate that complex learning displays an especially strong 

link (r = .78) with the position component while associative learning 

shows only a small correlation (r = .28) with the constant component 

of Raven’s APM.  

The revelation of complex learning as the main source of the posi-

tion effect was especially revealing with respect to the prediction of 

academic outcomes on the basis of fluid intelligence. Fluid intelligence 

has been considered as a causal factor in learning activities, especially 

in novel situations (Kvist & Gustafsson, 2008). This argument has been 

bolstered by empirical studies demonstrating a substantial relationship 

between learning and fluid intelligence when the learning tasks are new 

and complex (e.g., Tamez, Myerson, & Hale, 2008). Additionally, the 

investment hypothesis and related empirical research suggest that fluid 

intelligence supports the acquisition of skills and knowledge across a 

wide spectrum of domains including arithmetic skills and vocabulary 

(Cattell, 1987; Ferrer & McArdle, 2004). Therefore, it appears reason-

able to hypothesize complex learning as an underlying source that 

gives rise to the association between fluid intelligence and knowledge 

acquisitions.

The aim of the present study
As elaborated in the previous section, it is possible to separate a 

learning component based on the position effect of intelligence items 

from a constant component by means of theory-based CFA models. 

The position-related component has been demonstrated to show a 

close relationship with measures of complex learning, indicating that 

complex learning is a major source of the position effect of intelligence 

items. The aim of the present study was therefore to examine the role 

of this learning component in accounting for academic performance. 

To that end, measures of fluid intelligence and academic performance 

were administrated to a large sample. Variance of the intelligence data 

was decomposed into the position and constant components by special 

CFA models. Since complex learning abilities have been indicated as 

the main source of the position effect observed in intelligence items, 

it was hypothesized that the position component of fluid intelligence 

played a key role in predicting academic performance.

Method

Participants 

The data of the present study came from a large research project con-

ducted across China to assess children’s and adolescents’ cognitive, 

academic and social development. The sample used for this paper was 

defined by students enrolled at 10 junior secondary schools located at 
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a medium-sized city in south China. There were 2,277 students (1,176 

males and 1,101 females) in the second year of the junior secondary 

schools with an average age of 13.53 years (SD = 0.28). Data were col-

lected at the beginning of the academic year. Since the reasoning tests 

and the academic tests were administered separately (within one week), 

a total of 17 participants had missing scores on either the reasoning 

scores or the academic scores. The loss was very small because data 

collection was conducted during normal teaching time, and absence 

from school is rare in China. Data of those participants were excluded 

from analysis.

Measures
The measures included two analogical reasoning tests (figural and 

numerical versions) to assess fluid intelligence. Academic perform-

ance was assessed by standardized math and verbal tests. All these 

tests came from the test reservoir developed for the national research 

project1 and have gone through rigorous construction processes (Dong 

& Lin, 2011). 

Reasoning tests
Fluid intelligence was assessed using analogy tasks combining dif-

ferent contents. The figural reasoning (FR) test consisted of 19 items 

each presented in the form of analogy patterns composed of geometric 

figures (see Figure 1 for an example). To complete each item, partici-

pants had to infer the rule underlying the first pattern and to apply the 

rule to complete the second pattern by choosing a correct figure out 

of four alternatives. The 19 items of this test were presented in an as-

cending order of difficulty. The numerical reasoning (NR) test was the 

numerical equivalent of the FR test. The elements of the patterns were 

simple numbers composed according to underlying rules. This test 

consisted of 22 items presented also in an ascending order of difficulty. 

Participants had 8 min to complete each test. The time limit was cho-

sen on the basis of the results of several pilot testing sessions to make 

sure that participants had sufficient time to try to complete each item 

of each test. The response to each item of the tests was recorded as bi-

nary data. According to the technical report of these tests (Dong & Lin, 

2011), internal consistency indexed by Cronbach’s αs was computed 

based on a national norm of 12,000 junior middle school students. The 

internal consistencies were .77 for the FR and .86 for the NR. Criterion 

validity of the reasoning test was established on the basis of 120 stu-

dents. The Matrix Reasoning subtest of the Wechsler Intelligence Scale 

for Children (WISC-IV) served as an external criterion for the reason-

ing test. Correlations of the FR and NR tests with WISC-IV Matrix 

Reasoning were .66 (p <.01) and .64 (p <.01) respectively.

Academic tests
The math and verbal tests were constructed strictly according to 

curriculum standards set by the state department of education for 

junior secondary education. The math test included 26 multiple-choice 

items and 6 open items. These items covered three dimensions of the 

math curriculum: algebra, geometry, and probability. The verbal test 

included 38 multiple-choice items covering two major dimensions 

of the verbal curriculum: comprehension and literacy knowledge. 

Participants had 60 min to complete each test. Separate scores were 

calculated for each dimension of the tests. According to the techni-

cal report of the tests (Dong & Lin, 2011), the internal consistencies 

of the math and verbal tests were .88 and .80 respectively. Convergent 

validity of the tests was assessed by computing the correlations of the 

dimension scores with the total test scores. Correlations of the alge-

bra, geometry, and probability with the total math score were .94, .93, 

and .64 respectively. Correlations of the comprehension and literacy 

knowledge with the total verbal score were .94 and .92 respectively. 

It should be noted that there were three parallel versions of each 

academic test, and that these tests shared a set of common items 

known as anchor items. The equation of the scores obtained from the 

three parallel versions was achieved by means of the one parameter 

logistic model (for the multiple-choice items) and the partial credit IRT 

model (for the open items). These scores were used for representing 

academic achievement.

Statistical analysis
Individual items provided the basis for analyzing the data of the rea-

soning tests. The research approach selected for decomposing and 

representing the constant and the position components of the reason-

ing tests were special CFA models addressed as the fixed-links models 

(cf. Schweizer, 2008). A characteristic of the fixed-links models is that 

factor loadings are constrained according to theory-based expectation 

so that the variances of the manifest variables are decomposed into 

independent components. Independence of the latent components 

means that latent variables are prevented from accounting for the same 

variances and covariances. If the latent variables were allowed to cor-

relate with each other, this would very likely lead to substantial correla-

tions of both latent variables with the same criterion measures. In this 

case, it may become virtually impossible to demonstrate whether the 

increasing component that represents the position effect is correlated 

to a higher degree with the criterion than the other latent variable. 

The representation of the position effect for each reasoning test 

required a fixed-links model including two latent variables: the con-

stant component and the position component. Figure 2 illustrates the 

measurement model including the constant and position components 

of reasoning and the individual items of each reasoning test serving 

as manifest variables. The loadings of the constant component were 

Figure 1.

An example of the item of the figural reasoning test with the 
correct answer.
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kept constant since this component was independent of item positions 

and contributed almost equally to all individual items. The loadings 

of the position component were determined by a quadratic function 

(e.g., 1, 4, 9…) that described the influence of complex learning on 

the position effect—that is, a small increase may occur at the first few 

positions whereas a steep slope is achieved as one progresses through 

the test. A simple linear function was also considered to represent the 

position effect for a comparison. This linear function simply means 

that learning increases linearly as testing continues from the first to 

last items. These two fixed-links models were addressed as Linear- and 

Quadratic models. Since there was the necessity to relate the binomial 

distributions of the binary reasoning items to the normal distributions 

of the latent scores, a link transformation for eliminating effects due to 

such a discrepancy was adopted (cf. McCullagh & Nelder, 1985). This 

transformation was accomplished by weights serving as multiplier to 

each true component of the measurement models. 

A single factor model that did not consider the position effect was 

also investigated. This model was address as the constant model. The 

loadings of the latent variable were kept the same as those of the con-

stant component in the linear and quadratic models. Table 1 presents 

the fixed loadings that were inserted into each measurement model.

The statistical investigations were conducted by means of LISREL 

8.8 (Jöreskog & Sörbom, 2006) on the basis of the covariance matrix, 

and model parameters were estimated by means of the maximum 

likelihood method. The fit statistics χ2, Root Mean Square Error of 

Approximation (RMSEA), The Standardized Root Mean Square 

Residual (SRMR), and Confirmatory Fit Index (CFI) were considered. 

The limits proposed by Kline (2005) were referenced to evaluate the 

model-data fit. In addition, competing non-nested models were com-

pared on the basis of Akaike Information Criterion (AIC). Lower AIC 

values reflect better model-data fit, and the model with the lowest AIC 

value is preferred.

Results
The item-based scores of the reasoning tests are presented in Table 1. 

Descriptive results for the two reasoning tests, the math and verbal 

tests and their respective dimensions, as well as the intercorrelations 

among the variables are presented in Table 2. All correlations reached 

significance at the .01 level (two-tailed).

The representation of the 
components of fluid intelligence
As described in the Method section, three measurement models were 

examined for each reasoning test. Table 3 presents the fit results of the 

models. A comparison of the constant model and the other two models 

for each reasoning test clearly indicated that the consideration of the 

position effect reduced the χ2 and AICs considerably. Although the 

outcomes of CFIs for the position-related models were not very favora-

ble, they could be considered as acceptable since the large sample size 

affected the statistics on which the CFI was based. Table 3 also indicates 

that the quadratic models showed better fits than the linear models, as 

can be seen from the obviously lower AIC value of the quadratic mod-

els. These fit results indicate an advantage of representing the position 

effect according to the quadratic function. Therefore, the two quad-

ratic models were selected for further analyses. The scaled variances 

(cf. Schweizer, 2011) of the latent variables within each of the selected 

models reached the level of significance, constant of FR: σ = .0116, t = 

18.62, p < .01, position of FR: σ = .0045, t = 6.61, p < .01; constant of 

NR: σ = .0136, t = 23.80, p < .01, position of NR: σ = .0121, t = 15.76, p 

< .01. It should be noted that these statistical results were generated by 

the LISREL program.

Next, a comprehensive CFA model that allowed the two constant 

components and the two position components of the reasoning tests to 

correlate with each other was inspected. This model showed an overall 

acceptable fit, χ2(812) = 4,598.64, RMSEA = .045 [CI90: .044−.047], 

SRMR = .067, CFI = .865. Table 4 provides the latent correlations 

among the four components. As expected, substantial correlations 

were observed between the two position components and between the 

two constant components. The other correlations between the latent 

components were at only a weak or moderate level of significance.

In a following step, a second-order CFA model that included two 

higher-order factors representing the constant and the learning com-

ponents of fluid intelligence was inspected. This second-order model, 

compared to the comprehensive CFA model, additionally included two 

higher-order factors addressed as the constant and learning compo-

nents of fluid intelligence. Figure 3 presents the latent structure of this 

second-order model. Unfortunately, some of the estimated parameters 

could not be identified in this model. Therefore, we fixed the residu-

als of the first-order latent variables according to the estimated values 

from the comprehensive CFA model (i.e., the first-order model) so 

that a stable switch was achieved from the first- to the second-order 

models. The fit statistics of the second-order model were acceptable, 

χ2(816) = 4,743.26, RMSEA = .046 [CI90: .045 −.047], SRMR = .065, 

CFI = .862. The relationships of the first-order latent variables and the 

second-order latent variables were rather close, as it was obvious from 

the standardized loadings varying between .80 and .89.

Figure 2.

An illustration of the measurement model including the 
constant and position components of reasoning as two in-
dependent latent variables and the individual items of each 
reasoning test as manifest variables (the model of the figure 
reasoning includes 19 manifest variables, and the model of 
the numerical reasoning includes 22 manifest variables). 
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Note. The loadings on the position component were determined by either a quadratic (Q) or a linear (L) function combined with the link transformation.

Number
 of item

Figural reasoning test Numerical reasoning test

M SD Constant Position (Q) Position(L) M SD Constant Position(Q) Position(L)

1 .99 0.06 .0628 0.0628 0.0628 .99 0.11 .1083 0.1083 0.1083

2 .98 0.10 .1042 0.4169 0.2085 .98 0.13 .1265 0.5058 0.2529

3 .98 0.14 .1392 1.2529 0.4176 .99 0.11 .1063 0.9564 0.3188

4 .96 0.18 .1842 2.9465 0.7366 .95 0.21 .2098 3.3564 0.8391

5 .92 0.28 .2759 6.8987 1.3797 .99 0.11 .1102 2.7558 0.5512

6 .80 0.40 .3976 14.3147 2.3858 .98 0.13 .1330 4.7881 0.7980

7 .90 0.30 .2967 14.5382 2.0769 .98 0.13 .1265 6.1966 0.8852

8 .86 0.35 .3449 22.0718 2.7589 .96 0.18 .1842 11.7862 1.4733

9 .68 0.47 .4676 37.8794 4.2088 .94 0.24 .2442 19.7831 2.1981

10 .73 0.44 .4427 44.2730 4.4273 .95 0.21 .2126 21.2605 2.1261

11 .85 0.36 .3569 43.1865 3.9260 .97 0.17 .1785 20.3041 1.8458

12 .70 0.46 .4564 65.7211 5.4768 .97 0.18 .1678 25.7060 2.1422

13 .85 0.36 .3569 60.3183 4.6399 .97 0.17 .1666 28.1494 2.1653

14 .63 0.48 .4824 94.5455 6.7533 .91 0.29 .2850 55.8651 3.9904

15 .74 0.44 .4402 99.0355 6.6024 .78 0.42 .4167 93.7594 6.2506

16 .59 0.49 .4912 125.7568 7.8598 .71 0.45 .4530 115.9260 7.2476

17 .59 0.49 .4917 142.0874 8.3580 .74 0.44 .4361 126.0176 7.4128

18 .57 0.50 .4948 160.3144 8.9064 .83 0.38 .3768 122.0944 6.7830

19 .55 0.50 .4974 179.5590 9.4505 .59 0.49 .4930 177.7179 9.3536

20 .61 0.49 .4880 195.1812 9.7591

21 .46 0.50 .4982 219.7045 10.4621

22 .68 0.47 .4660 225.5239 10.2511

Table 1. 

The Fixed Loadings of Each Manifest Variable on the Constant Component and the Position Component of the Measurement 
Models

Note. The scores of the reasoning tests are the averaged total number of the correctly completed items; the scores of the academic tests are IRT-based scores.

Measure M SD 1. 2. 3 4. 5. 6 7. 8.

1.  Figural reasoning test 13.91 2.61 –

2.  Numerical reasoning test 18.93 2.64 .55 –

3.  Math 0.95 0.89 .55 .59 –

4.  Algebra 0.73 0.25 .49 .55 .91 –

5.  Geometry 0.72 0.30 .51 .51 .90 .68 –

6.  Probability 0.63 0.30 .27 .27 .52 .38 .38 –

7.  Verbal 1.11 0.63 .45 .50 .66 .59 .58 .38 –

8.  Literacy knowledge 0.72 0.16 .41 .46 .59 .55 .50 .34 .86 –

9.  Comprehension 0.68 0.16 .35 .39 .53 .43 .49 .35 .83 .50

Table 2. 

Descriptive Statistics For the Two Reasoning Tests, the Math and Verbal Tests, and Their Respective Dimensions, as Well as the 
Intercorrelations Between the Variables (N = 2,277)
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Accounting for academic 
performance by components of 
fluid intelligence
The representation of the constant and learning components of fluid 

intelligence by the second-order CFA model made it possible to relate 

the components to the academic scores. This was achieved by a means 

of a full structural equation model additionally including two criterion 

variables representing the math and verbal performance. The fit statis-

tics of this model indicate a good fit, χ2(1018) = 5, 204.97, RMSEA = 

.043 [CI90: .041 −.044], SRMR = .063, CFI = .915. Figure 4 provides an 

illustration of the structure of this prediction model.

Overall, moderate to strong relationships were found between the 

components of fluid intelligence and the latent variables of academic 

performance. A surprisingly strong link was observed from the learn-

ing component to math performance. This link was stronger than 

the one from the constant component of fluid intelligence to math 

performance, Zdifference = 18.10, p < .01. A further analysis of the two 

path coefficients suggested that the learning component accounted 

for 66% of the latent variance of math performance and the constant 

component accounted for 28%. With respect to predicting verbal per-

formance, the corresponding coefficients indicated that the learning 

component played a slightly more important part than the constant 

component, Zdifference = 3.88, p < .01. Further inspection of the two path 

coefficients revealed that the learning component accounted for 44% of 

the latent variance of verbal performance and the constant component 

accounted for 35%. In addition, the residual correlation between verbal 

and math performance was only .05, indicating that they were not as-

sociated with each other after the variance due to fluid intelligence was 

removed.

Discussion
So far, there has been hardly any empirical evidence regarding the as-

sumption that learning capacity incorporated in conceptualizations 

of intelligence contributes to students’ academic performance. The 

present study attempted to provide this evidence. The perspective of 

the position effect suggests that the learning component of fluid intel-

Type of model χ2 df RMSEA (CI90) SRMR CFI AIC

Figural reasoning test

Constant 960.56 170 .045(.042−.048) .048 .819 1000.56

Linear 1062.85 169 .048 (.045−.051) .060 .504 1104.85

Quadratic 856.34 169 .042 (.039 −.045) .048 .835 898.34

Numerical reasoning test

Constant 3895.73 230 .084 (.081 −.086) .087 .079 3941.73

Linear 3302.60 229 .077 (.074 −.079) .089 .811 3350.60

Quadratic 2929.86 229 .072 (.070 −.074) .092 .824 2977.86

Table 3. 

Fit Statistics of the Measurement Models for Each Reasoning Test.

Figure 3.

The latent structure of the second-order CFA model with the 
constant and learning components of fluid intelligence as 
higher-order factors which were derived from the four com-
ponents of the reasoning tests. Completely standardized fac-
tor loadings and completely standardized error variances of 
the latent variables are also presented (** p < .01). The corre-
lations between the constant and the position components 
were fixed to zero.

Latent component
Figural reasoning test

Constant Position

Numerical reasoning test 

Constant            .51** .37*

Position            .12 .65**

Table 4. 

Completely Standardized Correlations Between the Latent 
Components of the Two Reasoning Tests

Note. RMSEA = Root Mean Square Error of Approximation, SRMR = Standardized Root Mean Square Residual, CFI = Confirmatory Fit Index, AIC = Akaike 
Information Criterion.  
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ligence may play a crucial role in predicting academic performance. 

The fixed-links modeling approach was employed to separate the 

learning component of fluid intelligence from a constant component. 

The two components of fluid intelligence were linked to math and 

verbal performance. The results showed that the complex learning 

component played a more important part than the other component 

of fluid intelligence in predicting math and verbal performance. The 

link from the learning component to math performance was especially 

obvious. These results suggest that the reason why fluid intelligence 

predicts academic outcomes is that highly intelligent individuals are 

especially efficient in learning new skills in novel and complex situa-

tions, which seems to lead to high potential for achieving success in 

academic activities. 

The present finding was in accordance with, and updated two lines 

of previous research. One line of research conducted in the framework 

of psychometric studies has found a positive relationship between fluid 

intelligence and the rate of learning, or learning in real-life situations 

(e.g., Klauer & Phye, 2008; Tamez et al., 2008). This line of research 

suggests that a fundamental aspect of fluid intelligence is the ability to 

learn in novel situations, as was clearly demonstrated by the current 

study that a learning component was represented and derived from 

measures of fluid intelligence. Furthermore, the findings of the current 

study updated previous work that was conducted to test the investment 

hypothesis which provides insight into the learning function of fluid 

intelligence for acquiring strategies and knowledge (Ferrer & McArdle, 

2004). Although direct evidence supporting Cattell’s (1963, 1987) 

investment hypothesis was limited by the cross-sectional nature of 

this study, the result that the learning component of fluid intelligence 

had a substantial correlation with math and verbal performance un-

derscored the importance of the learning function implicated in fluid 

intelligence.

It is necessary to note that since the learning and the constant com-

ponents of fluid intelligence were not orthogonal, it was quite likely 

that these two components accounted for an overlapping part of the 

variance of math or verbal performance. In spite of that, it was clear 

from the current result that the learning component played a more im-

portant part than the other component of fluid intelligence in predict-

ing academic performance. In addition, although those components 

of fluid intelligence accounted for a large part of the variances of aca-

demic performance, other factors such as conscientiousness, motiva-

tion, and so forth should also play a crucial role in predicting students’ 

academic achievements (e.g., Mega, Ronconi, & De Beni, 2014). Lastly, 

concerning the fit statistics of the measurement models, although both 

RMSEAs and SRMRs were acceptable, the CFIs were not at or above 

.90. This finding may partly be due to the large number of variables 

within each model (cf. Kenny & McCoach, 2003). 

To conclude, the current study decomposed measurements ob-

tained by two reasoning measures into two components and showed 

that these components differently related to two types of academic 

achievement. The results indicate that reasoning data, which have been 

considered as homogeneous, can be decomposed in such a way that 

the resulting components show different properties. Furthermore, the 

results are in line with the expectation that learning is a predictor of 

performance in school. To be more specific, the position component 

that mainly reflects complex learning accounted for a larger part of the 

variance of academic performance than that of the constant compo-

nent of fluid intelligence. These findings provide evidence of how tests 

of fluid intelligence predict academic performance and justify the use 

of intelligence tests as educational tools. Furthermore, the finding that 

the learning component of fluid intelligence predicts a substantial part 

of the variance of academic achievement provides empirical evidence 

supporting Cattell’s (1963, 1987) investment hypothesis, and also pro-

vides insight into the learning function of fluid intelligence for acquir-

ing strategies and knowledge of various domains.

Figure 4.

The prediction model including the constant and learning components of fluid intelligence as predictor variables and math 
and verbal achievements as predicted variables. All completely standardized path coefficients reached the level of signifi-
cance (** p < .01). The path coefficient from the learning component to each predicted variable was statistically larger than 
the one from the constant component.
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Footnotes
1 This research project was China’s first attempt to assess children’s 

mental development and academic skills cooperatively accomplished 

by psychologists and educationists from 40 universities and institutes 

across China from year 2009 to year 2012. 
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