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Abstract

As isothermal titration calorimetry (ITC) gains popularity for the characterization of enthalpies 

and equilibrium association constants of simple 1:1 biomolecular interactions, its use for more 

complex systems is growing. The method is increasingly used to study interactions in which a 

single binding partner (molecule “A”) interacts with multiple copies of a second partner (“B”); 

thus examinations of ABB and ABBB interactions are not uncommon. The structure of ITC data 

(commonly formatted as isotherms) has a strong bearing on the ability of the researcher to extract 

the necessary parameters from them. Usually, only 10-30 injections are recorded in a single ITC 

experiment. Even if replicates are performed, the data must support the extraction of up to twelve 

parameters from an ABBB system conducted in triplicate. Further, the refinement of some of the 

parameters is largely driven by only a subset of the data. The ability of ITC data to guide the 

deterministic estimation of these parameters may therefore be questioned. This work assesses the 

ability of both empirical and simulated ITC data of ABB and ABBB systems to support the 

simultaneous estimation of the desired thermodynamic parameters. The results demonstrate that 

multiphasic isotherms tend to (but do not always) support the estimation of multiple parameters. 

On the other hand, uniphasic data obtained from multi-site binding systems are more problematic. 

In all cases, a thorough exploration of how precisely the estimated parameters are specified by the 

data is justified.
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1. Introduction

Since the introduction of the modern power-compensating isothermal titration calorimeter in 

1989 [1], the instrument has been widely and successfully used in a variety of fields. Such 

calorimeters have been used to study detergent micellization/demicellization [2], membrane 
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partitioning and translocation of proteins and peptides [3], food science [4,5], pollutant 

catabolism [6], and enzyme kinetics [7,8]. Arguably, however, its widest use is to 

thermodynamically characterize the stoichiometric binding of two or more biomolecules in 

solution. Isothermal titration calorimetry (ITC) has been used to derive thermodynamic 

parameters for the interactions of small molecules, proteins, DNA, RNA, and all 

combinations of these biomolecules [9–15]. This solution method features label-free 

characterization and direct access to important thermodynamic parameters (e.g. enthalpy and 

free energy); its popularity is therefore straightforward to understand.

ITC is conceptually simple and has been extensively described elsewhere [8,10,14,16]; only 

the most pertinent details are recapitulated here. In a typical ITC experiment designed to 

study a biomolecular interaction, a molecule of interest is introduced into a metallic sample 

cell. A companion reference cell (often filled with water) is positioned close by, and sensors 

stationed between the cells detect any temperature difference between them. Each cell is 

equipped with a heating element, and a constant reference power is applied to the reference 

cell's heater. The sensor detects the growing temperature difference between the cells and 

actuates a feedback circuit that engages the sample-cell heater. The amount of power needed 

to maintain an equal temperature between the two cells comprises the signal in the 

experiment, which is monitored as a function of time, resulting in the “thermogram”. 

Addition of an interacting molecule into the sample cell via a rotating, motorized syringe 

assembly evolves or consumes heat, causing deflections from and recoveries to the baseline 

power in the thermogram. These peaks are usually integrated and evaluated as a function of 

injectant concentration (the “isotherm”).

Advances in instrumentation [17,18] and analysis [19–22] of ITC data have facilitated 

researchers’ abilities to quickly and accurately derive thermodynamic parameters for simple 

1:1 biomolecular interactions. As a result, the method has been extended to study more 

complex interactions, featuring two [23–26] and three [20,27–29] distinct binding sites. 

While the cited efforts examined strongly featured isotherms or properly constrained 

analyses, other, more ambitious studies must contend with some countervailing facts. While 

a raw ITC thermogram may have thousands of data points, the isotherm derived therefrom 

typically only has between 20-50 data points. Furthermore, only a subset of these data points 

strongly bear on the parameter that is usually most desired by researchers, i.e. the 

equilibrium association constant (KA, sometimes termed KD, where KD = 1/KA). Indeed, this 

relative paucity of information on KA is one source of the recommendation that the unitless 

Wiseman c value (c = KA·M, where M is the molar concentration of reactant in the sample 

cell) be set to a value of above 40 [1,30]; this action ensures that the data are sufficiently 

informative to arrive at an accurate estimation of KA by fitting the data using least-squares 

methods.

An additional challenge for the analysis of multisite data is the availability of both 

microscopic and macroscopic (or “stepwise” [20]) binding models. To the author's 

knowledge, in popular ITC data-analysis software [19,31], only macroscopic analytic 

models are available for molecules having three or more binding sites. The distinction 

between macroscopic and microscopic multisite models may seem subtle, but it is important. 

In macroscopic/stepwise models, the sites are distinguished by the order in which they are 
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occupied. Thus, if A represents a receptor with more than one binding site for a ligand B, the 

association constant KA(1) characterizes the binding of B to empty A, KA(2) describes the 

binding of B to the AB complex, etc. In a microscopic model, the sites are treated 

independently; thus B binding to a distinct site I on A would be characterized by , B 

binding to site II on A would be described by , and this constant is insensitive to whether 

site I is occupied by B or not. Both types of models are valid and have apt uses. For 

example, a trimeric peptide with three identical sites for an antibody [29] is an excellent 

example of a system that is best analyzed with a macroscopic model; the binding sites are 

identical, so building distinctions between into the model is artificial. However, one could 

imagine a three-domain protein with three unique binding sites for the same ligand. Such a 

system would best be analyzed using a microscopic model because the sites will very likely 

have distinct thermodynamic characteristics that the researcher will wish to determine. 

Although it is possible to interconvert microscopic and macroscopic association constants 

and enthalpies, these conversions are not straightforward, especially for the casual consumer 

of ITC data. Therefore, there is an impetus for the development of multisite microscopic 

binding models.

Given the analytic obstacles described above, a question naturally arises: does the limited 

information content in ITC data sets support the refinement of the several parameters needed 

to describe the microscopic thermodynamics of multiple-site binding systems? As a first 

effort in answering this question, a series of isotherms from an experimental system wherein 

a single protein has two independent binding sites for a partner was examined. In this 

system, the association constants and association enthalpies for the two binding sites were 

very different, resulting in feature-rich isotherms. Models and statistical tools available in 

the freeware analysis software SEDPHAT [19] were used to estimate fitting parameters and 

explore their errors. These analyses showed that, while the desired parameters may usually 

be reliably obtained from such data, some conditions may be encountered that limit their 

usefulness. Next, ITC data were simulated under a variety of conditions for two- and three-

site microscopic binding models. Statistical analyses of these simulated data, coupled with 

the results from the real two-site data, suggest some general principles and caveats for the 

analysis of multi-site binding in ITC.

2. Methods

2.1 Protein preparation

Iron-free human lactoferrin (hLF) and Treponema pallidum Tp34 protein were prepared as 

previously described, as were mutants of Tp34 [26,32]. The proteins were dialyzed in the 

same vessel against ITC buffer, comprising 20 mM sodium phosphate pH 7.5, 100 mM 

NaCl, and 2 mM β-octylglucopyranoside. Proteins were stored at 4° C until needed for 

experimentation. The experimentally derived extinction coefficients [26] for the two 

proteins were used in conjunction with spectrophotometry to establish their respective 

concentrations.
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2.2 Isothermal titration calorimetry

Titrations were carried out in a VP-ITC calorimeter (Malvern Instruments, Malvern, UK). A 

typical titration consisted of 32 8-μL injections of wild-type or mutant Tp34 (408 – 455 μM) 

into a stirred reaction cell of about 1.4 mL containing hLF (18.0 – 18.5 μM). The reference 

power was 10 μcal/s, and the stirring rate was 307 rpm. All titrations were performed in 

triplicate with identical concentrations and injection schedules.

2.3 Analytical ultracentrifugation

Before preparing the samples, they were dialyzed against ITC buffer (Section 2.1). To 

confirm the stoichiometry of the association between hLF and the H155A variant of Tp34 

(H155A) [33,34], hLF alone (1.6 μM), H155A alone (16 μM), and a mixture of 16 μM 

H155A and 1.6 μM hLF were prepared. All preparations were incubated overnight at 4°C 

prior to the experiment. The experiments were carried out in a ProteomeLab XL-I analytical 

ultracentrifuge (Beckman-Coulter). The protein solutions (390 μL) were individually 

introduced into the sample chambers of two-sector, charcoal-filled Epon centerpieces that 

had been sandwiched between sapphire windows and placed in aluminum housings. An 

identical volume of ITC buffer was placed in the reference sectors, and the housings were 

fitted into an An50Ti rotor. The samples and rotor were then incubated in the instrument at 

the experimental temperature (20° C) for two hours before centrifugation at 50,000 rpm was 

commenced. The concentration profiles were monitored using absorbance optics tuned to 

280 nm and interference optics. Centrifugation continued until all sedimenting species were 

apparently proximal to the centrifugal side of the sample sector.

3. Computation

3.1 Integration of thermograms

For empirically obtained ITC data, NITPIC version 1.1.0 [35,36] was used to integrate the 

thermograms. The data were serially integrated and placed (by NITPIC at the request of the 

user) into a single SEDPHAT configuration file for global analysis.

3.2 ITC data analysis

3.2.1 Parameter estimation for the hLF/Tp34 interaction—The integrated ITC data 

were analyzed using SEDPHAT version 12.01. The “A + B + B ↔ B + AB ↔ BA + B ↔ 

ABB with two non-symmetric sites, microscop K” model was used (A was defined as hLF 

and B was defined as Tp34 or one of its mutants). All three data sets for a respective hLF/

Tp34 pair were imported into SEDPHAT and analyzed globally [19]. The microscopic 

association constants for the formation of the AB and BA complexes (the two binding sites 

on A are referred to as Site I and Site II, respectively, in the text; the equilibrium association 

constants are  and , respectively) and heats of association for the formation of those 

complexes (ΔHI and ΔHII, respectively) were derived from the data. The refined parameters 

were , ΔHI, , (ΔHII/ΔHI) and fA, where the latter signifies the 

fraction of molecule A that is incompetent to bind to molecule B. No cooperativity was 

assumed. Also, a baseline heat was refined for each of the three data sets included in the 

global analysis (i.e. subtractions of control titrations of Tp34 into buffer were not performed 
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or subtracted). Because NITPIC provides error estimates for all integrated data points, the 

SEDPHAT option to use these as weights in the fitting sessions was activated. Switching 

between the Simplex and Marquardt-Levenberg optimization routines was necessary to 

achieve the convergence of the parameter set. From this converged set of parameters, the 

best-fit reduced chi-squared, , was calculated by the program:

(Eq. 1)

where Ntot is the total number of data points over all experiments, we is the weight given to 

experiment e, Ne is the number of data points in experiment e,  is data point f in 

experiment e,  is the corresponding fitted point for point f in experiment e, and  is the 

error in data acquisition for data point f in experiment e. In the case of ITC data,  is the 

error estimation of the integrated heats provided by NITPIC. NITPIC provides the we terms 

based on the estimated noise in the integrated heats.

3.2.2 Error Intervals—To obtain 68.3% error intervals for a parameter, a strategy outlined 

by Bevington & Robinson [37] and Johnson [38] and implemented in SEDPHAT was used. 

The 68.3% error level was preferred in this study because it is similar to the “1-σ level” that 

is often quoted for parameter errors in biologically oriented reports. Briefly,  (Section 

3.2.1) was obtained and used to calculate , the critical chi-squared:

(Eq. 2)

where ν1 (the first degree of freedom) is the number of optimized parameters, ν2 (the second 

degree of freedom) is the number of data points minus the number of parameters, and the F 

factor is the upper quantile of the Fisher F distribution with the level of significance, first 

degree of freedom, and second degree of freedom as indicated in the parentheses [38]. When 

prompted after a fitting session, SEDPHAT automatically and systematically varies the 

value of the parameter of interest (Π). Π is set and held at a non-optimal value (e.g., a small 

decrement lower than the original), and the other fitted parameters are allowed to refine to 

new optima. This process is iterated until the test chi-squared  that results from these 

new fitting sessions exceeds , at which point the lower end of the 68.3% error interval has 

been reached and is recorded as ΠL. The parameter is then returned to its optimum and 

varied in increments until  is again reached; ΠU is recorded. Therefore (ΠL, ΠU) is the 

rigorously determined 68.3% error interval for Π. Thus, the error surface around the best 

solution is systematically sampled and evaluated. This one-dimensional view of the surface 

is called an “error surface projection” [35,39]. No special computations are required of the 

user to utilize this strategy; it is fully implemented in this version of SEDPHAT, and it 

usually only takes seconds to report an error interval for globally analyzed ITC data.
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To provide a basis for comparison among the error intervals for different parameters, a 

“normalized parameter span” (EN) is here defined:

(Eq. 3)

where Πb is the optimized (“best”) value of parameter Π. The calculation of such spans has 

been deemed useful in the context of ITC data analysis [40]. It should be noted that, for the 

parameter Kd, SEDPHAT and other fitting approaches (e.g. [41]) refine the log(Kd). This 

approach has numerous advantages, such as strictly prohibiting negative Kd values. 

Examination of log(Kd) instead of Kd would result in much smaller values for EN; however, 

ultimately, the experimenter will desire to know how well Kd is determined. Therefore, the 

convention of determining EN for Kd as in Eq. 3 has been adopted in this paper.

3.3 AUC Multisignal SV analysis

The multisignal SV analytic strategy [33,34] was used to examine the stoichiometry of 

cosedimenting H155A and hLF. The analysis proceeded as outlined elsewhere [33]. In brief, 

the method usually requires three SV experiments monitored using at least 2 signals: (1) 

component A (hLF in this case) alone, (2) component B (H155A) alone, and (3) a mixture of 

the two. In the third experiment, one of the proteins (usually the smaller one; H155A in this 

case) should be included at a large molar excess over the other. This expedient forces all of 

the minority component into complexes by mass action, a prerequisite for the analysis. For 

experiment 1, the extinction information for components A determined by global analysis of 

the two signals; a known signal increment for one of the signals is inputted, and the 

increment for the other signal is refined. This procedure is repeated for component B 

(experiment 2). After these analyses, the Dnorm, which is a measure of spectral 

distinguishability [34], can be rigorously calculated. In this case Dnorm was 0.01, just above 

the nominal level of 0.065 [34]. The refined extinction information was input into a global 

analysis of a mixture of the two components, yielding component ck(s) distributions. The 

global analysis monitored sedimentation using two signals: absorbance at 280 nm and laser 

interferometry. Although the analysis converged on a good result as judged by the r.m.s.d.'s 

of the fits and the lack of systematicity in the residuals (not shown), integration of the ck(s) 

distributions, which should have yielded the known input concentrations of the components, 

instead revealed unacceptably high (ca. 10%) differences from the known input values, 

indicating a mass-defect error [34]. A mass-conservation constraint [42] was therefore 

introduced into the analysis, allowing at a maximum a 5% mass defect in either of the 

components.

Model testing in this experiment was performed as suggested before [33,43]. In these cases, 

a different formula than Eq. 2 was used to determine  :

(Eq. 4)

with
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(Eq. 5)

and

(Eq. 6)

where N tot is the total number of data points, and p is the total number of refined 

parameters. The confidence level of  can be varied by changing the probability value in 

the Fisher term. For example, if the desired confidence was 90%, the corresponding value in 

the Fisher term would be changed to 0.1. The different equations used to determine  (i.e. 

Eqs. 2 & 4) reflect differing goals; Eq. 2 is appropriate for exploring the error surface [38], 

but Eq. 4 has been deemed appropriate for discriminating the difference between models 

[43].

3.4 Simulation

3.4.1 ITC data simulation—Where possible, SEDPHAT's experimental simulation 

functions were used to generate simulated ITC data. These functions are described 

elsewhere in this issue [44]. All ITC data sets derived from SEDPHAT were generated in 

triplicate. The replicates had unique sets of random noise, but had the same concentrations 

and injection schedules. For multiple-concentration experiments (Section 4.1.6), the noise 

was varied according to the concentration of material the cell. Experience has shown that 

isotherm noise grows larger as the concentration of the material in the cell decreases. To 

mimic this situation, the isotherm describing the highest cell-content concentration (ch) was 

assigned a noise level (δh) of 0.1 kcal/mol, and the lower concentrations (cm and cl, 

respectively) were assigned noise at levels that scaled according to:

(Eq. 7)

where n stands in for m or l as needed. The three cell-content concentrations simulated in 

this study were 16 μM, 6 μM, and 1 μM.

SEDPHAT, nor any other software to the author's knowledge, however, does not have a 

model that defines the microscopic association constants for a molecule A containing three 

unique binding sites for a partner B. Therefore, an algorithm was written in Python v. 2.7.3 

to obtain the concentrations of all possible components under a given pair of total 

concentrations of A (Atot) and B (Btot) and known microscopic association constants. 

Because each of the three binding sites on A is distinct, a nomenclature convention was 

adopted to distinguish them. Trivially, free A and free B were denoted as “A” and “B”, 

respectively. Each site on A was assigned a corresponding roman numeral (i.e. I, II, and III). 

Thus, the AB complex whose B component binds at site I on A was defined as ABI, etc. 

There are therefore nine possible components of this system: A, B, ABI, ABII, ABIII, 

ABIBII, ABIBIII, ABIIBIII, and ABIBIIBIII. Because dissociation constants were found to be 

more numerically stable, they were used in the calculations:
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(Eq. 8)

(Eq. 9)

and

(Eq. 10)

where the italicized names of the complexes stand for their respective molar concentrations. 

The algorithm takes a numerical approach to finding the concentrations; it frames the 

problem of finding the nine concentrations as a least squares problem. The input to the 

function that is minimized is the set of concentration unknowns, and the output is the 

calculated dissociation constants. The minimization targets are the dissociation constants, 

and beginning guesses of the concentrations must be supplied. Appropriate concentration 

constraints are applied within the algorithm. This method works well for most concentration 

domains. However, in concentration ranges featuring significant depletion of one or more of 

the complexes, it becomes unstable, i.e. it converges to incorrectly low concentrations of the 

free constituents (A and B) and is extremely susceptible to small changes in the beginning 

guesses. To counter this problem, an evolutionary algorithm was employed. A set of 54 

guesses is generated; four are known to produce good solutions in many cases, and the other 

fifty are randomly seeded within possible concentration space. The algorithm evaluates 

results given the guesses and scores them. The scores are derived from the KD residuals 

(termed “R”), which are based on the knowledge that, for the “global” equilibria expressed 

in Eqs. 8-10, there are sub-equilibria that must be fulfilled:

(Eq. 11)

(Eq. 12)

(Eq. 13)

where the lowercase letters represent the values of the respective component concentrations 

returned by the algorithm. One expects the R's to be vanishingly small in a correct solution; 

the success threshold was set such that all three R's should be less than 10−5 nM. This value 

was arrived at empirically; it tended to provide good, quick results while maintaining an 

acceptable level of accuracy. If the success condition is met, the algorithm exits and reports 

the results. If not, then the score (the total score S is the sum of the three R values) 

associated with the respective set of starting guesses are recorded. If no successful result was 
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found after examining all 54 initial guess, the scores are rank-ordered, and the ten best are 

allowed to spawn five new guesses that are related to the parent guesses but feature small, 

random perturbations. One of the five guesses is “mutated” by circularly permuting the new 

guesses. This new generation is then re-evaluated as above. A maximum of 50 generations is 

allowed; if no solution is found, the algorithm returns spurious values. Because the cases 

shown below were chosen for well-behaved concentration domains, the correct solution is 

usually found in the first generation, and only rarely takes more than 10 generations to find. 

Future efforts will focus on improving the performance of the algorithm.

Once the concentrations of all components have been derived for a titration given a set of 

microscopic dissociation constants, the isotherm was generated. To accomplish this, the total 

heat of solution after a given injection s is:

(Eq. 14)

where V0 is the volume of the calorimeter's sample cell, and, when all indices are 

considered, the possible complex ABjB0 is meant to indicate the singly occupied ABj 

complex. Thus the heat change measured for this injection was

(Eq. 15)

Because the data were simulated as if generated in a VP-ITC calorimeter, appropriate 

concentration corrections for finite cell volume and displaced volume were applied as 

described elsewhere [19,31]. Finally, ITC data are traditionally normalized by the molar 

amount of injectant, and thus the ordinate of a standard ITC isotherm is termed q(s) = 

ΔQ(s)/z, where z is the molar amount of injectant. All data sets simulated using this method 

had 32 injections of 8 μL each. For single-concentration simulations, molecule A was 

always in the cell, and its concentration was 70 μM. The concentration of molecule B in the 

syringe was always 1.8 mM. Realistic noise was applied to the data by adding random 

samples of a normal distribution scaled by the desired noise level, 0.1 kcal/mol, to the 

generated heats of injection. For multiple-concentration simulations (see Section 4.2), the 

concentration pairs in the cell/syringe were 10/300 μM, 70/1,800 μM, and 190/4,500 μM. 

Noise was scaled according to cell concentration as described for two-site simulations (see 

Eq. 7, this Section).

3.4.2 Analysis and error intervals of simulated two-site data—The global analysis 

of the triplicate SEDPHAT-generated two-site ITC data was performed as in Section 3.2.1, 

but all data points were given an equal weight in the fitting sessions. The procedure to obtain 

error intervals from these data was as described in Section 3.2.2.

3.4.4 Fitting the three-site simulated data—After generating noisy data with a given 

set of parameters, the data were fitted by using a Marquardt-Levenberg least-squares 

algorithm to optimize the parameters KI, KII, KIII, ΔHI, ΔHII, and ΔHIII. All data points were 

weighted uniformly. The starting values of the parameters were always the simulated ones. 

The algorithm described in Section 3.4.1 was used by the Marquardt-Levenberg method to 
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generate test isotherms with the test parameters to compare against the simulated data. This 

method always converged on an isotherm having a smaller rmsd than the starting isotherm 

(not shown).

3.4.5 Error intervals from the three-site simulated data—Error intervals for the 

parameters estimated from the optimized parameters obtained in Section 3.4.4 were 

calculated using a manual procedure similar to that outlined in Section 3.2.2. However, 

instead of  , the sum of squared residuals (SSR) was used, where, given n injections,

(Eq. 16)

with the subscripts “o” and “f” representing the observed (simulated) and fitted data points, 

respectively. Thus the SSR for best-fit isotherm was termed SSRb, and the critical value for 

SSR was SSRc. The factor used to determine SSRc from SSRb is the quantity in brackets on 

the right-hand side of Eq. 1. The parameter of interest was fixed at a non-optimal value 

while all other parameters were allowed to refine. If the resulting test sum of squared 

residuals (SSRt) exceeded SSRc, then the limit was said to have been reached. If not, iterative 

parametric exploration was continued until SSRt was greater than SSRc.

3.5 Figure generation

Structure illustrations were generated in PyMol version 1.5.0.5 (Shrödinger LLC). ITC and 

SV illustrations were made using GUSSI version 1.0.8e (http://biophysics.swmed.edu/MBR/

software.html).

4. Results

4.1 Two-site binding models

4.1.1 Biphasic wild-type Tp34:hLF data—Both calorimetric [26] and hydrodynamic 

means [26,32,33] have demonstrated that the Treponema pallidum protein Tp34 interacts 

with the human mucosal iron-sequestering protein hLF in a 2:1 ratio. In determining the 

proper model to employ in the analyses of Tp34/hLF data, it is instructive to examine the 

respective crystal structures of the proteins (a co-crystal structure of the proteins has not 

been determined). Two similar but non-identical metal-binding lobes comprise the 76-kDa 

hLF protein [45]; each lobe binds to a single iron ion and has a mixed α/β structure 

resembling a bacterial periplasmic binding protein (Fig. 1A). The fold of Tp34 (Fig. 1B; its 

molar mass is ca. 20 kDa), which is far smaller than hLF, is dominated by an eight-stranded 

β-sandwich that is similar to the classic Ig-fold [26]. Both hLF and Tp34 are monomeric in 

solution in the absence of metal ions, but the presence of divalent cations of the transition 

metals induces the dimerization of Tp34 [26,32]. Because the current studies were 

performed in the absence of any added metal ions, it was assumed that only the monomeric 

forms of the proteins were present. Thus, the existence of two non-identical lobes on hLF 

implies that a binding model with two physically unique (or, in the parlance of SEDPHAT, 

“asymmetric”) binding sites for Tp34, with each having its own microscopic association 

constant, is the most appropriate choice. For the discussion below, the two binding sites are 
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termed “Site I” and “Site II”, with all estimated parameters bearing the respective Roman 

numeral.

As shown in Figs. 2-4, the isotherms resulting from titrating Tp34 into hLF exhibit a 

visually obvious biphasic structure. The initial integrated heats of injection show a trend 

toward increasingly negative enthalpy, while later data trend positively until saturation is 

reached. This biphasic appearance is consistent with earlier calorimetric work with this 

system indicating two-site binding [26]. The asymmetric, two-binding-site model was 

globally applied to these isotherms (data were acquired in triplicate; see Section 2.2) with 

excellent results. The model clearly accounts for the biphasic structure of the data (Fig. 2; 

Table 1). Site I features ca. sevenfold tighter binding than Site II, and the two sites have very 

different enthalpies of binding. The refinement of a single, global parameter revealed that 

about 2.5% of the hLF was incompetent to bind to Tp34.

Having established that the model can describe the data well, the next question to be 

addressed is: how well do the data specify the estimated parameters? In other words, what 

are the error bars? The method outlined in Section 3.2.2 was used to determine 68.3% 

confidence intervals for four of the global parameters: , ΔH, , and 

ΔHII / ΔHI. The derived KA values were converted to KD, and EN (Section 3.2.2) values 

were obtained from them, as they are more intuitive to interpret. They are shown in Table 1. 

 was reasonably well specified, with an error interval of (70, 150) nM (EN = 0.80). The 

ΔHI error interval was similar in its relative magnitude: ((2.2, 4.4) kcal/mol, EN = 0.73). 

Although the EN is comparable for these two parameters, ΔH is usually better defined in ITC 

data. For comparison, the interval for Tp34 H70A binding to hLF (an interaction that 

exhibits only one binding site but similar magnitudes of integrated heats) yields an EN of 

0.13 [36]. In retrospect, the lack of precision could have been guessed, given that the heat of 

binding at Site II obscured the heat of association at Site I. The interval for  is well 

specified by the data ((610, 770) nM; EN = 0.23), and ΔHII has a similar interval to that of 

ΔHI, but an ΔN of 0.24.

4.1.2 Biphasic data from the Tp34 mutant E72A binding to hLF—From the crystal 

structures of Tp34, its dimerization interface is known [26,32]. The residues H70, E72, 

M117, H124, and H155 all participate in a symmetry-related pair of metal-binding sites at 

this interface (Fig. 1C). Although no metal ion was included in the current ITC assays, it 

was of interest to study if mutations to these residues affected the hLF/Tp34 interaction. The 

convention is here adopted of referring to the mutant Tp34 by its amino-acid mutation 

designation, e.g. the Tp34 protein bearing a mutation of histidine 155 to alanine is 

designated “H155A”. “WT” is hereafter used to refer to the wild-type Tp34 protein.

The first mutant studied was E72A. Tp34 bearing this mutation had an impaired ability to 

dimerize in the presence of divalent transition metal ions [32]. Clearly, the mutation of E72 

does not eliminate the binding of Tp34 to hLF: titrating the mutant protein into hLF resulted 

in the characteristic biphasic thermograms (Fig. 3). Again, the asymmetric, two-site binding 

model describes the data well (Fig. 3, Table 1). However, the discriminatory power of the 

data appears to be diminished, inasmuch as the EN values for all refined parameters were 
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higher (Table 1). This degradation of discrimination occurs despite the fact that the  for 

the fit to the E72A data is better than that for the WT data (7.7 vs. 11.5). Therefore, even 

though the appearances of the E72A data sets are similar to those obtained from WT, they 

are inherently less informative.

4.1.3 Biphasic H155A:hLF data—The final mutation of Tp34 considered in this study is 

H155A. H155 occupies a unique position in the metal-coordinating sites of a Tp34 dimer 

(Fig. 1C). If the two monomers in the dimer are designated “T” and “T′” (Fig. 1B), then at a 

given metal-binding site, all of the metal-coordinating residues are supplied by T, except for 

H155A, which is provided by T′ [26]. Like E72A, H155A has a severely impaired ability to 

dimerize in the presence of metal ions [32].

Similar to WT and E72A, the titration of H155A into hLF provides a robust, biphasic heat 

signal (Fig. 4A). Close scrutiny of the isotherms’ shapes demonstrates that the second phase 

is marked by an abrupt return of the integrated heats to their baseline values. The first 

attempts to fit these data to the two-site, asymmetric binding model succeeded, but resulted 

in nonsensical parameters for ΔHI and ΔHII (199 and -203 kcal/mol). The error limits for 

most fitted parameters could not be rationally determined (Table 1). For example, the error-

surface projection for ΔHI was essentially flat except near to a value of 0, where it 

apparently approaches a singularity (Fig. 4B). Thus, for almost any fixed value of ΔHI, a set 

of parameters can be obtained that allow a fit of the data having a similar  to that of the 

supposedly best fit. It was therefore clear that the ΔH values are not uniquely specified in 

these latter data sets, despite their evident biphasic nature. A macroscopic two-site model 

was also applied to these data to determine if they could be analyzed rationally. However, 

similar pathologies in determining parameters and error estimates were observed (not 

shown).

To counter the difficulty with the ill-defined values of ΔH, constraints were applied within 

SEDPHAT. Specifically, ΔHI was not allowed to vary outside the range of 0.0 to +10.0 kcal/

mol. The lower limit was designed to allow the program to avoid the singularity, while the 

upper limit seemed reasonable inasmuch as it restricts ΔHI from increasing more than 3.3-

fold from the WT value (Table 1). Because of the constraints, an error interval for ΔHI was 

not determined. Because ΔHII is determined as the ratio (ΔHII / ΔHI), the former is 

constrained defacto, and therefore its error interval was also not determined.

With the constraint in place, error intervals for the refined KA values could be determined 

(Table 1).  was not as well specified as . A comparable EN 

value for  was obtained even without the constraint in place (Table 1).

What information can therefore be gleaned from the H155A data? The results demonstrate 

that, if the constraint is trusted, the two KA values have been determined, albeit imprecisely. 

However, essentially no information is available on the ΔHI values, except for the 

qualitative conclusion that they must be nearly equal in magnitude and opposite in sign.
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4.1.4 Can additional titrations save the H155A data?—The nonexistent resolution 

for ΔH in the H155A data sets raises the question of whether anything regarding the ITC 

experimental configuration could have been altered to avoid or ameliorate the difficulties. 

For example, it is possible that reversing the titration configuration, i.e. titrating hLF into 

H155A, could have provided more information on ΔHI and ΔHII in a global analysis with 

the already extant data.

To address this issue, ITC data were simulated using a utility in SEDPHAT [44]. The data 

were generated using parameters identical to those refined for H155A, and each data set was 

given a similar noise level. For these three data sets, the simulations were performed as if 

93-103 μM of hLF were titrated into approximately 15 μM H155A. The resulting isotherms 

also display a distinct, biphasic appearance (not shown), but the region surrounding the 

second inflection point is less steep than in the empirically obtained titrations. However, 

despite the inclusion of 93 more data points and a roughly orthogonal view of the heat 

landscape of the interaction, the global analysis of the simulated data sets together with the 

empirical data sets offered no additional discrimination in the ΔH values. The phenomenon 

of parameters adjusting to allow an acceptable fit for almost any ΔHI value persisted.

Noting that the c value for the first binding site (i.e. ) is larger than 

recommended (> 40) [30], another promising approach to a deterministic refinement of the 

binding parameters might be to lower the concentration of hLF in the sample cell. Therefore, 

using the parameters of the constrained fit of H155A titrated into hLF, three data sets with c 

= 70 and with random, realistic noise were simulated and added to the global analysis of the 

high-c H155A ITC data. This strategy has the added benefit of exploring more than one c 

value in a global analysis, which has been shown to be beneficial [44,46]. Although this 

resulted in improvements in the EN values for the association constants (Table 1), the 

addition of the new, lower-c data could not resolve the ambiguity in the ΔH parameters. 

Notably, the improvement in the EN's appears to be entirely from adding 96 new data points, 

not from the addition of inherently more informative data (not shown). Evaluating the 

lower-c data alone does not ameliorate the poor behavior of the fitted parameters.

4.1.5 Hydrodynamic confirmation of the 2:1 binding model for H155A—Given 

the difficulties fitting the H155A data, a question arose: is the model of 2 H155A molecules 

binding to 1 hLF correct? Other models are conceptually possible. For example, a third, low-

enthalpy binding site could be present. Alternatively, H155A binding could be coupled with 

the dimerization or multimerization of hLF.

Hydrodynamic (i.e. AUC) experiments were conducted to answer this question. Specifically, 

the correctness of the model was addressed using mass-conservation multisignal 

sedimentation velocity (MC-MSSV) [42]. This method can reveal the stoichiometry of a 

cosedimenting complex. Amidst a ten-fold molar excess of H155A, hLF was sedimented, 

and a H155A:hLF complex peak was observed at an experimental s-value of 6.2 S in a c(s) 

distribution (Fig. 5). Unconstrained spectral decomposition of this peak demonstrated that 

both H155A and hLF were co-sedimenting at a molar ratio of 1.84:1. This result, coupled 

with the calculated molar mass of this species (128,000 Da) and the theoretical molar mass 

of a 2:1 complex of H155A and hLF (117,000 Da), suggested that the most probable 
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stoichiometry of this complex is 2:1. Because of the spectral-discrimination difficulties 

encountered with these data (Section 3.3), a strategy was adopted to test this hypothesis. The 

best reduced χ2,  (0.283582), was noted, and then two critical χ2 values were calculated 

(Section 3.3). They are called  and , as they represent the reduced values that would 

define the 68% and 90% error intervals, respectively [33,43]. Having calculated these values 

(0.284353 and 0.285695, respectively), constraints on the molar ratio of the cosedimenting 

species at 6.2 S were put in place, and the resulting “test” χ2, , was monitored. With a 2:1 

H155A to hLF ratio enforced,  did not rise above . The model with this constraint in 

place was therefore statistically indistinguishable from the unconstrained model; i.e. the 2:1 

constraint is entirely consistent with the SV data. However, when a 1:1 or 3:1 molar-ratio 

constraint was applied, , rose above  (0.2881295 and 0.2859834, respectively), 

indicating that these latter models may be safely discarded. It was thus concluded that the 

2:1 model is likely to be correct, and the inability to definitively parameterize the ITC data 

did not stem from an inappropriate model.

4.1.6 Simulated two-site uniphasic data—The mixed performance of the two-site 

models described in Sections 4.1.1 – 4.1.5, prompts the question of whether uniphasic ITC 

data could adequately guide the estimation of parameters using this microscopic-site model. 

Therefore, six uniphasic data sets were simulated using functions available in SEDPHAT 

[44]. All titrations were simulated as if they were acquired from triplicate (same 

concentrations, same injection schedules, different random noise) experiments in a VP-ITC 

calorimeter. The cell concentrations were between 15 and 18 μM. The same binding model 

(Section 3.2.1) was used as for the Tp34/hLF interaction. A realistic case was simulated in 

which the first binding site on molecule A  had a 

four-fold stronger association than the second . 

The enthalpy of the site I was -10.0 kcal/mol, and the poorer binding at site II was entirely 

attributed to a less favorable enthalpy (ΔHII = -9.2 kcal/mol). As shown in Fig. 6A, these 

simulated data only have a single visually discernible transition at a molar ratio of 2:1 

(injectant:cell contents). No heats of dilution were simulated or refined, and the same was 

true of incompetent fractions.

The performance of this model in estimating fit parameters was variable. On one hand, the 

fitting sessions arrived at reasonable estimates that were close to the simulated values (Table 

2). However, in three out of the six trials (#1-#3), only one-sided error intervals for three out 

of the four refined parameters could be established. These results contrast sharply with those 

from the final three trials, wherein the parameters ΔHI, , and ΔHII are well-defined. 

Interestingly, the EN values of  increased dramatically for these better-behaved trials 

(Table 2). Scrutiny of the parameters underlying the simulations reveals no strong 

correlations that explain these behaviors. The error surfaces for the parameter ΔHI are 

similarly shaped and asymmetric (Fig. 6B). Those with well-defined error 68.3% error 

intervals sometimes do not have boundaries that would circumscribe a 95% interval (Fig. 
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6B, blue trace). It appears that success in describing the error intervals in this case is 

dependent on favorable features in the experimental noise.

Another experimental strategy for such a system is, instead of globally analyzing exact 

replicates, to attempt the global analysis of three data sets obtained at three different cell 

concentrations [44,46]. Therefore, five sets of triplicate data sets were generated; within 

each replicate, three different concentrations of protein in the cell were allowed: 

approximately 1, 6, and 16 μM. The same general pattern was observed as in the uniform-

concentration trials, in that some trials performed well, while others did not. In sum, rational 

limits on the ΔH parameters could not be found for 2 out of the 6 trials (Supplemental Table 

S1).

4.2 Simulated three-site ITC data

To examine more challenging systems, data from an asymmetric, three-site system were 

simulated (see Section 3.4.1). First, an isotherm that had easily discernible features in it was 

simulated. This test case comprised a molecule “A” that had three differing binding sites for 

the second molecule, “B”. Each binding site on A had a unique microscopic equilibrium 

dissociation constant (dissociation constants were more numerically stable than association 

constants; see Section 3.4.1) and a distinct ΔH (Table 3). With invariant B, these widely 

diverging parameters might seem unrealistic; however, there are instances in the literature of 

such strongly featured isotherms that have been fitted with three-site binding models 

[27,28]. Given the triphasic appearance of the isotherm, it was expected that fitting to this 

isotherm would yield well-defined parameter estimates. Realistic (0.1 kcal/mol) noise was 

included in this isotherm, and the isotherm was simulated as if it occurred in a VP-ITC 

calorimeter, with 32 8-μL injections of 1.8 mM B into 70 μM A in a 1.4 mL cell. On the 

other hand, some aspects of this simulation are not realistic; no incompetent fraction (nor 

“N” value) was simulated, and no attempt to refine this value was made. Also, no baseline 

offsets to compensate for heats of dilution were included or optimized. The simulation 

therefore represents a best-case scenario for these data, in that up to twelve parameters could 

have been refined, but only six (three KD's and three ΔH's) were applied.

As expected, the fitting of the parameters to this isotherm was well behaved. That is, the 

optimization session converged on parameters that resembled the input parameters (Table 3, 

Fig. 7). The next question to address, then, is how well to the data specify these parameters? 

The error intervals and EN values for this fit are acceptable, despite the fact that only 32 data 

points are available to drive the estimation of the six parameters. The quantity  had the 

most variation in the error analysis, but all other parameters had EN values between 0.40 and 

0.58.

These encouraging results prompted a new simulation, one that should reflect a physically 

realistic but more computationally challenging situation. In this scenario, using the same 

three-site model with the same concentrations and injection schedule, the first binding site 

has a higher affinity than the other two, and the enthalpies are all negative and differ by a 

maximum of 1.5 kcal/mol (Table 4). The appearance of the isotherm is shown in Fig. 8A. It 

clearly has only one inflection point, and the singular feature that would lead an 
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experimenter to suspect three binding sites is that saturation occurs near to a molar ratio of 

3. This simulation is therefore the three-site equivalent of the uniphasic isotherms presented 

above (Section 4.1.6).

In this case, the optimization session did not yield realistic parameter estimates for the 

dissociation constants, despite the fact that the converged solution had a smaller r.m.s.d. 

than that of the isotherm yielded by the starting (exactly correct) guesses (see Trial #0 in 

Table 4). In particular, the dissociation constant of the first binding site  refined to an 

estimate that was lower than the simulated value by a divisor of approximately 200. A close 

examination of the fit reveals the reason for this behavior. Although the data were simulated 

with random noise, there is a brief upward trend that occurs near to a molar ratio of 1. The 

fitting algorithm optimized the value of  to fit this trait of the noise (Fig. 8B). In other 

isotherms using these parameters and random noise, the KD values in general were not well-

specified by the data (not shown). As a result, no error intervals were attempted for this 

scenario.

Given the difficulties noted above, it was suspected that global analysis of multiple data sets 

with random noise might allow the parameter estimates to converge deterministically. The 

rationale behind this notion was that the fitting algorithm would be less apt to fit noise 

features that, by chance, had an artifactual trend at a critical position in the isotherm. Thus, 

the 32-injection data were simulated in triplicate, with unique, normally distributed noise 

added to each replicate, but using identical concentrations and titration schedules. This 

approach appeared promising, in that the refined estimated parameters gleaned from a global 

fitting session were not as far from the starting ones (see Table 4, Trial #1). Therefore, four 

more triplicate trials were generated and each set of three isotherms was separately fitted. 

Individual global fits to these triplicated data sets estimated KD's that were generally not 

close to the simulated values (Table 4; Fig. 9). It was therefore concluded that the 

information in these data do not warrant allowing all six parameters to refine 

simultaneously.

As with the two-site simulations (Section 4.1.6), the notion that the global analysis of three 

sets of multi-concentration could improve the behavior of the parameter refinement was 

tested. In this case, in-cell protein concentrations of 10, 70, and 190 μM were simulated and 

analyzed as above. The results are shown in Supplemental Table S2. As with the single-

concentration data, the refinement of the parameters was generally ill-behaved.

The inability to rationally estimate parameters from these data suggested that constraints 

must be put in place. In an actual experimental setting, it is most likely that constraints could 

be set by determining the KD values of one or more of the binding sites on A. For example, 

perhaps A comprises three separable domains arranged in tandem; the experimenter could 

genetically separate them and express them individually, determining KD values from 

another method. These KD's could be set as fixed parameters in the global analysis discussed 

above, reducing the number of optimized parameters and perhaps allowing their definitive 

estimation.
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To test this idea, one of the Trials above (#2) was selected for constrained fitting sessions. 

All possible combinations of fixing the KD's at their correct values were attempted. Most 

solutions did not converge on rational sets of parameters (Table 5), i.e. at least one of the 

parameters was far from the simulated value. This was even true in the case wherein all KD's 

were held constant at their known values, i.e. the ΔH values did not closely resemble the 

known, simulated values. The only set of constraints that yielded acceptable parameter 

estimates was that disallowing only the refinement of . However, attempts to calculate 

error intervals for this case did not yield intelligible bounds on the remaining estimated 

parameters (not shown).

As a final attempt to obtain reasonable limits on the parameters for this three-site system, 

another scenario was simulated (Subtrial 7 of Table 5). In this case, it was assumed that 

and  could be modeled as having fixed multiplicative relationships to , which was 

fitted:

(Eq. 17)

Likewise, the following fixed relationships were established between the fitted parameter 

ΔHI and the other ΔH's:

(Eq. 18)

This scenario is similar to the approach that was taken by Gustchina et al. in a recent study 

on a trimeric peptide that can bind three antibody molecules [29]: they globally analyzed 

uniphasic ITC data, along with AUC and fluorescence spectroscopy data, albeit with a 

macroscopic model. In that study, the latter two methods provided most of the information 

regarding the association constants. Also, only one K was refined (the others were assumed 

to be microscopically identical to the first), and the three ΔH's were constrained such that 

only one was refined, with the other two being constrained to be identical to the first. This 

final case described by Eqs. 17 & 18 behaved excellently; EN was 0.1 for , and 0.006 for 

ΔHI (Table 5).

5. Discussion

It has long been established that excellent estimates of the thermodynamic parameters from 

simple 1:1 biomolecular interactions can be obtained by ITC [1,16,47]. The work presented 

herein aimed to explore how well ITC data specify parameters from bimolecular interactions 

featuring more than 1 binding site on one of the components. Cautions regarding the 

overinterpretation of multisite ITC data have been issued before [8,20,27,29,48], but this 

work specifically focuses on microscopic binding models using both real and simulated data. 

While the scope of this report is not comprehensive, the results point to some important 

conclusions for researchers and consumers of ITC data.
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5.1 Two-site binding models

Generally good results were obtained when fitting a two-site model to clearly biphasic, 

empirically obtained ITC data (Figs. 2-4, Table 1). Such data often provide the optimization 

algorithms ample information to arrive at a deterministic and precise estimation of the 

underlying thermodynamic parameters. In the examples shown in Sections 4.1.1 and 4.1.2, 

eight parameters have been fitted to the 93 available data points with good results, in that the 

derived parameters appear to be realistic and well-defined. This observation comports with a 

wealth of other two-site binding data [20,23–26] that show biphasic isotherms and 

apparently well-behaved fits.

However, the results with the H155A Tp34 protein (Figs. 4 & 5, Table 1) conclusively 

demonstrate that a biphasic isotherm does not always specify a unique solution to the 

equilibrium and mass action equations. The ΔH terms could vary to a large degree to 

compensate for many different combinations of parameters without significantly worsening 

the quality of the fit. This defect in these data allowed the estimated ΔH's to assume 

unphysical values when not constrained. Restricting the first enthalpy to be physically 

rational resulted in good fits, but ΔHI always assumed its maximum allowed value. The 

parameters derived from this constrained analysis must therefore be viewed with suspicion; 

they certainly allow only limited conclusions to be drawn about these data. This result was 

unexpected; the data appeared to be similar to that obtained with other hLF/Tp34 titrations 

(Figs. 2 & 3) and other two-site binding systems [23,25,26]. Some aspect of the underlying 

parameters must obscure the true nature of the binding events. Examination of the 

parameters shows that the two KA's are similar and the two ΔH's are of similar magnitudes 

but opposite signs. This combination of thermodynamic parameters proved to be 

pathologically ill-behaved when attempting to fit the data to a model. These difficulties 

might indicate that the model is incorrect; however, structural knowledge (Fig. 1) and MC-

MSSV data (Fig. 5) confirmed the propriety of the two-site model with microscopic 

dissociation constants. Further, the simulations described in Section 4.1.4 suggest that 

varying the experimental conditions would not ameliorate these difficulties. Indeed, 

whatever actual parameters underlie the observed data, they appear to be ill-suited to 

discovery using ITC (Table 1).

Although fitting biphasic ITC data in two-site systems can be daunting, uniphasic ITC data 

present unique challenges when two distinct binding sites are present. In the simulations 

presented in Section 4.1.6 (Fig. 6, Table 2, Table S1), fluctuations in the noise features have 

a strong influence on the ability of the error-surface-projection method to find sensible error 

intervals. This occurred when attempting to refine only four parameters globally against 96 

data points. Real data would have additional parameters (i.e. baselines, incompetent 

fractions) that likely would make fitting the data even more difficult.

5.2 Three-site binding models

The examination of the performance of three-site binding models was accomplished using 

simulated noisy data from a three-site model featuring microscopic dissociation constants 

and ΔH's (Section 3.4.1; Figs. 7-9; Tables 3-5). The general lesson gleaned from efforts to 

fit the simulated data was that three distinct phases of the isotherm allowed the optimization 
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algorithm to arrive at accurate and acceptably precise parameter estimates. This conclusion 

comports with other results showing that triphasic ITC data could be reliably fitted, albeit 

with macroscopic or “sequential” models [27,28]. On the other hand, it is straightforward to 

imagine a three-site binding scenario that would yield monophasic ITC data (Figs. 8 & 9; 

Table 4). Attempts to fit such data can be susceptible to local, random variations in the data 

and generally do not appear to support the unrestrained refinement of six parameters. 

However, the final “Subtrial” using a highly constrained set of parameters (Table 5, Subtrial 

7) revealed that if strict relationships between the dissociation constants and enthalpies can 

be assumed or discovered, a uniphasic isotherm is sufficient to reveal two parameters. This 

conclusion accords with the results of Gustchina et al. [29].

5.3 Monte Carlo methods of error estimation

It has been suggested [8,27] that Monte-Carlo methods be used to estimate error intervals for 

ITC data, and the method has been used extensively for the simulation of ITC data and their 

attendant errors [9,27]. In short, this procedure performs the experiment hundreds or 

thousands of times in silico, adding newly generated random noise around the best-fit line at 

the outset of each iteration. The simulated data are then subjected to the same optimization 

procedure as the experimental data. Statistics are compiled from the fitting results; for 

instance, the 68% error interval for ΔHI would look for the bounds defining the central 68% 

of values obtained for this parameter. This method should provide an excellent estimate of 

the influence of the noise structure on the refined parameter estimates. Such an analysis was 

carried out for H155A:hLF ITC data, but the resulting error intervals were essentially 

symmetric and small (e.g. EN for ΔHI = 0.06). The same procedure was attempted with the 

uniphasic two-site data, Trial #1, with similar results (e.g. EN for ΔHI = 0.006). Thus, the 

Monte-Carlo simulations fail to observe the pathologies in the error surfaces for the 

optimized parameters. Experience has shown this result to be generally true when Monte-

Carlo error-estimation methods are applied to globally analyzed ITC data. Although this has 

not been thoroughly explored, it seems likely that, in the Monte-Carlo method, the least-

squares methods efficiently find very similar solutions from many different constellations of 

simulated random noise. However, this method apparently does not effectively probe the 

parameter correlations that may be present in ITC data, such as those presented herein. Thus, 

the systematic error-surface projection method is preferred for most ITC data, and certainly 

for ITC data in which the underlying model contains more than one binding site.

5.4 Conclusions and best practices

Multisite models can be effectively used for the accurate and precise discernment of 

parameter estimates from multiphasic ITC data. However, the estimates thus derived are 

especially worthy of careful scrutiny. As a best practice, researchers should thoroughly 

examine error surfaces of the estimated parameters to investigate the precision with which 

the parameters have been estimated and to discover any parameter correlations that may be 

present. Even data with easily observed, multiple phases may not describe a unique set of 

parameters, and it is incumbent upon the investigator to unearth these faults, if present, and 

report them. Uniphasic ITC data are not generally well-suited to the refinement of multiple 

thermodynamic parameters; only under substantially constrained conditions can they reveal 

reliable values. Such constraints can be provided by global multimethod analysis [29]. 
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Researchers should be realistic and forthright when reporting the results of fitting binding 

models to unconstrained uniphasic data, perhaps reporting the estimates as limits. Finally, 

when uniphasic data are observed, it may be worthwhile to simulate the system [44] to see if 

there are any unique heat features, perhaps at different concentrations [46], that can be 

exploited to constrain the analysis. This strategy can be especially useful when complex 

equilibria are suspected [44].
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Refer to Web version on PubMed Central for supplementary material.
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• ITC is increasingly used to study complex biomolecular systems

• Biphasic, empirical data often can be used to determine thermodynamic 

parameters

• However, such data can also obscure the underlying parameters

• Uniphasic data present significant difficulties when fitting to multisite models

• Care must be exercised when fitting multisite models to ITC data
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Figure 1. Structural aspects of hLF and Tp34
(A) The crystal structure of hLF. Shown is a ribbons diagram of PDB deposition 1LFG [45]. 

The N-terminal lobe of the protein is colored blue, and the C-terminal lobe is colored red. 

(B) The Tp34 dimer. The proteinaceous asymmetric unit contents of PDB deposition 3PJN 

are shown, along with the two metal ions (gray spheres) commonly found at the dimer 

interface of Tp34. One monomer (T) is colored purple, the other (T′) tan. (C) A close-up 

view of the main metal-ion binding site in wild-type Tp34. In this site, one of the monomers 

(T) provides four amino-acid side chains to ligate the metal ion; the other monomer (T′) 

provides the fifth and final side chain (H155′). The carbon atoms are colored according to 

the origin of their respective monomer as defined in part B. Oxygen atoms are colored red, 

nitrogen atoms are blue, and the sulfur atom is colored yellow. The lone Zn2+ cation is 

colored gray. Black dashed lines indicate inner-sphere contacts between protein atoms and 

the cation.

Brautigam Page 24

Methods. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. ITC data from wild-type Tp34 and hLF
The top panel is the SVD-reconstructed isotherm from NITPIC [35]. The middle panel 

features the data (white circles) with error bars provided by NITPIC. The black line in this 

panel represents the fit with the best parameters from SEDPHAT. The bottom panel has the 

residuals represented as a black line. Here, 455 μM Tp34 was titrated into 18.5 μM hLF.
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Figure 3. ITC data from E72A and hLF
Line shades and symbols are the same as in Fig. 2. In this experiment, 408 μM Tp34 was 

titrated into 18.0 μM hLF.
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Figure 4. ITC data and the error surface of the fit from H155A
(A) ITC data. See Fig. 2 for an explanation of line shades and symbols. (B) One-

dimensional error-surface projection for the H155A ITC data. The  value obtained by 

holding ΔHI at various values (the x-coordinate) is shown on the y-coordinate. The χ2 levels 

defining the 1 σ (68.3% confidence interval) and 2 σ (95% confidence interval) levels are 

shown as a gray or black dashed line, respectively. In this experiment, 445 μM Tp34 was 

titrated into 18.4 μM hLF.
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Figure 5. MC-MSSV results for the H155A:hLF interaction
The ck(s) distributions for H155A and hLF are shown (shades are indicated by the legend). 

Integration of the peak at ~6.2 S results in [H155A] = 2.56 μM and [hLF] = 1.39 μM.
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Figure 6. Simulated uniphasic two-site ITC data and related error-surface projections
(A) Simulated ITC data (circles) and fit thereto (line). Residuals from the fitting session are 

shown as in Fig. 2. (B) One-dimensional error-surface projections. The overall presentation 

is similar to that described in Fig. 4B. Three error-surface projections from the simulated 

trials in Table 2 are shown. The black line and gray 1-σ limit are from Trial #1. The red line 

and pink limit are from Trial #4. The blue line, light blue 1-σ limit and blue (dashed) 2-σ 

limit are from Trial #6.
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Figure 7. Simulated triphasic three-site ITC data and fits
Graphs and symbols are as described in legend to Fig. 6A. See Table 3 for parameters.
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Figure 8. Simulated uniphasic three-site ITC data with starting values and optimized values
(A) Graphs and symbols are as described in the legend to Fig. 6A, except the line represents 

the results of the noiseless simulation, not the set of refined parameters (Table 4, 

“Simulated”). (B) Uniphasic ITC data after fitting. The graphs and symbols are as described 

in part A, except now the line represents the best-fit parameters (Table 4, Trial #0). The inset 

shows an expansion of the same graph near to a molar ratio of 1, where noise features were 

fitted by the optimization algorithm.
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Figure 9. Simulated triplicate uniphasic three-site ITC data
The red circles, blue squares, and black inverted triangles represent data from the three 

respective replicates used in this analysis. The black line represents the isotherm from the 

best globally optimized parameters. The data and the parameters are from Table 4, Trial #2. 

The residual lines in the lower graph are colored according to their respective replicate.
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Table 1

Results of Tp34 and its mutants binding to hLF

Tp34 Protein Parameter Best Estimate 68.3% Error Interval EN

WT log(KA
I ) 6.99 (6.82, 7.15) ND

ΔHI (kcal/mol) 3.0 (2.2, 4.4) 0.73

log(KA
II ∕ KA

I ) −0.83 (−0.98, −0.65) ND

ΔHII/ΔHI −2.8 (−3.5, −2.2) ND

KD
I (nM) 100 (70, 150) 0.80

KD
II(nM) 700 (610, 770) 0.23

ΔHII (kcal/mol) −8.3 (−9.6, −7.6) 0.24

E72A log(KA
I ) 6.5 (6.2, 6.7) ND

ΔHI (kcal/mol) −1.6 (−2.1, −0.3) 1.12

log(KA
II ∕ KA

I ) −1.0 (−1.3, −0.6) ND

ΔHII/ΔHI 4 (3, 22) ND

KD
I (nM) 340 (180, 650) 1.38

KD
II(nM) 3,300 (2,300, 4,100) 0.54

ΔHII (kcal/mol) −6.5 (−7.5, −5.9) 0.25

H155A unconstrained log(KA
I ) 7.20 (6.9, 7.7) ND

ΔHI (kcal/mol) 199 ND ND

log(KA
II ∕ KA

I ) −0.007
(0.4, U)

b ND

ΔHII/ΔHI −1.02 ND ND

KD
I (nM) 60 (20, 140) 2.0

KD
II(nM) 60 (30, U) ND

ΔHII (kcal/mol) 203 ND ND

H155A log(KA
I ) 7.3 (6.9, 7.7) ND

ΔHI (kcal/mol)
10.0

a N/A N/A

log(KA
II ∕ KA

I ) −0.1 (−0.4, −0.1) ND

ΔHII/ΔHI −1.4 N/A ND

KD
I (nM) 50 (20, 120) 2.0
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Tp34 Protein Parameter Best Estimate 68.3% Error Interval EN

KD
II(nM) 70 (40, 90) 0.71

ΔHII (kcal/mol)
−14.0

a N/A N/A

H155A high-c/low-c
c log(KA

I ) 7.2 (7.0, 7.5) ND

ΔHI (kcal/mol) 198 ND ND

log(KA
II ∕ KA

I ) −0.007 (−0.3, 0.3) ND

ΔHII/ΔHI −1.0 ND ND

KD
I (nM) 60 (40, 100) 1.0

KD
II(nM) 60 (40, 80) 0.67

ΔHII (kcal/mol) −202 ND ND

ND—Not determined

N/A—Not applicable

a
values were obtained while placing a constraint on ΔHI

b
A “U” means that the limit could not be found

c
The two c-values were 370 (empirical) and 70 (simulated), based on  of the constrained fit.
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Table 2

Two-site uniphasic simulations and resulting fitted parameters

Parameters Input values Trial #1 Trial #2 Trial #3 Trial #4 Trial #5 Trial #6

log(KA
I ) 7.0 6.9 6.8 6.7 7.3 7.3 7.2

ΔHI (kcal/mol) −10.0
−10.2 (U)

a −10.2 (U) −10.6 (U) −9.7 (0.04) −9.9 (0.06) −9.9 (0.18)

log(KA
II ∕ KA

I ) −0.60206 −0.4 −0.4 −0.2 −0.9 −0.9 −0.8

ΔHII/ΔHI 0.92 0.9 0.9 0.8 0.96 0.93 0.9

KD
I (nM) 100 50 (1.46) 140 (1.47) 180 (1.12) 50 (2.04) 50 (2.16) 60 (1.50)

KD
II(nM) 400 330 (U) 360 (U) 320 (U) 460 (0.22) 420 (0.27) 420 (.48)

ΔHII (kcal/mol) −9.2 −9.0 (U) −9.1 (U) −8.6 (U) −9.4 (0.04) −8.8 (0.06) −9.3 (0.19)

a
numbers in parentheses are the respective EN values; U denotes that the error interval was unbounded
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Table 3

Simulation parameters and fitting results for triphasic data

Parameter Simulated value Refined value

KD
I (nM) 250

230 (0.44)
a

KD
II(nM) 1,000 900 (0.75)

KD
III(nM) 4,000 4,000 (0.42)

ΔHI (kcal/mol) −20 −20 (0.40)

ΔHII (kcal/mol) 20 19 (0.48)

ΔHIII (kcal/mol) −20 −19 (0.58)

a
Numbers in parentheses represent the respective EN value
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Table 4

Input parameters and results of fitting for the uniphasic three-site model

Parameters Simulated Trial #0
a Trial #1 Trial #2 Trial #3 Trial #4 Trial #5

KD
I (nM) 250 1.3 37 130 110 770 230

KD
II(nM) 1,000 510 780 780 1,200 800 420

KD
III(nM) 1,100 1,800 1,500 1,300 1,200 860 1,800

ΔHI (kcal/mol) −10.0 −9.5 −9.6 −9.8 −9.7 −16.9 −10.7

ΔHII (kcal/mol) −9.2 −9.3 −9.2 −9.3 −15.9 −11.1 −8.0

ΔHIII (kcal/mol) −8.5 −8.8 −8.8 −8.6 −2.2 0.4 −9.1

a
this trial had only a single replicate. All others comprised three replicates.
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Table 5

Results of fixing parameters in the uniphasic three-site system

Parameters Subtrial 1 Subtrial 2 Subtrial #3 Subtrial #4 Subtrial #5 Subtrial #6

KD
I (nM) 250

* 130 130
250

* 120
250

*

KD
II(nM) 790

1,000
* 980

1,000
*

1,000
*

1,000
*

KD
III(nM) 1,200 1,100

1,100
* 1,000

1,100
*

1,100
*

ΔHI (kcal/mol) −10.0 −9.8 −9.8 −10.0 −9.7 −10.0

ΔHII (kcal/mol) −9.3 −12.0 −11.2 −1,100 −11.6 −10.8

ΔHIII (kcal/mol) −8.3 −5.9 −6.7 1,100 −6.4 −6.9

*
Value was fixed in the analysis.
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