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GWAS with longitudinal phenotypes: performance
of approximate procedures

Karolina Sikorska1,2, Nahid Mostafavi Montazeri1,3, André Uitterlinden2, Fernando Rivadeneira2,
Paul HC Eilers1 and Emmanuel Lesaffre*,1,4

Analysis of genome-wide association studies with longitudinal data using standard procedures, such as linear mixed model

(LMM) fitting, leads to discouragingly long computation times. There is a need to speed up the computations significantly.

In our previous work (Sikorska et al: Fast linear mixed model computations for genome-wide association studies with longitudinal

data. Stat Med 2012; 32.1: 165–180), we proposed the conditional two-step (CTS) approach as a fast method providing an

approximation to the P-value for the longitudinal single-nucleotide polymorphism (SNP) effect. In the first step a reduced

conditional LMM is fit, omitting all the SNP terms. In the second step, the estimated random slopes are regressed on SNPs.

The CTS has been applied to the bone mineral density data from the Rotterdam Study and proved to work very well even in

unbalanced situations. In another article (Sikorska et al: GWAS on your notebook: fast semi-parallel linear and logistic regression

for genome-wide association studies. BMC Bioinformatics 2013; 14: 166), we suggested semi-parallel computations, greatly

speeding up fitting many linear regressions. Combining CTS with fast linear regression reduces the computation time from

several weeks to a few minutes on a single computer. Here, we explore further the properties of the CTS both analytically and

by simulations. We investigate the performance of our proposal in comparison with a related but different approach, the two-step

procedure. It is analytically shown that for the balanced case, under mild assumptions, the P-value provided by the CTS is the

same as from the LMM. For unbalanced data and in realistic situations, simulations show that the CTS method does not inflate

the type I error rate and implies only a minimal loss of power.
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INTRODUCTION

In longitudinal studies, repeated measurements from the same
participant are gathered over a period of time. Such studies have an
important role in clinical and epidemiological research since they can
relate changes in an individual to covariates. Longitudinal studies have
been recently introduced in genome-wide association studies, where
the goal is to find single-nucleotide polymorphisms (SNPs) that
impact change in physical condition of individuals. Hundreds of
diseases and traits have been investigated cross-sectionally, identifying
thousands of significant SNPs. For several traits, it is relevant to
explore their change over time. In this article, the evolution of bone
mineral density (BMD) in elderly people participating in the Rotter-
dam Study1 is taken as a guiding example.
Measurements taken from the same individual are correlated, which

invalidates the basic assumption of a linear regression model. There-
fore, dedicated statistical procedures are required. In practice, parti-
cipants are often not examined at regular time points, they stop the
study permanently (dropouts) or miss visits (intermittent missing-
ness). The linear mixed model (LMM) is one of the popular
approaches to analyze such irregularly measured responses. Fitting
one LMM to thousands of individuals takes about a second. However,
performing the LMM computations millions of times makes the
whole-genome scans prohibitive in practice, especially with the
growing amount of SNP data implied by the 1000 Genomes Project.

Additionally, the model building process may require repetition of the
whole analysis for different mean and/or covariance structures.
Mixed models have been intensively used in GWA studies involving

related individuals, where the dependence structure needs to be
properly modeled. This is also time consuming. Speeding up mixed
models in this context is therefore also important and received quite
some attention, see for example.2,3 However, limited research has been
devoted in this respect for longitudinal data.
It is expected that only a few SNPs correlate with the change of the

trait over time. The longitudinal effect of a SNP is measured by the
SNP× time interaction term in the mean structure of the model.
Current GWAS are focused on identifying markers for which the
P-value is lower than the threshold of 5× 10− 8. Sikorska et al4 explored
several approximate procedures that identify the important SNPs in a
fast manner. In particular, the authors proposed the conditional two-
step (CTS) approach that is based on the conditional LMM (CLMM).5

They explored the properties of this method on longitudinal BMD
data collected in the Rotterdam Study and compared their proposal
with several other approaches. The CTS proved to be an excellent
approximation to the LMM approach. The CTS approach is basically
reducing the computations to fitting one LMM in the first step and in
the second step a simple regression model, for each SNP at a time.
Sikorska et al6 showed how to achieve huge speed ups in the second
step via so called semi-parallel regression (SPR). Many SNPs are
analyzed at the same time using big matrix operations, which replace
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time-consuming loops. In this way, a GWAS with simple linear
regression is performed 50–60 times faster than with standard
implementations. Solutions for efficient SNP data access have also
been discussed in Sikorska et al.6 As a result, the combination of the
CTS and the SPR makes an analysis of a GWAS with longitudinal data
feasible even on a desktop computer, thereby considerably reducing
demands on computing resources. Here, we further investigate the
properties of the CTS approach, analytically as well as by simulations.
In addition, we compare it with a related method, the two-step
approach. Our goal is to explore the robustness of the two
approximate methods for different data scenarios allowing us to draw
general conclusions. Moreover, we discuss the speed gains achieved by
applying jointly the CTS and the SPR. Our simulations lead us to the
discussion on the practical aspects of the fast analysis of a longitudinal
GWAS. Finally, in the Supplementary Material we provide R code
useful for the implementation of the CTS approach.

MATERIALS AND METHODS
The development of fast approximate procedures was inspired by the data
collected in the Rotterdam Study. In this prospective cohort study, the BMD of
more than 5000 individuals, aged 55 or over, was measured at baseline and after
approximately 2, 6 and 12 years. After an extensive whole-genome research on
the cross-sectional BMD7 it was decided to explore genetic contributions to the
change of BMD over time in elderly people. The BMD data from the
Rotterdam Study are unbalanced and the missingness rates at the second,
third and fourth recording times were 30, 50 and 70%, respectively. Due to the
unbalanced structure of the data, the LMM was chosen for the analysis.
Originally, the model was corrected for the age at entry to the study and the
evolution of body weight. However, for ease of illustration, in this article we
consider only time and SNP. Below, we indicate how additional covariates
should be handled in practice. In the Supplementary Material, we provide
simulations indicating that conclusions remain the same when other covariates
are included into the model.

The linear mixed model
The LMM describing the vector yi, which consists of ni measurements taken on
individual i over time, can be expressed as

yi ¼ Xiβ þ Zibi þ εi; ð1Þ
where Xi and Zi are ni × p and ni × q design matrices for fixed and random
effects. The fixed effects model the overall population characteristic and are
common to all individuals with the same Xi. The random effects describe the
individual deviation from the average population evolution. Additionally εi
represents a ni × 1 vector of measurement errors. We adopt model (1) to our
motivating example, describing the response BMD for an individual i at the
occasion j as follows:

yij ¼ β0 þ β1si þ β2tij þ β3sitij þ b0i þ b1it ij þ εij: ð2Þ
In model (2) the fixed effects are represented by SNP (si), time (tij) and their
interaction (sitij). We assume that the response evolves over time in a linear
manner. The SNP variable can be represented by either an integer from {0,1,2}
denoting the genotyped number of the reference allele or a continuous number
between 0 and 2 describing the expected genotype count after imputation. The
subject-specific part of the model consists of a random intercept (b0i) and a
random slope (b1i). The first describes an individual deviation of the baseline
BMD level from β0. The latter characterizes the subject-specific fluctuation of
the slope around β2 + β3si. Classically, it is assumed that the random effects
have a bivariate normal distribution with mean 0 and covariance matrix

D ¼ σ20 ρσ0σ1
ρσ0σ1 σ21

� �
:

Finally, εij denotes a normally distributed measurement error with mean 0 and
variance σ2. It is assumed that the εij is independent from bi = (b0i,b1i)

T. From
the above, it follows that the ni-dimensional response yi has covariance matrix
given by Vi ¼ ZiDZ

T
i þ σ2Ini , where Zi is a ni × 2 dimensional matrix with

ones in the first column and tij in the second columns and Ini is the identity
matrix of size ni. More information about the mixed model formulation can be
found in Verbeke and Molenberghs.8

The fixed effects and the unknown variance components in (2) are
commonly estimated iteratively using (restricted) maximum likelihood ((RE)
ML). The parameter estimates (apart from the SNP terms) of model (2) for the
BMD data applied to women are shown in Table 1. Our main interest lies
however in the estimate of β3 and more precisely in the P-value for testing H0:
β3=0. In the Supplementary Material we show that when the data are balanced
(tij = tj and ni = n), the ML estimate of β3 is equal to:

β̂3 ¼
cov s; uð Þ � tcovðs; yÞ

nvarðtÞvarðsÞ ; ð3Þ

where t = (t1,…,tn)
T, t ¼ ∑jtj=n, varðtÞ ¼ ∑j t j−t

� �2
=n, s = (s1,…,sN)

T,

varðsÞ ¼ ∑i si−sð Þ=N; y ¼ y1;…; yNð ÞT yi ¼ ∑jyij

� �
; u ¼ u1;…; uNð ÞT ui ¼ ∑jyijt j

� �
.

Assuming that the variance components are known, the variance of β̂3 is given
by (see Supplementary Material):

varðβ̂3Þ ¼
σ2 þ σ21nvarðtÞ
NnvarðtÞvarðsÞ: ð4Þ

In practice the unknown σ2, σ20 and σ21 are replaced by their (RE)ML estimates.

The ratio β̂3=ŜEðβ̂3 Þ gives the value of the t-statistic which determines p*, the
P-value for the SNP×time effect.

The conditional linear mixed model
The CLMM has been suggested when baseline characteristics are not of interest
or cannot be properly modeled. Verbeke et al5 and Verbeke and Fieuws9

showed that misspecification of the cross-sectional part of the model may lead
to biased estimates of the longitudinal part. Such a misspecification happens,
when, for example, an important cross-sectional SNP effect has been omitted
from model (2). We are interested only in the longitudinal part of the model
and therefore we aim for unbiasedly estimating the longitudinal part
irrespective of estimating the cross-sectional part. Below we explain why that
is particularly useful. The idea behind the CLMM is to map the time-stationary
part of the model to zero. This is achieved by multiplying both sides of the
model (1) by a full-rank ni × (ni −1) matrix AT

i such that AT
i 1ni ¼ 0 and

AT
i Ai ¼ I ni−1ð Þ, where 1ni is a ni-length vector of ones. In our case, the CLMM

corresponding to (2) has the following form:

y�ij ¼ β2t
�
ij þ β3sit

�
ij þ b1it

�
ij þ ε�ij; ð5Þ

where y�ij ¼ AT
i yij; t

�
ij ¼ AT

i tij; ε
�
ij ¼ AT

i εij; var b�1i
� � ¼ σ21 and var ε�ij

� �
¼ σ2.

Matrix Ai can be easily found using properties of orthogonal polynomials. If
the LMM is correctly specified, then the estimates from the LMM and the
CLMM are the same in the balanced case.5 In the unbalanced case, empirical
evidence suggests that they are similar.5 But other operational characteristics
such as the type I error rate and the power of the CLMM versus the LMM have
not yet been investigated, to our best knowledge. When the cross-sectional part
of the LMM is wrong, the CLMM may prevent bias in estimation
of the longitudinal effects. The data transformation is easily done in SAS, as
shown in Verbeke et al5 or in R using the code provided in the Supplementary
Material.

Table 1 Estimates of the parameters in model (2) from the BMD

data for women obtained from a LMM analysis of the Rotterdam

Study (taken from Sikorska et al6)

Effect Parameter Estimate

Intercept β0 0.970

Time effect β2 −0.004

sd(b0) σ0 0.110

sd(b1) σ1 0.003

cor(b0, b1) ρ −0.140

sd(ε) σ 0.040
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Approximate procedures
Fitting model (2) for one SNP takes around 4 s in the R package nlme10 and
around 1 s in the package lme4.11 In a GWAS millions of such models may
need to be fitted that results in weeks or months of computations on a single
computer. Below we show how a GWA analysis based on a mixed model can be
reduced to fitting simple linear regression models to each SNP providing an
approximate P-value for the hypothesis test H0 : β3 = 0 for each SNP separately.

Two-step
The first step consists of fitting model (2) omitting the SNP effects, thus the
following reduced model

yij ¼ b�0 þ b�2tij þ b�0i þ b�1it ij þ ɛij: ð6Þ
All additional covariates (time-stationary and time-varying) should be also
included in the reduced model. The variance-covariance matrix of the random
effects for model (6) has changed to

D� ¼ s20 þ b21var sð Þ rs0s1 þ b1b3varðsÞ
rs0s1 þ b1b3var sð Þ s21 þ b23varðsÞ
� �

: ð7Þ

More detailed derivation of the two-step (TS) approach can be found in the
Supplementary Material. The second step of the TS approach involves

regressing the estimated random slopes b̂
�
1i on the omitted SNP using the

following simple regression model:

b̂
�
1i ¼ b��0 þ b��1 si þ ɛ��i : ð8Þ

We are interested in the relationship of the P-value from testing the hypothesis
H0 : b��1 ¼ 0 with p*. It can be shown (see Supplementary Material) that the
ML estimate of b��1 in the balanced case has the form

b̂
��
1 ¼ covðs; uÞ � nctcovðs; yÞ

varðsÞ s2=s�21 þP
j
t2j � cðP

j
t jÞ2

 !; ð9Þ

where s�20 and s�21 are the diagonal elements of D* and c ¼ nþ s2=s�20
� ��1

.

It can be shown using elementary algebraic manipulations that b̂
��
1

��� ���r b̂3
��� ���.

This illustrates the shrinkage effect of BLUP estimators, see for example.12 We
note that expression (9) is based on the assumption that the covariance part in
D* is zero. If there is no cross-sectional effect of the SNP (β1= 0), then this
implies that ρ must be zero. Now one can always turn the covariance of the
original random intercept and slope into zero by choosing an appropriate
translation of the time. That is, when tij is replaced by tij − a with a=− ρσ0/σ1
the covariance of the changed random effects becomes zero. However, such a
change in origin drastically changes the other settings of the model, for
example, the time variable does not start anymore from zero. Consequently, we
cannot compare the transformed situation with the situation whereby the
correlation is zero at the start. When β1 is not zero, the covariance will be equal
to β1β3var(s). However, its value will be relatively small, because of the very
small SNP effects in a GWAS setting. To see how (3) and (9) are related, one

takes σ2 much smaller than s�20 and s�21 . Then c ≈ n− 1 and b̂
��
1 Eb̂3. However,

in many practical situations this assumption will not hold. For the standard

error of b̂
��
1 no insightful expression could be obtained. Therefore, the

relationship between p* and the P-value for H0 : b��1 ¼ 0 remains unclear
and needs to be evaluated numerically.

Conditional two-step
The CLMM corresponding to model (2) is given by (5). The transformed
outcome y�ij is a function of only longitudinal effects including the effect of
interest: SNP× time interaction. Following the rationale from the TS approach
we build a reduced CLMM

y�ij ¼ bD2 t
�
ij þ bD1it

�
ij þ ɛDij ; ð10Þ

with var bD1i
� � ¼ s�21 and as in the two-step approach, var ɛDij

� �
Es2. Note that

all additional baseline covariates vanish from the CLMM through the data
transformation. However, the transformed time-varying covariates remain in
the reduced CLMM. The idea is now to regress the EBLUPs of bD1i on SNPs via

the following simple regression model

b̂
D
1i ¼ bDD0 þ bDD1 si þ ɛDDi : ð11Þ

The ML estimate for the SNP effect in model (11) and its variance are for the
balanced case given by

b̂
DD
1 ¼ covðs; uÞ � tcovðs; yÞ

varðsÞ nvarðtÞ þ s2=s�21ð Þ; ð12Þ

var b̂
DD
1

� �
¼ nvarðtÞs�21

NvarðsÞ s2=s�21 þ nvarðtÞð Þ: ð13Þ

It is easy to relate b̂3 and b̂
DD
1 by

b̂
DD
1 ¼ nvarðtÞ

nvarðtÞ þ s2=s�21
b̂3: ð14Þ

Now the shrinkage effect of the BLUPs is immediately clear from the above
relationship. For the Rotterdam Study, this shrinkage factor is about 0.32. The
relationship between the t-statistics is given by:

tCTS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ns21varðtÞ þ s2

ns�21 varðtÞ þ s2

s
tLMM ; ð15Þ

where tCTS and tLMM are the t-statistics for the CTS approach and the LMM,
respectively. Since also the variance of b̂

DD
1 is shrunken compared with that of

b̂3, the t-statistic of the CTS approach is not necessarily smaller in absolute
value. In GWAS, SNP effects are usually very small, which means that s�21 Es21.
Consequently, tCTS ≈ tLMM, implying approximately the same P-values for the
two methods. Note that we have compared the performance of the CTS with
the LMM, while it is in fact an approximation to the CLMM. The LMM was
chosen as comparator, because of its popularity. But, for reasons stated above
we might have chosen also the CLMM to compare with, since for the balanced
case tCLMM = tLMM.

5,9 While our analytical derivations lead to a clear
relationship between p* and the P-value from the CTS approach, for the TS
approach things are less clear. Unknown remains also the impact of cross-
sectional SNP effect on the TS approach. Moreover, our derivations are limited
to balanced data with known variance components, which rarely occurs in
practice. Performance of the TS and the CTS approaches in more practical
situations is addressed in a simulation study.

Simulation study
The settings in our simulation study are based on the characteristics of the
BMD data. In particular, we assume that the data for 2000 individuals come
from model (2) with the parameter values equal to those in Table 1. For the
balanced scenario, we assumed that the measurements were taken for all
individuals at baseline and after 2, 6 and 12 years without missing data. The
SNP variable was taken as a random number with a uniform distribution on
[0, 2]. We denote this setting as Scenario 1. Then, we considered modifications
of that scenario whereby the values for ρ and σ1

2 were changed. The scenarios
are described in Tables 2 and 3. We ran an additional eight scenarios with
σ = 0.04 (inspired by value in Table 1) replaced by σ/2. But, since the results
were quite the same we did not include these results here. In the unbalanced
case, we assumed that times of measurements after baseline are slightly different
between individuals. We used a jittering function that adds the times from the
balanced case a random number between − 0.8 and 0.8. Additionally we
simulated a missing at random (MAR) dropout. The MAR mechanism assumes
that the probability of missing observation depends on the observed outcome
values but is independent from the unobserved values.13 More specifically, we
assumed that the probability of dropping out from the study at time tijðj > 1Þ
depends on yij − 1 according to the following logistic model:

log
pij

1� pij

 !
¼ aþ byij�1; ð16Þ

where pij is the probability of a missing yij. The values of α and β determine
how important the dropout is and were chosen such that the dropout at the
second measurements was about 30%, implying a dropout at the third and
fourth occasions of around 50 and 70%, respectively. The simulation scenarios
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for the MAR case were chosen the same as for the balanced case (Tables 2 and 3).
To evaluate the two approximate procedures several criteria were considered.
Comparison is done mainly with the LMM, for reasons stated above. First is the
probability of type I error. Preferably, we would like to have it around α= 0.05
as for the LMM. Second, the power should be close to the power of the LMM.
Due to very long computational times involved in the standard simulation-
based power calculation for the LMM, we used a probit-model approach.
Details about this fast approach to power calculation can be found in the
Supplementary Material. We also evaluated the precision defined as the
standard deviation of log10(pLMM)− log10(pA), where pA is the P-value from
the approximating method. We denote this measure as SDDIFF. Finally, we are
interested in the influence of β1 on the approximations given by the TS
approach. Two values for β1 were chosen: 0.01 and 0.05. The first one is the
estimate obtained in the cross-sectional GWA analysis for BMD data.
All simulations were performed using the R software.14 The LMMs were fitted
using the package lme4. In our experience, this package is faster and encounters
less problems with convergence than the package nlme.

RESULTS

The results of the simulation study for the balanced case are
summarized in Table 2. We observe a high impact of the correlation
between random effects (ρ) on the performance of the TS approach.
For the variance of the random slope like in the BMD data, the power
of the TS decreased with about 31 and 91% for ρ equal to − 0.5 and
− 0.9, respectively. When s21 was further increased, the TS procedure
revealed only a minor loss of power (0.5%) even when the
correlation ρ was set to − 0.9 (Scenario 8, Table 2). A positive sign
of the correlation affected slightly less the approximation. The CTS

approach exhibits a stable behavior across all the scenarios, resulting in
a similar type I error rate and power as LMM. The difference in
performance between the TS and CTS approach is also illustrated in
Figure 1. The minimal loss of power for CTS in Scenario 8 may be
caused by a small difference between σ2 and σ*2 in case of larger β3
simulated for that scenario. When the data are unbalanced, both
approximate methods are sensitive for the changes in ρ and s21, but the
effect on the CTS approach is often minimal. The results from our
simulations are shown in Table 3. We observed a loss of power for the
TS and CTS approach when |ρ| increases. However, the TS approach
was more affected by a large |ρ|. For ρ =− 0.5, the CTS approach lost
up to 2.4% of power while the TS approach was highly underpowered
(max loss of 53%). As for the balanced case, increasing s21 (Scenario 8)
improved the approximation for the TS approach, but did not reduce
power loss for the CTS approach. For all scenarios, the type I error
rates for the two approaches were similar to LMM. The performance
of the approximations for the unbalanced case is illustrated in
Figure 2.

Heteroscedasticity and robust standard errors
The variance of the estimated BLUPs from the LMM is given by

var b̂i
� �

¼ DZT
i Wi �WiXið

X
i

XT
i WiXiÞ�1XT

i Wi

 !
ZiD;

where Wi ¼ V�1
i .8 From this expression, we observe that the variation

of the estimated individual slopes may be quite different between
individuals, especially in case of unbalanced data, which could lead to
heteroscedasticity in the second step of the TS procedures. Replacing
the simple linear regressions by weighted linear regressions with
weights obtained in the first step had, however, almost no impact on
our simulation results. In general, one might of course prefer the
weighted regressions solutions at the expense of a small extra
computation time.

Influence of the cross-sectional SNP effect
Our simulations showed a big impact of the cross-sectional SNP effect
on the performance of TS. In the balanced case, when β1 = 0.01 only a
minor power loss of the TS approach was observed (1%). However,
for β1 = 0.05, the type I error rate was inflated to 0.10 compared with
0.038 for LMM and the CTS approach. The performance of the TS
approach for that scenario is displayed in Figure 3. For the MAR case,
a cross-sectional SNP effect of 0.01 led to a loss of power for the TS
approach to even 17% (Figure 4). For β1 = 0.05, the type I error rate
was inflated to 0.54. The performance of the TS approach worsened
even more when the signs of the cross-sectional and longitudinal SNP
effects were opposite.

Effect of distributional assumptions
We explored the performance of the approximate procedures in
cases where the distributional assumptions of the LMM are not
met. We considered MAR dropout and two modifications of
Scenario 1. In the first modification, we simulated measurement
error from the strongly asymmetric, exponential distribution with
rate parameter equal to σ1 to keep the same variance like in the
BMD data. We next shifted this distribution such that the mean was
equal to 0. In the second case, we applied the exponential
distribution to the random effects, also keeping variances like those
in the BMD data. For the exponentially distributed measurement
error, the type I error rate was approximately 0.05 for all the
methods and the maximum loss of power was equal to 7 and 1%

Table 2 Balanced case

P (type I error)

Max loss of

power (%) SDDIFF

Scenario ρ σ1 LMM TS CTS TS CTS TS CTS

1 −0.14 0.003 0.044 0.045 0.044 0.48 0 0.05 0.006

2 0 0.003 0.047 0.045 0.047 0.40 0 0.17 0.006

3 0 0.03 0.059 0.058 0.059 0.23 0 0.03 0.015

4 −0.5 0.003 0.063 0.052 0.063 31 0 0.66 0.007

5 −0.9 0.003 0.053 0.054 0.053 91 0 1.38 0.007

6 0.5 0.003 0.061 0.052 0.061 27 0 0.72 0.007

7 0.9 0.003 0.053 0.062 0.053 67 0 1.19 0.007

8 −0.9 0.03 0.056 0.056 0.056 0.5 0.21 0.12 0.015

Comparison of probability of type I error, loss of power with respect to LMM and precision
measured by SDDIFF of two-step and conditional two-step

Table 3 Unbalanced case

P (type I error)

Max loss of

power (%) SDDIFF

Scenario ρ σ1 LMM TS CTS TS CTS TS CTS

1 −0.14 0.003 0.053 0.056 0.053 5.50 0.20 0.26 0.15

2 0 0.003 0.029 0.036 0.033 1.20 1.10 0.2 0.11

3 0 0.03 0.066 0.067 0.066 0.31 0.03 0.08 0.07

4 −0.5 0.003 0.055 0.052 0.055 53.40 2.40 1.04 0.30

5 −0.9 0.003 0.055 0.058 0.052 94.30 11.00 1.51 0.49

6 0.5 0.003 0.054 0.050 0.052 43.90 0.67 0.9 0.11

7 0.9 0.003 0.052 0.043 0.058 84.00 4.30 1.29 0.25

8 −0.9 0.03 0.047 0.047 0.050 40.10 13.00 1.52 0.90

Comparison of probability of type I error, loss of power with respect to LMM and precision
measured by SDDIFF of two-step and conditional two-step
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Figure 1 Balanced case, Scenarios 1 and 4. Panels (a) and (b) display the approximation of the P-values obtained in TS and CTS for Scenario 1. Panels (c)
and (d) display the approximation for Scenario 4. Panel (e) shows the power curves for Scenario 4, together with 95% pointwise CI. The curves for LMM and
CTS are overlapping. The x axis of the power plot represents the relative reduction of the slope per one unit increase in reference allele. In the plots
displaying accuracy, results of simulations under the null and under alternative have been merged.
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for TS and CTS, respectively. Similarly, for the exponentially
distributed random effects, the maximum loss of power for both
TS approaches was only 1% with the type I error rate approximately
0.05. Note that in this case the random effects were simulated as
independent.

Discussion of the simulation results
In the balanced case, the TS seriously suffers from lack of power in
Scenarios 4–7, where small variability of the random slope is
combined with a high correlation between the random effects.
However, it is not the high correlation per se that causes the drop in
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Figure 2 MAR case, Scenarios 1 and 4. Panels (a) and (b) display the approximation of the P-values obtained in TS and CTS for Scenario 1. Panels (c) and
(d) display the approximation for Scenario 4. Panels (e) and (f) show the power curves for Scenarios 1 and 4, together with 95% pointwise CI. The x axis of
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power since one can always render the correlation zero. In fact, it is
the complex interplay between σ, σ0, σ1, ρ and the values t1,...,tn that
have an impact on the power. Our simulation study did not unravel
this complex interplay, but had only the intention to show that some
loss of power can be expected in some extreme situations.
The CTS approach provides an approximation to the slope obtained

by the CLMM. Now, since the CLMM removes the effect of the cross-
sectional part on the estimation of the slope, different results from
those of the LMM should be expected. As mentioned above, the
advantage of the CLMM is that it is less vulnerable to misspecification
of the cross-sectional part. To appreciate the CTS as an approximation
of the CLMM, we also compared the P-value obtained from the CTS
and the CLMM. For this, we only deal with the unbalanced case of
Scenario 5, where the greatest drop in power is seen. From
Supplementary Figure 1, it is clear that the CTS perfectly approximates
the P-value obtained in the CLMM, suggesting that its power loss with
respect to LMM is implicitly related to the conditional model. We can
safely conclude from the above simulation results that the CTS
approach is superior to the TS approach, loosing basically no power
in the balanced case compared with the LMM and showing a minimal
power loss in the unbalanced case. The eventual loss in power is due to
the loss of power with the CLMM, and this loss must be weighted
against the advantage of the conditional approach that it is less
vulnerable to model assumptions than the LMM. More details on that
topic can be found in the Supplementary Material.

Practical aspects and computation times
Our simulation study clearly indicates that the CTS approach is the
method of choice for the approximate computations in longitudinal
GWAS. We illustrated that especially for unbalanced data (and we
expect the readers to be mainly dealing with such data) this approach
is more precise and reliable than the TS approach. In our experience,
the CTS approach does not inflate the type I error and leads to only a
minor loss of power, which depends on the data scenario. In practice,
one can learn a lot about the data by fitting a LMM without a SNP.
The variance component parameters will basically not change when
the SNP is included in the model, as the effects in GWAS are very
small. This provides useful information on the expected power loss
when applying the CTS approach. Additionally, is it advisable to
conduct a small simulation study, say for 100 SNPs, assessing the
quality of approximations. After the approximate GWAS is performed,
one will obviously confirm the findings by fitting the LMM to the
most promising SNPs. Depending on the expected small power loss, a
somewhat increased number of ‘the top’ SNPs can be considered. The
practical use of the CTS approach is also displayed in Supplementary
Figure 2. We compared the pure computation times (without time
spent on data access) using the 3.0.2 64-bit version of R software14 on
a desktop computer with i5-3470, 3.20 GHz and 8 GB of RAM. Fitting
one LMM (2) for 2000 individuals takes around 2 s using the package
nlme and around 0.5 s using the package lme4, which would imply 23
and 6 days, respectively, for 1M of SNPs. This computation time is
linear in the sample size. Applying the two TS procedures we reduce
the computations to fitting one LMM for all the SNPs and a simple
linear regression for each SNP at a time. One should also note that the
data transformation needed for CTS is performed within a minute.
Using a standard procedure in R, function lm, fitting 1 million
regressions takes around 1 h. Applying the SPR we can perform this
analysis within 2min. Finally, one should add the time spent on re-
analyzing ‘the top’ SNPs with the LMM, around 2min for fitting 100
regression models. To summarize, we speed up the computations for
1M of SNPs from 23 or 6 days to 5min. Supplementary Figure 3
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displays the time needed to perform the second step of the TS
procedures and the speed up with respect to the LMM for different
sample sizes and the number of repeated observations. Note that the
computation time for the TS methods is essentially the same regardless
the number of longitudinal observations. With 10 observations per
individual the CTS approach is 50 000 times faster than the function
lmer. This is partially due to the fact that values for a SNP, which are
read from the files as N-dimensional vector do not need to be
expanded to length N*n, which is an additional cost of the standard
analysis in R functions. Another aspect of the analysis is SNP data
access, which remains the same issue for any type of computations.
Application of array-oriented binary files has been discussed in
Sikorska et al6 showing that an additional 5 min is needed to access
the data for 1M of SNPs. As a result, we make the GWAS
computations feasible on a single everyday computer.

DISCUSSION

We explored the performance of two approximate procedures for
GWAS on longitudinal data in different scenarios. Our analytical
investigations for the balanced case showed that the CTS approach
provides an excellent approximation of the P-value for the SNP ×
time interaction term obtained from the LMM and the CLMM.
This result was also confirmed in the simulation study. The
performance of the TS approach is less straightforward, due to
lack of insightful expression for the standard errors. For the
balanced case, this method showed to be sensitive for the
variance-covariance structure of the random effects. The same
behavior was observed for the CTS approach with unbalanced data;
however, the loss of power is always much lower than in the TS
approach. One should note that in our simulations we considered
extreme values for ρ. In practice, the correlation of − 0.9 is
improbable. We also indicated that it is not necessarily the
correlation that drives the results, since this correlation can always
be made zero. We additionally illustrated the possible danger in
using the TS approach when a SNP is cross-sectionally important,
leading to either strongly inflated type I error rate or considerable
loss of power. In conclusion, the CTS approach provides, in
virtually all practical situations, a very good approximation of the
P-value for the SNP × time effect obtained from the CLMM. At the
same time, it better protects the user against model misspecifica-
tion than the LMM and the TS approach. We also validated
performance of the CTS approach for low minor allele frequencies.
The simulations indicated a good performance for MAF equal to
0.05 and even 0.01 (results not shown). In addition, it hugely
reduces demands on computing resources. Finally, the TS
approaches can be viewed as approaches that perform inference
on the longitudinal fixed effects using longitudinal summary
measures, namely the random slopes. In this paper, we focused
on evaluating the importance of the SNPs separately, but it is clear
that the CTS approach can be extended to cover mixed models
with a non-linear evolution in time modeled either in a non-linear
or in a smooth manner. Another interesting point is to explore

performance of our method under more complicated missing data
mechanism, such as MNAR. When the missing data process is
MNAR, none of the likelihood approaches will do a perfect job.
This also applies to our approach. Strictly speaking, the only thing
that can be done is to apply a sensitivity analysis whereby a variety
of missing data models are combined with the measurement model
(here the mixed model). Finally we note that our approach
assumes uncorrelated measurement errors. Thus, in principle
correlated errors are not covered here. However, in Jacqmin-
Gadda et al15 it is shown that the estimation of fixed effects is
robust against violation of independence assumption as long as
random intercept and slope are present in the mixed model. This is
also confirmed in the Supplementary Figure 4. We believe that our
approach therefore offers a wide range of possibly complex
statistical procedures that are practically feasible with limited
computational resources.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENT

The last author acknowledges Geert Verbeke for the interesting discussions on

the conditional linear mixed model.

1 Hofman A, Darwish Murad S, van Duijn CM et al: The Rotterdam Study: 2014
objectives and design update. Eur J Epidemiol 2013; 28: 889–926.

2 Lippert C, Listgarten J, Liu Y et al: Fast linear mixed models for genome-wide
association studies. Nat Methods 2011; 8: 833–835.

3 Zhou X, Stephens M: Genome-wide efficient mixed-model analysis for association
studies. Nat Genet 2012; 44: 821–824.

4 Sikorska K, Rivadeneira F, Groenen PJF et al: Fast linear mixed model computations
for genome-wide association studies with longitudinal data. Stat Med 2012; 32.1:
165–180.

5 Verbeke G, Spiessens B, Lesaffre E: Conditional linear mixed models. Am Stat 2001;
55: 25–34.

6 Sikorska K, Lesaffre E, Groenen PJF, Eilers PHC: GWAS on your notebook: fast
semi-parallel linear and logistic regression for genome-wide association studies.
BMC Bioinformatics 2013; 14: 166.

7 Rivadeneira F, Styrkársdottir U, Estrada K et al: Twenty bone-mineral-density loci
identified by large-scale meta-analysis of genome-wide association studies. Nat Genet
2009; 41: 1199–1206.

8 Verbeke G, Molenberghs G: Linear Mixed Models for Longitudinal Data. New York:
Springer, 2009.

9 Verbeke G, Fieuws S: The effect of misspecified baseline characteristics on
inference for longitudinal trends in linear mixed models. Biostatistics 2007; 8:
772–783.

10 Pinheiro J, Bates D, DebRoy S, Sarkar DR Core Team. Nlme: Linear and Nonlinear
Mixed Effects Models, R package version 3.1-111,0.999999-2, 2013.

11 Bates D, Maechler M, Bolker B Lme4: Linear mixed-effects models using S4 classes.
R package version 1.1-2, 2013.

12 Robinson GK: That BLUP is a good thing: the estimation of random effects. Stat Sci
1991; 6: 15–32.

13 Little RJA, Rubin DB: Statistical Analysis with Missing Data. New Jersey: Wiley, 2002.
14 R Core Team: R: A Language and Environment for Statistical Computing. Vienna:

R Foundation for Statistical Computing, 2013.
15 Jacqmin-Gadda H, Sibillot S, Proust C, Molina J-M, Thiébaut R: Robustness of the

linear mixed model to misspecified error distribution. Comput Stat Data Anal 2007; 51:
5142–5154.

Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)

Approximate procedures in longitudinal GWAS
K Sikorska et al

1391

European Journal of Human Genetics


	GWAS with longitudinal phenotypes: performance of approximate procedures
	INTRODUCTION
	MATERIALS AND METHODS
	The linear mixed model
	The conditional linear mixed model

	Table 1 Estimates of the parameters in model (2) from the BMD data for women obtained from a LMM analysis of the Rotterdam Study (taken from Sikorska et�al6)
	Approximate procedures
	Two-step
	Conditional two-step
	Simulation study

	RESULTS
	Heteroscedasticity and robust standard errors
	Influence of the cross-sectional SNP effect
	Effect of distributional assumptions

	Table 2 Balanced case
	Table 3 Unbalanced case
	Figure 1 Balanced case, Scenarios 1 and 4.
	Discussion of the simulation results

	Figure 2 MAR case, Scenarios 1 and 4.
	Practical aspects and computation times

	Figure 3 Balanced case, Scenario 1 with &#x003B2;1�=�0.05.
	Figure 4 MAR case, Scenario 1 with &#x003B2;1�=�0.01.
	DISCUSSION
	The last author acknowledges Geert Verbeke for the interesting discussions on the conditional linear mixed�model.Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)Hofman A, Darwish M
	ACKNOWLEDGEMENTS




