
immune surveillance and inflammation. However, its 
ability of opsonizing and removing not only pathogens, 
but also necrotic and apoptotic cells, is a phylogenetically 
ancient means of initiating tissue repair. The means and 
mechanisms of complement-mediated tissue repair are 
discussed in this review. There is increasing evidence 
that complement activation contributes to tissue repair 
at several levels. These range from the chemo-attraction 
of stem and progenitor cells to areas of complement 
activation, to increased survival of various cell types 
in the presence of split products of complement, and 
to the production of trophic factors by cells activated 
by the anaphylatoxins C3a and C5a. This repair 
aspect of complement biology has not found sufficient 
appreciation until recently. The following will examine 
this aspect of complement biology with an emphasis on 
the anaphylatoxins C3a and C5a.
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Core tip: This review article provides an overview over 
the scenarios, where complement activation contributes 
to tissue repair and regeneration through its effect on 
stem and progenitor cells, which is an area that needs 
further investigation.
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INTRODUCTION
Complement activation cascade
Complement is an effector system present in blood 
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Abstract
The complement pathway is best known for its role in 
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consisting of about 30 soluble proteins and 15 cellular 
receptors. Although it has been known for over a century 
that complement is a participant in host immunity, it has 
recently become generally realized that complement is 
a contributor to a variety of non-immune functions inclu-
sive of resolution of inflammation, clearance of apoptotic 
cells, angiogenesis, wound healing, stem cell recruitment 
and activation, as well as repair processes[1-6].

There are three routes of complement activation, 
the alternative pathway, the lectin pathway, and the 
classical pathway (Figure 1). All of these converge 
on the specific cleavage of component C3 (Mr: about 
195000) by C3 convertase to yield the split products 
C3a (Mr: about 9000) and C3b (Mr: about 185000). 

The alternative pathway activation is brought about 
by contact with large complex polysaccharides such 
as those found on microbial cell walls. This pathway is 
commenced by a diminished capacity to inactivate C3 

convertase on a carbohydrate surface by the control 
factor H as well as pattern recognition by properdin and 
possibly contact activation by C3[7-11]. Factor B combines 
with initially deposited C3b along with the stabilizer 
properdin to compose this pathway’s C3 convertase, 
which consists of properdin, C3b, and Bb[12].

The lectin pathway is started by special collagen 
containing C-type lectins (collectins), namely mannan 
binding lectin (MBL) and ficolins, which recognize 
carbohydrate patterns typically characterized by high 
mannose content, for example mannan that is a compo-
nent of the coats of a variety of yeast, fungi, and other 
microorganisms[13]. Proteases, referred to as mannose 
binding protein associated serine proteases link to 
fixed MBL to cleave C4 and C2 generating the complex 
enzyme C3 convertase (C4b, C2a)[14].

The classical pathway can be initiated by IgG 
subclasses 1, 2, 3 as well as by IgM. Once tagged by 
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Figure 1  Schematic presentation of the complement pathways with emphasis on outcomes relevant to tissue repair and regeneration. The complement 
system can be activated by three pathways, two of which are part of innate immunity, the alternative and lectin pathways, whereas the classical pathway is normally 
initiated by immunoglobulins. All routes converge on the cleavage by complex enzymes referred to as C3 convertases of component C3 (Mr: about 195000) to C3a 
(Mr: about 8500) and C3b (Mr: about 185000). As a consequence of C3b deposition on C3 convertase, C5 convertase is created that acts similarly producing from 
component C5 (Mr: about 196000) the activation peptide C5a (Mr: about 11000) and C5b (Mr: about 185000). The anaphylatoxins, C3a and C5a, are important for 
elaboration of mechanisms of wound healing and regeneration. These small mediators are recognized by their cognate receptors: C3aR and C5aR/C5L2 that are 
GPCRs found on a diversity of cells inclusive of immune cells, endothelial cells, differentiated repair cells, and stem cells. In addition C3b and its split product iC3b, 
C3d are recognized by receptors inclusive of CR1-4 that assist clearance of microorganisms, cellular debris, immune complexes, and apoptotic cells. The ultimate 
outcome of complement activation is the formation of the MAC that is a transmembrane pore (100 Ǻ) assembly that embeds in target cell membranes. In the absence 
of proximal phospholipid membranes, the terminal components of complement associate into complexes referred to as SC5b-9. These are probable heterogeneous 
and contain multiple copies of vitronectin and clusterin (apolipoprotein J). Because vitronectin in an oligomeric state can present the canonical tripeptide, Arg-Gly-
Asp, to integrins on a variety of restorative cells, such as fibroblasts and keratinocytes, SC5b-9 may have a wound healing function. MAC: Membrane attack complex; 
MSC: Mesenchymal stem cells; HDL: High density lipo-protein; HSC: Hematopoietic stem cells; PMNs: Polymorphonuclear cells.
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immunoglobulins, the collectin, C1q, links to these, 
along with C1r and C1s to evoke the cleavage of C4 and 
C2 resulting in the assembly of a C3 convertase (C4b, 
C2a), which has the same composition as that formed 
by the lectin pathway[15].

Additional C3b deposition onto either the alternative 
or classical pathway C3 convertases changes these into 
C5 convertases (C3b2, Bb, P or C4b, C3b, C2a)[16,17]. 
These complex enzymes are now competent to process 
component C5 (Mr: about 196000) into C5a (Mr: about 
11000) and C5b (Mr: about 185000)[18]. 

Basic biology of C3a and C5a 
The small activation peptides, C3a and C5a, Figure 1 
arge in inflammation and germane to this review in 
wound healing and regeneration[19]. Both C3a and C5a, 
collectively referred to as anaphylatoxins, cause vasodi-
lation, smooth muscle contraction, and increase vascular 
permeability[20-22]. Although C3a can be generated in 
greater abundance than C5a, the latter has greater 
specific inflammatory potential[21,23]. C5a especially is 
known for its ability to evoke chemotaxis of immune 
cells such as neutrophils and eosinophils[24,25]. Both 
C3a[23,26-28] and C5a[21,24,26,29-31] can stimulate an oxidant 
burst in granulocytes, but the response of these cells 
to C3a is considerably weaker and more transient than 
that to C5a[24,25,30,31]. In particular C3a fails to chemo-
attract circulating leukocytes in vivo[25]. Apart from the 
weak response of leukocytic C3aRs, the response to 
C3a in vivo would be expected to be limited largely to 
the interstitial space, since C3a is inactivated by serum 
carboxypeptidase N (CPN)[32]. 

The anaphylatoxins are recognized on target cells 
by G-protein coupled receptors (GPCRs)[33-35] coupled 
primarily to Gi. Unusually, C3aR has a long second 
extracellular loop that is important for binding C3a[33,34].

C5a is recognized by two distinct GPCRs, C5aR 
(CD88) and C5L2, but only the former is coupled to Gi 
proteins, whereas the latter is enigmatic because it is 
not connected to a signal transduction pathway, and 
its biological role has not been established[36]. Several 
investigations have assigned roles for C5L2 inclusive 
of an anti-inflammatory function[37] and as a decoy-
scavenger receptor[38], but it has also been argued from 
studies using C5L2 knockout mice that this receptor is 
important for C5a-mediated signal transduction in neutro-
phils, macrophages and fibroblasts[39]. Thus the true 
biological roles of C5L2 to date are not established[40].

The anaphylatoxins are inactivated by plasma CPN 
(EC 3.4.17.3), a tetrameric protein (Mr: about 260000) 
that can excise basic amino acids from the carboxyl-
termini of C3a, C5a, as well as bradykinin and other 
polypeptides[32,41,42].

Whereas C3a desArg completely loses its activity[43], 
C5a desArg retains a small fraction of its specific activity 
for neutrophil chemotaxis[24,32].

The receptors for the anaphylatoxins are not rest-
ricted to immune cells as C3aR and C5aR are found 

on a variety of non-immune cells[44]. These include 
differentiated cells that can be important for wound 
healing and regeneration: mast cells[45], tenocytes[46,47], 
chondrocytes[48,49], synoviocytes[50], smooth muscle 
cells[51], endothelial cells[52-54], alveolar epithelial cells[55], 
mesangial cells[56,57], and regenerating hepatocytes[58]. 
In addition various stem and progenitor cells express 
the C3aR and C5aR[2,59-61] including HSC, mesenchymal 
stem cells (MSC)[61], NSC[2], and dental pulp progenitor 
cells[62]. Table 1 shows a list of the cell types that 
express C3aR and C5aR and their function.

Late-acting components of the complement system
While the C3b portion of C3 binds to the surface of 
pathogens leading to greater internalization by phago-
cytic cells, C5b, the remaining split product of C5, 
assembles with complement C6, C7, C8, and polymeric 
C9 to form the membrane-spanning membrane attack 
complex (MAC), which lyses bacteria, but which can 
also damage eukaryotic cells. Finally, a C3b cleavage 
produce, iC3b can bind to the β 2-integrins CR3 (CD11b/
CD18) and CR4 (CD11C/CD18) on phagocytic cells 
facilitates the clearance of apoptotic cells.

There are multiple modalities which inhibit comple-
ment activation or the formation of the MAC; these 
include the plasma proteins factor H and C4b-binding 
protein and the membrane-anchored complement 
receptor 1 (CR1/CD35), membrane cofactor protein 
(CD46), decay accelerating factor or CD55, and MAC-
inhibitory protein (CD59). As the plethora of inhibiting 
factors indicates complement activation has to be fine-
tuned to provide optimal protection from infection 
without causing inflammatory tissue injury.

Sites of complement synthesis and activation
While complement proteins in the circulation are 
primarily produced by the liver except for the late 
acting complement components in particular C7 which 
are produced by monocytes/macrophages[63,64], it has 
become apparent that production and activation of 
complement proteins can happen in a localized fashion 
in many different parts of the body[65-68], and one would 
expect prolonged activation by the anaphylatoxins C3a 
and C5a under such conditions because of the absence 
of CPN in the interstitial space.

Role of complement activation in inflammation 
The important role of complement in the defense against 
infection comes, however at a price: excessive complem-
ent activation plays a role in numerous disease processes 
ranging from ischemic reperfusion injury[69-71] to 
asthma[72], acute lung injury[73,74], glomerulonephritis[75], 
rheumatoid arthritis[76], Alzheimer’s disease[77], multiple 
sclerosis and demyelination in general[78,79], and age-
related and genetic macular degeneration[80-83]. In some 
instances the specific injurious complement pathway 
components have not been distinguished[75,76], in others 
C5a[69-71,77,80] or the MAC are the clear culprits[79]. A role 
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reviews covering this aspect[4,84-86]. 
In particular, C3a has anti-inflammatory and regener-

ative effects[2,61,87-91]. In fact the regenerative potential 
of C3/C3a dates way back phylogenetically, as its 
expression is prominently up-regulated in mesenchymal 
cells in the regeneration zone in amphibians undergoing 
limb regeneration[92]. Furthermore, recent findings 
indicate that the C3aR on mesenchymal cells plays 
an important migration-directing role during early 
vertebrate development in zebra-fish[93]: Neural crest 
cells mutually attract each other via C3a and the C3aR 
forming clusters of migratory mesenchymal cells. Such 
collective cell migration is a phenomenon crucial for 
morphogenesis. It remains to be seen, whether C3a 
and the C3aR play the same role during mammalian 
embryonic development. 

While C5a also has regenerative effects for instance 
by its effects on the liver[94,95], neurons[96], osteoblasts[97], 
and dental pulp progenitors[62], these properties are 
often overshadowed by the strong inflammatory reaction 
caused by the activation of leukocytic C5a receptors, 

for C3a was only seen in a mouse asthma model[72] and 
a mouse model of laser-induced macular degeneration, 
where the presence of the C3aR was associated with 
increased angiogenesis[80], which is detrimental in the 
retina, but which could support repair following ischemic 
insults in other tissues.

It should be noted here that C5a appears the major 
culprit responsible for most of the observed pathologies, 
and that specific C5/C5a inhibition preserving the 
early steps of complement activation could be highly 
advantageous in some circumstances.

ROLE OF COMPLEMENT ACTIVATION IN 
TISSUE REPAIR
Complement mediated inflammation leading to 
resolution and clearance
While the inflammatory aspect of complement activ-
ation has long been emphasized, it has been largely 
ignored that complement activation contributes also to 
resolution of inflammation and tissue repair with few 
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Cells expressing C3aR Function of C3aR Cells expressing C5aR Function of C5aR

Neutrophils[244] Respiratory burst[26], bone marrow 
retention in vivo[189]

Neutrophils[245] Respiratory burst[28], chemotaxis[24], enzyme 
release[127]

Eosinophils[30] Chemotaxis[30], in vitro but not in vivo[25] Eosinophils[246] Respiratory burst[27], chemotaxis
Monocytes/macrophages[31] Chemotaxis[247], cytokine/chemokine 

production[164]
Monocytes/macrophages Chemotaxis[104,248], cytokine/chemokine 

production[164]

Mast cell Mediator release[102], chemokine 
production[249],
chemotaxis [100,101]

Mast cell Mediator release[102], chemokine production[249], 
chemotaxis[100,101] 

Small fraction of 
lymphocytes[250,251]

Complex in vivo functions[252] Small fraction of 
lymphocytes[251,253]

Complex in vivo functions

Osteoblasts[155,173,254] Chemotaxis, accelerated osteogenesis, 
improved bone healing in vivo[174]

Osteoblasts[97,173] Chemotaxis[97], accelerated osteogenesis[175], 
improved bone healing in vivo[174]

Chondrocytes[172] Osteogenic differentiation (?) Chondrocytes[172] Osteogenic differentiation (?)
Tenocytes[46] Not clear Tenocytes[46] Not clear
Smooth muscle cells[51] Increased mediator release from mast 

cells[255]
Smooth muscle cells[44,51] Not clear

Endothelial cells[52] Transient ERK and rho activation[52], 
cytokine production[53]

Endothelial cells[52] Chemotaxis[52], increased permeability[52] cytokine 
production[53], proliferation[128]

Hepatocytes[88] Protection from apoptosis[88], liver 
regeneration in vivo[87,88] 

Hepatocytes[44] Proliferation[58], protection from apoptosis liver 
regeneration in vivo[87,94]

Renal epithelial cells[256] Chemokine production[257], EMT under 
stress conditions[258]

Renal epithelial cells EMT under stress conditions[259]

Neurons[193] Protection from cell death[193,199] Neurons[194] Protection from cell death[193-195]

Astrocytes[260] Indirect neuroprotection[198], NGF 
expression[200]

Astrocytes[261] Cytokine and NGF expression[200,262]

MSC[61,90] Chemotaxis[61], protection from 
apoptosis[61], production of angiogenic 
factors[91]

MSC[61,90] Chemotaxis[61], protection from apoptosis[61], 
production of angiogenic factors[91]

HSPC[59] Enhanced effects of SDF-1[263], improved 
bone marrow engraftment[60,188]

Not expressed Indirect: decreased mobilization[192]; indirect: 
improved bone marrow engraftment[191] 

CSPC[182] Chemotaxis[182], proliferation[182] CSPS[182], Chemotaxis[182], proliferation[182] cardiac 
dysfunction in C5/C5aR -/- mice[180]

NSPC[2] Increased neurogenesis[2], chemotaxis and 
differentiation[89]

NSPC[2] Increased neurogenesis[2]

ESC Not expressed ESC Prevents differentiation[168]

Table 1  Cell types expressing the C3aR and the C5aR and their function

ERK: Extracellar signal-regulated kinase; EMT: Epithelial-to-mesenchymal transformation; NGF: Nerve growth factor; MSC: Mesenchymal stem cells; SDF: 
Stromal-cell derived factor; HSPC: Hematopoietic stem and progenitor cells; CSPC: Cardiac stem and progenitor cells; NSPC: Neural stem and progenitor 
cells; ESC: Embryonic stem cells; MAC: Membrane attack complex. 
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which are involved in most of the pathologic conditions 
described above.

However, it should also be considered that infla-
mmation itself constitutes a first step in wound healing. 
C3a and C5a can lead to an increase in vascular per-
meability[21,98], which is important for wound healing 
as it aids the flow of chemical and cellular entities 
necessary for repair and regeneration while facilitating 
waste removal[99]. 

Although swelling is traditionally seen as a charac-
teristic of inflammation, edema is also necessary for the 
resolution of inflammation and restoration of functional 
tissue because an increase in vascular permeability 
facilitates entry of repair and restorative cells. Specific 
to this theme is the function of histamine. C3a and 
C5a both are chemotactic for mast cells and both are 
inducers from these cells of histamine release[100-102]. 
Histamine due to its potent vasodilation activity can 
induce swelling, but histamine is also required for skin 
wound healing as demonstrated using Kit mutant mice 
that are mast cell deficient. These animals are unable 
to secrete mast cell derived histamine, and the animals 
were found to have a defective response to cutaneous 
wound healing[103].

The increase in vascular permeability facilitates the 
recruitment of monocytes that can respond to C5a 
mediated chemotaxis gradients[104], and these cells are 
crucial for “cleanup” functions. Today it is understood 
that clearance of debris and apoptotic cells is an 
important activity necessary for subsequent wound 
healing, and complement along with pentraxins have 
been shown to participate in this activity[105,106]. Indeed 
the clearance function was probably the original function 
of the complement system dating all the way back to 
metazoans[107].

The collectins C1q and MBL are important for en-
hanced phagocytosis by monocytes and macrophages 
of modified lipoprotein complexes, immune complexes, 
and apoptotic cells[108-111]. Apoptotic cells present 
exteriorized phosphatidyl serine that can be recognized 
at an early stage by the lectin domains of members 
of the collectin family[112-114]. Apoptotic cells, debris or 
immune complexes tagged by C1q or MBL are identified 
by monocytes and macrophages bearing CD91 that can 
be in complex with a collectin receptor, calreticulin[115-117]. 
The facilitated uptake of these “disposables” has been 
referred to as macropinocytosis[118].

In addition to recognition of pathogens, debris and 
dead cells by members of the collectin family, frag-
ments of C3 are important for clearance functions. C3b 
is susceptible to processing by Factor H and I to iC3b 
that can be cleaved further into C3d and C3c[119]. C3 
fragments are recognized by receptors such as CR1 
(CD35), CR2 (CD21), CR3 ( CD11b/CD18), CR4 (CD11c/
CD18), and CRIg found on Kupffer cells, monocytes and 
macrophages, which are immune adherence receptors 
that facilitate removal of opsonized microorganisms, 
immune complexes and apoptotic cells[120,121].

Complement and angiogenesis
The importance of angiogenesis in wound healing 
and regeneration has been clearly understood[122]. 
The process has been categorized in three continuous 
overlapping phases: inflammatory, proliferative, and 
remodeling[122].

Some aspects of participation in inflammation 
inclusive of increase in vascular permeability induced 
by C3a and C5a have already been discussed, but 
these mediators have additional functions that indirectly 
support angiogenesis. C5a but not C3a has been 
shown to induce an upregulation of gene expression 
on endothelial cells for adhesion molecules E-selectin, 
ICAM-1, and VCAM-1[123,124]; the upregulation of these 
adhesion molecules facilitates extravasation of immune 
cells inclusive of monocytes that are important for 
debridement, remodeling and angiogenic mediator 
secretion[125]. Angiogenesis requires restructuring of 
the extracellular matrix by controlled proteolysis, and 
the anaphylatoxins were reported to increase the 
levels of MMP-1 and MMP-9 in monocytes[126] and to be 
secretagogues of MMP-9 from granulocytes[127].

Both C3aR and C5aR are found on cultured endo-
thelial cells, but these mediators use different signal 
transduction pathways and the response to C3a is more 
transient[52]. Both the anaphylatoxins up-regulates 
chemokine production in endothelial cells[53], but only 
C5a is chemotactic for human umbilical vein endothelial 
cells (HUVECs)[52] and microvascular endothelial cells[54]. 
Moreover, it was reported that C5a could induce not 
only migration of cultured microvascular endothelial 
cells but proliferation and ring formation as well[128].

C3a and C5a were found to increase vascular endo-
thelial cell growth factor (VEGF) in human culture retinal 
pigment epithelial cells, and when the anaphylatoxins 
were injected intravitreously into normal mice, an 
increase in VEGF within the retinal pigment epithelial-
choroid layer of the retina was observed[80]. Others 
found that C5a but not C3a induced VEGF synthesis and 
secretion from a retinal pigment epithelial cell line[129]. 
Furthermore, both C3a and C5a were reported to 
induce production and secretion of VEGF from MSC[91]. 
Although there is no in vitro evidence that C3a and C5a 
are directly angiogenic, they have been shown to be 
angiogenic in in vivo situations[80,130,131], perhaps in 
response to angiogenic factors that the anaphylatoxins 
induce in cells in the proximity as just described.

In summary, C3a and C5a can contribute to the 
inflammatory and proliferative phases of angiogenesis, 
and thus the anaphylatoxins can be viewed as factors 
with indirect angiogenic potential; however, it is 
necessary to mention that one publication is in apparent 
contradiction to this view, namely investigators studying 
experimental retinal neovascularization published that 
C5a is anti-angiogenic[132]; however, these investigators 
were examining murine models of retinopathy of 
prematurity and hypoxia induced retinal vascularization, 
and these observations though correct may not be of a 
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general nature.

ROLE OF COMPLEMENT ACTIVATION IN 
SPECIFIC REPAIR PROCESSES
Role of complement activation in liver regeneration
Although tissue regeneration is very limited in mammals, 
the mammalian liver has retained an amazing capacity 
for regeneration following viral infection, exposure to 
toxins or surgical resection. This regeneration can occur 
at the hepatocyte level in cases of acute liver injury, 
although liver stem and progenitor cells appear to 
contribute in more chronic conditions.

The complement activation products C3a and C5a 
play an essential role in regeneration of the liver par-
enchyma[87,95]. After experimental CCl4 induced liver 
toxicity or partial hepatectomy, mice deficient in C3 or C5 
exhibited defective regeneration and a higher frequency 
of mortality[87]. Furthermore, C5a was demonstrated to 
be a growth factor for regenerating hepatocytes, and 
blockage of the C5aR in experimental liver regeneration 
experiments resulted in the inability of hepatocytes to 
proliferate leading to defective liver restoration[58,94].

However, the role of complement activation is a 
double-sided sword in hepatic regeneration and the MAC 
was found to be the principle mediator of hepatic ischemia 
reperfusion injury[133], which creates a dilemma, since 
the early components of complement activation, C3a, 
and C5a are necessary for liver regeneration. However, 
targeted inhibition of MAC formation with CR2-CD59 
significantly improved survival after partial hepatectomy 
in mice[133], while retaining the benefit of complement 
activation and anaphylatoxin production.

EFFECTS OF COMPLEMENT ACTIVATION 
ON MSC AND OTHER MESENCHYMAL 
CELLS
MSC and tissue repair 
MSC are rare, often perivascular cells found in all tissues 
that are able to differentiate into all types of connective 
tissue lineages including osteoblasts, adipocytes and 
chondrocytes. Furthermore, these cells produce a variety 
of angiogenic and trophic factors[134,135] and possess anti-
inflammatory properties[136-138]. Owing to the immune-
evasive properties of MSC, allogeneic MSC transp-
lantation is generally accepted. Because of all these 
properties MSC have started to find clinical application in a 
variety of diseases ranging from myocardial infarction[139] 
to graft vs host disease[140] and have found attention in 
the context of acute lung injury[141].

Limitations of MSC therapies as used today
However, in the rush to the clinic, survival of the trans-
planted MSC has not been sufficiently considered, 
and there have been failed clinical trials using MSC - 
in spite of promising results in animal models[142-146], 

and the full regenerative potential of these cells has 
not been harnessed due to poor tissue homing and 
limited cell survival following transplantation. Successful 
clinical trials will require additional information about 
the mechanisms by which MSC repair injured tissues, 
about the optimal route of administration, and about 
means of increasing their survival at a site of tissue 
injury. It is surprising, how little there is known about 
MSC recruitment and survival in vivo for a cell type that 
is being investigated in numerous clinical trials. Various 
means of improving MSC homing[147], growth factor 
production[148,149] and survival[150] are being pursued as 
ways to improve the therapeutic efficacy of MSC, but 
usually different means are used to achieve each one 
of these goals. It is hypothesized here that C3a can 
improve all of these functions, since we postulate that 
the C3a-dependent regenerative capacity of MSC seen 
in amphibians[92] has been preserved in mammalian 
tissue repair. 

MSC and complement activation
Although MSC have various anti-inflammatory and 
immune-evasive properties[151] - including the ability 
to inhibit the proliferation of allogeneic T cells, low 
levels of expression of MHC class Ⅰ and Ⅱ proteins, the 
ability to convert inflammatory M1-type macrophages 
to repair-type M2 macrophages, and secretion of the 
complement-inhibitory factor H[152], - they are not fully 
protected from complement induced injury themselves, 
and complement activation appears to be involved in the 
demise of MSC following allogeneic transplantation[151,153]. 
One would wish that such basic complement biology had 
been considered before using allogeneic MSC in clinical 
trials. Incubation of MSC with complement active human 
plasma resulted in the deposition of C3c and iC3b on 
the cell surface of the MSC and C3a and soluble C5b-9 
detection in the supernatant[90], indicative of complement 
activation, which could be prevented by various means 
of complement inhibition. 

In addition, MSC as well as osteoblasts express 
components of the complement cascade themselves[154] 
including C3, C5[155], the C3aR and C5aR[61] and the 
cell surface complement regulators CD46, CD55, and 
CD59[155]. Furthermore, MSC engineered to up-regulate 
CD46, CD55, and CD59 protected these cells from 
complement-mediated cell lysis in vitro and in vivo[156].

Effect of C3a and C5a on MSCs
MSC show tropism for areas of tissue damage[157,158], 
but it is controversial which chemotactic factors are 
responsible for this. In leukocytes a large degree of 
cell recruitment to an area of tissue injury depends on 
chemokines and C5a, but the role of chemokines in 
trafficking of MSC is unclear with widely contradictory 
findings[158-162]. Since MSC are chemo-attracted by C3a 
and C5a in vitro[61], we hypothesize that complement 
activation is an important player in attracting MSC to an 
area of tissue damage in vivo. C3a and C5a can be locally 
generated at the surface of MSC which contact serum[90] 
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in close proximity of C3aRs and C5aRs expressed by 
MSC; it is possible that this may circumvent access to 
CPN-mediated inactivation of the anaphylatoxins C3a 
and C5a. In addition to being potent chemoattractants 
for MSC[61], C3a and C5a increase the survival of MSC 
under conditions of oxidative stress[61], which would be 
encountered in an area of tissue injury. Indeed C3/C3a 
may be a survival factor for MSC[163]. Furthermore, C3a, 
- and to a lesser degree C5a, - induce the production of 
trophic and angiogenic factors by MSC including VEGF, 
basic fibroblast growth factor (bFGF), platelet derived 
growth factor, IL-6, and IL-8[91], and supernatants from 
C3a-stimulated MSC are angiogenic for HUVECs in 
vitro[91]. The increased production of growth factors by 
MSC stimulated with C3a or C5a was largely due to 
activation of NFκB[91], but in contrast to other cell types, 
in which C3a and C5a cause NFκB activation such as 
monocytes/macrophages[164], this does not lead to the 
concomitant release of the inflammatory cytokines TNF-α 
and IL-1β, thus converting a normally inflammatory 
pathway into one that supports regenerative processes. 
For TNF-α this occurs through promoter inactivation[165], 
while IL-1β production in MSC appears to be blocked at 
the level of protein processing.

We propose that C3a and C5a play a physiological 
role in MSC-dependent tissue repair by recruiting MSC 
to an area of tissue injury, by increasing MSC survival 
under challenging conditions, and by increasing the 
production of trophic, angiogenic and anti-inflammatory 
factors by these cells. It is also suggested that 
pretreatment of MSC with C3a, -C5a is considered too 
inflammatory - prior to transplantation may increase 
the repair capacity of MSC by augmenting the ability of 
the MSC to survive in an area of tissue damage and by 
inducing increased production of angiogenic and anti-
inflammatory factors.

In addition, it has also been reported that comple-
ment C1q is a chemoattractant for MSC[166].

It is also worth mentioning that C3a and C5a cause 
prolonged activation of the ERK[61], Akt[61], NFκB[91], 
and Stat3[167] pathways in MSC and other stem cells, 
which are the same pathways that are activated by 
bFGF albeit with differing routes of activation, and it 
will remain to be seen whether C3a or C5a have a 
similar effect as bFGF in maintaining stem cells in the 
undifferentiated state as has been suggested for C5a in 
embryonic stem cells (ESC)[168].

MSC are not the only mesenchymal cells expressing 
complement components and responding to comple-
ment activation. Myoblasts express the complement 
components of both the alternative and classical 
pathways (C1q, C1r, C1s, C2, C3, C4, factor B, factor 
H, factor Ⅰ[169,170], as well as the C3aR, and they 
spontaneously activate allogeneic complement, but are 
themselves protected from self-killing due to expression 
of high levels of CD46 and CD59[171]. Finally, scratch-
injured tenocytes showed increased proliferation and 
survival in the presence of C3a[46].

Role of complement activation on bone formation
Consistent with the role of complement activation 
during limb regeneration in amphibians[92] described 
above, it has been suggested some time ago that 
complement activation may be important in cartilage-
bone transformation during fracture healing and that 
the alternate complement activation pathway may be 
involved[172]. Like their MSC precursors, osteoblasts 
are able to express the key complement proteins C3 
and C5[155] and express the C3aR and C5aR, which 
both mediate osteoblast migration[97]. Expression of 
the C5aR was highly up-regulated during osteogenic 
differentiation[97], but later during osteoblast to osteo-
cyte differentiation complement genes were greatly 
down-regulated[173].

Although osteogenic differentiation of MSC can occur 
in the absence of C3a or C5a, it is accelerated in the 
presence of C3a or C5a in a C3aR and C5aR-specific 
fashion as shown with receptor-specific inhibitors in 
Figure 2A: After two weeks of osteogenic differentiation 
in the presence of fetal calf serum (FCS) that was not 
heat-inactivated, i.e., complement proteins had not 
been inactivated, Alizarin red staining of calcium salt 
deposits indicated moderate staining in FCS, which was 
significantly augmented, when C3a or C5a had been 
added to the media. However, by 3 wk the difference 
between these groups was largely diminished (results 
not shown). If heat-inactivated FCS (FCS) replaced the 
FCS, osteogenic differentiation was still further delayed 
but the addition of C3 or C5 partially substituted for the 
presence of serum complement components (Figure 2B) 
indicating that the differentiating cells themselves must 
have provided the necessary complement components.

Consistent with these in vitro findings, delayed 
fracture healing was observed in C3 or C5-deficient mice 
which received a standardized femur osteotomy[174]. 
C5-deficiency also resulted in poor quality bone[174], 
indicating that complement activation plays an imp-
ortant role in fracture healing. However, under chronic 
conditions the osteogenic effect of complement 
activation is a double-edged sword, because it can also 
result in vascular calcification during the atherosclerotic 
process, where MSC-derived C5aR participation has 
been shown recently[175]. 

Role of complement activation in cardiac repair
Following cardiac infarction extensive necrosis of 
ischemic cardiomyocytes activates complement. The 
ensuing infiltration of the infarct zone with neutrophils 
and monocytes serves to clear the injured site from 
dead cells and debris, and initiates reparative pathways. 

However, there is little doubt that complement 
activation plays an injurious role in the acute phase 
of myocardial infarction mostly in the context of C5a-
mediated reperfusion injury and neutrophil influx[176-178], 
but clinical trials inhibiting at the level of C5 have 
been unsuccessful[179] indicating that even in this early 
phase, complement activation is not all deleterious. 
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Furthermore, even C5a appears to be protective in 
several models of cardiac hypertrophy, where C5/C5aR 
knockout mice fared worse than wild type mice[180].

The beneficial effect of complement activation 
becomes more apparent in the more chronic situation, 
where complement activation contributes to tissue 

repair[181]: C3-deficiency in C3 knockout mice exa-
cerbated myocardial dysfunction four weeks after 
coronary artery ligation showing more scar tissue, 
and decreased cardiac stem/progenitor cells (CSPC) 
in the infarct zone[181]. Both murine and human CSPC 
express C3aR and C5aR, are chemo-attracted by C3a 
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Figure 2  Complement activation accelerates osteogenic differentiation of bone marrow mesenchymal stem cells. MSC were cultured in osteogenic media 
(α-MEM containing 16.5% FCS, not heat inactivated, 10 nmol/L dexamethasone, 20 mmol/L β-glycerolphosphate, and 50 μmol/L ascorbic acid 2-phosphate) for the 
indicated time. Osteogenesis was detected by alizarin red S staining. A: All cells were cultured in the presence of the carboxypeptidase inhibitor 2-mercaptomethyl-3-
guanidinoethylthioproprionic acid (80 nmol/L) to maintain C3a and C5a activity. C3a (100 nmol/L) or C5a (10 nmol/L) were added during the first 3 d of cultures in the 
presence or absence of the C3aR inhibitor SB290157 (1 nmol/L) or the C5aR inhibitor W-54001 (1 nmol/L). Both C3a and C5a accelerated calcification in a C3aR and 
C5aR specific fashion as detected by Alizarin red staining on day 14; B: Osteogenesis was considerably delayed in heat-inactivated FCS (FCS), in which complement 
components are inactivated. Addition of either C3 or C5 partially reconstituted the effect of FCS. Alizarin staining on day 21; C: Quantitation of the alizarin staining of 
figure 2B following solubilizing in acid SDS solution. FCS: Fetal calf serum; MSC: Mesenchymal stem cells.
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and C5a, and show greater proliferation in the presence 
of the anaphylatoxins[182]. It remains to be seen, 
whether they also produce more angiogenic factors as 
described above for MSC stimulated with C3a or C5a, 
which would be a further advantage in the context of 
cardiac repair. In CSPC C3a or C5a also induced several 
genes associated with - unwanted - myofibroblast 
differentiation in vitro[182], but it remains to be seen, 
whether this is relevant in vivo.

Effect of complement activation on HSC
Like any tissue damage, myeloablation by radiation or 
chemotherapy activates complement resulting in the 
generation of the complement activation peptides C3a 
and C5a[59,60]. Following bone marrow transplantation 
fast and efficient homing to and engraftment in the 
bone marrow is important. In this scenario SDF-1 is 
the most important chemotactic factor, which chemo-
attracts hematopoietic stem and progenitor cells (HSPC) 
to the bone marrow and retains them there through the 
CXC chemokine receptor 4 on these cells[183,184]. 

While HSPC express the C3aR, C3a itself does not 
appear to be a direct chemo-attractant, but it augments 
the chemotactic responsiveness of HSPC to gradients 
of SDF-1 as well as to sphingosine-1-phospate and 
ceramide-1-phosphate[59,60,185,186]. In vivo, mice deficient 
in complement C3 exhibited delayed engraftment of 
HSPC[60]. This effect was specifically mediated by the 
C3aR as shown when HSPC from C3aR-/- mice were 
injected into irradiated wild type mice, which resulted in 
a significant delay in recovery of leukocytes and platelets 
and decreased committed progenitors in the bone 
marrow[187]. Similarly, engraftment of human CD34+ 
cells treated with a C3aR inhibitor showed impeded engr-
aftment in nonobese diabetic/severe combined immune 
deficiency mice[187].

C3a also contributes to the retention of HSPC in 
the bone-marrow as C3-/- or C3aR-/- mice showed 
accelerated mobilization of HSPC into the peripheral 
blood following administration of granulocyte colony-
stimulating factor (G-CSF)[188]. This retention mecha-
nism is not limited to HSPC, but also applies to their 
neutrophil progeny, and indeed the C3aR protects from 
ischemic intestinal injury due to reduced neutrophil 
mobilization, and increased neutrophil accumulation 
causes exacerbated injury in C3aR deficient mice[189]. 
Indeed, decreased neutrophil mobilization in wild type 
vs C3aR-/- mice may explain the increased mortality 
observed in C3aR-/-mice in an endotoxin shock model[190], 
although the mechanism was not reported for this 
model.

C5-deficient mice also exhibited impaired HSPC 
engraftment: In this scenario the role of C5 cleavage 
leading to the formation of soluble MAC resulted in 
increased adhesion of HSPC to bone marrow stromal 
cells and augmented secretion of SDF-1 by the bone 
marrow stroma[191]. However, HSPC do not express 
the C5aR themselves, and C5 deficient mice show 

reduced HSPC mobilization following the administration 
of G-CSF[192], which causes complement activation. 
Apparently, granulocytes, which are released into 
the circulation in response to C5a formation, pave 
the way for HSPC to egress from the bone marrow 
perhaps due to MMP9 release, which facilitates HSPC 
mobilization[192].

Effect of complement activation on neurons, neural 
stem and progenitor cells
It has been known for some time that neurons express 
both C3aR[193] and C5aR[194], and that these two 
receptors protect from neural cell death[193-195]. This 
protective effect is not limited to differentiated neurons, 
but already functions in neural stem and progenitor 
cells, which express both C3aR and C5aR. C3-deficient 
mice showed deficits in both basal and ischemia-induced 
neurogenesis[2], and C3aR expression was essential 
for basal neurogenesis[2], while C5aR expression made 
no difference in this respect[196]. Consistent with these 
results, C3a protected from ischemic insult-induced 
memory impairment in neonatal mice[197]. 

In vitro, C3a could induce neuronal differentiation of 
neural progenitor cells[89], and increased the chemotactic 
response to low concentrations of SDF-1[89] similar to 
the situation with HSPC. In addition, C3a protected 
from NMDA neurotoxicity, but only in the presence of 
astrocytes[198], which suggests that C3a-stimulated 
astrocytes, which express the C3aR[199], were the 
primary target, and that they in turn protected through 
the production of NGF and other neurotrophic factors[200]. 
However, in a mouse model of ischemic reperfusion 
injury, C3aR inhibition had the opposite effect resulting in 
increased neuroprogenitor proliferation and suppressed T 
cell infiltration[201]. The reasons for such opposing results 
are not clear, although it is possible that the last model 
includes a larger inflammatory response that may cancel 
out any direct effect of C3a on neuronal progenitors and/
or astrocytes. Specific pathways by which complement 
activation protect neural stem and progenitor cells await 
further elucidation. 

Interestingly complement C1q, - in the absence 
of other components of the complement cascade 
increased neuron viability and neurite outgrowth and 
prevented α-amyloid-induced neuronal death in vitro[202] 
and in vivo[203]. Neuroprotection was promoted by 
activation of the transcription factor cAMP responsive 
element binding protein and by increasing LRP1B and 
GPR6 expression[203]. Furthermore, in retinal neurons, 
TGF-β signaling regulates C1q expression, which in 
turn is necessary for synaptic pruning[204]. Indeed, 
complement activation plays a role during a process 
called synaptic elimination in new-born mice[205], where 
either C1q or C3 deficiency resulted in failure of synaptic 
elimination[205], implying the classical complement 
cascade in this process. Interestingly, C1q-/- mice pres-
ented with signs of epilepsy due to increased excitatory 
synaptic connectivity[206].
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Complement involvement during embryonic 
development
ESC only express a limited number of proteins of the 
complement cascade including C6, C7, C8, C9, factor I, 
H, properdin/factor D, and complement component 1r, 
s and q receptor, and beta polypeptide[207,208]. However, 
a recent report indicates that they may also express C5 
and the C5a receptor[168] and more importantly that C5a 
promotes survival and maintenance of the pluripotent 
state of ESC in the absence of bFGF[168], the standard 
addition to maintain human ESC in the undifferentiated 
state. While this report awaits further validation, it 
highly suggests that complement activation presumably 
with the support of maternal complement components 
plays a role in embryonic development from the very 
beginning.

It is known that the maternal complement system 
plays a crucial role starting early on during fetal develo-
pment and that it is essential for the maintenance of 
fetomaternal tolerance. In mice Cr1l/Crry (complement 
regulatory protein) deficiency is embryonically lethal, but 
the embryos are rescued in C3-/- mothers[209]. Indeed, 
ESC are more susceptible to complement mediated cell 
lysis than differentiated cells, and this pathway may 
contribute protection from teratocarcinoma formation 
during pregnancy[210]. Complement activation has, 
however to be finely regulated during pregnancy, since 
excessive activation of this pathway in later pregnancy is 
associated with miscarriage[211] and preeclampsia[212-215].

There is limited knowledge about the role of com-
plement in early vertebrate development with much 
of the information derived from lower vertebrates. 
While further investigation using mammalian models 
is surely required, the existence of these complement 
pathways during amphibian development indicates that 
complement activation is a phylogenetically preserved 
ancient process during embryogenesis. In xenopus 
complement components are extensively expressed 
during development starting during the gastrula/early 
neurula stage[216] with organ-specific expression patterns 
during early organogenesis. C1qA, C3 and C9 are 
strongly expressed in the early neural plate, while C1qR 
and C6 are expressed at the periphery of the neural 
plate presumably in the neural crest[216,217] preceding 
the development of hematopoiesis. At this point C3 and 
C3aR show a predominantly mesodermal expression. 
Interestingly, neural crest cells, a multipotent embryonic 
cell population undergo epithelial to mesenchymal 
transition (EMT) in xenopus and zebrafish in a fashion 
reminiscent of metastasizing cancer cells and it is 
following this EMT transition that they express both C3 
and the C3aR[93]. These cells form cohesive clusters 
of migrating cells that are co-attracted via C3a and 
the C3aR and this process is necessary for collective 
migration of these cells[93] suggesting that C3aR/C3a 
contribute to the intricate mass cell movements of the 
developing embryo.

In rats C3 derived from the visceral yolk sac is an 
embryotrophic factor between days 9.5 to 11.5 post 

conception[218], - however no further details have been 
elucidated.

Evidence for a role of C3a in fetal tissue regeneration 
comes from studies on embryonic chick retina reg-
eneration. In this model C3a can induce complete 
regeneration of the ablated chick retina from stem/
progenitor cells via Stat3 mediated up-regulation of IL-6, 
IL-8, and TNF-α[219]. However, there was an optimal 
concentration of C3a that induced regeneration, while 
very high concentrations caused apoptosis, indicating 
that fine-tuning of the C3a/C3aR axis is necessary, 
perhaps not surprising since the cytokines produced 
by C3a stimulation may serve as growth factors at low 
concentrations, but become highly inflammatory at 
higher concentrations.

Beyond the early effect of C5a stimulation on ESCs 
mentioned above, C5a and the C5aR play a continued 
important role during mammalian development: They 
are both expressed during the period of neurolation in 
mice and humans[220], and while C5aR knockout mice 
show no congenital defects under normal pregnancy con-
ditions, they present with a wide variety of congenital 
malfunctions due to neural tube defects ranging from 
anencephaly to scoliosis and anophthalmia, if the 
mothers are folate deficient[220].

Soluble complement C5b to 9: Possible roles for 
vitronectin and clusterin in wound healing and stem cell 
biology
Complement evolved to destroy microorganisms, and 
one effector outcome of complement activation is the 
assembly within target cell membranes of a multiprotein 
complex referred to as the MAC. This consists of one 
molecule each of C5b, C6, C7, C8 and multiple copies of 
C9 (6 or more). In its complete form the MAC creates 
a transmembrane pore of 100 Ǻ that destroys the 
functional integrity of cellular membranes[221,222].

In the absence of proximal phospholipid membr-
anes the terminal components of complement form a 
soluble complex referred to as Soluble complement C5b 
to 9 (SC5b-9), which was initially described as having 
a composition of one molecule each of C5b through C8 
and three units of C9 and vitronectin[223]. Later it was 
also shown to contain clusterin (apolipoprotein J)[224], 
which is known to be a component of a subclass of high-
density lipo-protein (HDL) particles[225]. Although the term 
“SC5b-9”, as originally conceived designated a soluble 
form of the terminal complement complexes, it is probable 
that these assemblies are heterogeneous with some 
containing vitronectin and others clusterin presumably 
associated with HDLs. Whether heterogeneous or not, 
indications exist that these macromolecular composites 
may be adaptive for recovery from injury. 

Vitronectin, a known matrix and adhesive protein, 
circulates in human plasma in an inactive state in 
which its heparin linkage region and integrin binding 
site, containing the canonical Arg-Gly-Asp sequence, 
are buried[226,227]; however, as a consequence of 
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oligomerization and conformational change these regions 
on the protein can interact with glycosaminoglycans 
(GAG) and integrins[228,229]. GAGs are a fundamental 
constituent of the extracellular matrix that will necessa-
rily become exposed upon tissue damage. Furthermore, 
vitronectin binding integrins, αζβ1,3,5,8 and Ⅱbβ3, are 
found on a variety of cells responsive to injury inclusive 
of platelets, fibroblasts, myoblasts, vascular smooth 
muscle cells, and endothelial cells[230-232].

Thus incorporation of plasma derived vitronectin into 
damaged ECM can be seen as a beneficial response that 
facilitates wound healing because this arrangement can 
help dock and anchor restorative cells. Furthermore, 
because vitronectin is known to bind growth factors such 
as insulin like growth factor[233], it may be speculated 
that vitronectin in context of SC5b-9 could deliver the 
growth mediators to a wound site. 

It is also conceivable that complexes of SC5b-9 con-
taining clusterin may also contribute to host recovery 
from injury. Clusterin is found in HDL containing apo-
lipoprotein A-I but not apolipoprotein A-Ⅱ[224,234-237]. HDL 
particles are highly heterogeneous, and whereas HDLs 
were originally ascribed to function for reverse cholesterol 
transport, it is now realized that these operate for a 
diversity of biological roles inclusive of transport of 
hormones and bioactive lipids, inflammation regulation, 
clearance, and immune defense against parasites and 
microorganisms[238-241]. 

Although investigations about the interface of HDLs 
and stem/progenitor cell biology are just commencing, 
a few publications suggest that this will be a fruitful 
topic for future research. For example HDL can promote 
MSC proliferation by interaction with Scavenger receptor 
class B member 1[242]. Also HDL have been shown 
to advance endothelial cell precursor migration and 
proliferation[243]. 

We leave it an open question as to whether HDL-
associated SC5b-9 can facilitate wound healing through 
influence on stem and progenitor cells. 

CONCLUSION
Although complement is best known for its role in in-
flammation, increasing evidence has accumulated that 
emphasizes that complement activation and in particular 
the complement split products C3a and C5a play a 
role in many scenarios of tissue repair. Table 1 shows a 
compilation of cell types expressing C3aR and C5aR and 
the function of these receptors on any particular cell. 
However there are still many gaps in our understanding 
of the role of complement activation outside the 
inflammatory axis. A more complete understanding of 
the effects of complement activation in stem cell biology 
will contribute to improve the therapeutic potential of 
these cells.
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