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Abstract

Divergence in gene regulation is hypothesized to underlie much of phenotypic evolution, but the role of natural selection
in shaping the molecular phenotype of gene expression continues to be debated. To resolve the mode of gene expression,
evolution requires accessible theoretical predictions for the effect of selection over long timescales. Evolutionary quan-
titative genetic models of phenotypic evolution can provide such predictions, yet those predictions depend on the
underlying hypotheses about the distributions of mutational and selective effects that are notoriously difficult to dis-
entangle. Here, we draw on diverse genomic data sets including expression profiles of natural genetic variation and
mutation accumulation lines, empirical estimates of genomic mutation rates, and inferences of genetic architecture to
differentiate contrasting hypotheses for the roles of stabilizing selection and mutation in shaping natural expression
variation. Our analysis suggests that gene expression evolves in a domain of phenotype space well fit by the House-of-
Cards (HC) model. Although the strength of selection inferred is sensitive to the number of loci controlling gene
expression, the model is not. The consistency of these results across evolutionary time from budding yeast through
fruit fly implies that this model is general and that mutational effects on gene expression are relatively large. Empirical
estimates of the genetic architecture of gene expression traits imply that selection provides modest constraints on gene
expression levels for most genes, but that the potential for regulatory evolution is high. Our prediction using data from
laboratory environments should encourage the collection of additional data sets allowing for more nuanced parameter-
izations of HC models for gene expression.
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Introduction
Regulatory variation within and between species is thought to
explain a large proportion of phenotypic diversity of life
(Wilson et al. 1974; King and Wilson 1975; Hammer and
Wilson 1987). In the past decades, gene expression microar-
rays and transcriptome sequencing have revealed remarkable
natural variation in gene expression levels within populations
as well as between species (Townsend et al. 2003; Gilad 2012).
However, more than a decade after the first genome-wide
assay of gene expression, we still lack an explicit evolutionary
model for the processes governing the generation and elim-
ination of the abundant gene expression variation within
populations (Warnefors and Eyre-Walker 2012).
Transcriptomic comparisons of humans and chimpanzees
have been used to suggest that gene expression evolves neu-
trally (Khaitovich et al. 2005; Chaix et al. 2008). However,
analyses of species divergence at longer timescales (Rifkin
et al. 2003; Lemos et al. 2005) and contrasts of mutation
accumulation assays with natural variation (Denver et al.
2005; Rifkin et al. 2005; Landry et al. 2007) provide strong
evidence for the role of stabilizing selection in shaping gene
expression variation and divergence for a large proportion of

the genome in species from yeast to fruit flies to mammals.
While reconciling these ideas and observations and revealing
the diversity of ways that evolution shapes gene expression
across ecological and demographic contexts will be the work
of decades, framing research in this area in light of explicit
theoretical models can help to more clearly illuminate the key
unknowns. Here, we link a longstanding body of quantitative
genetic theory with genomic data sets to illustrate the poten-
tial of new empirical sources of data combined with classical
theory to guide future research.

Quantitative genetics theory predicts that populations
attain an equilibrium of phenotypic variation when the con-
tribution of new mutations to phenotypic variance is bal-
anced by selection and drift. A class of models designed to
quantify this equilibrium variation describe fitness as a unim-
odal function of the focal phenotype influenced by mutations
drawn independently from a fixed distribution. Although a
general result that applies across all parameter values has
been challenging to obtain, three asymptotic models yield
analytical expressions relating the standing genetic variance
to the strength of selection and the frequency and distribu-
tion of mutational effects. In a neutral model, selection is
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assumed to be negligible and the equilibrium genetic variance
derives from a balance between mutation and drift (Lynch
and Hill 1986). Two additional models incorporating selection
differ in how mutation and selection impact standing genetic
variation. In the Gaussian model (Lande 1976), mutations are
relatively frequent, are of small effect compared with standing
genetic variation, and are countered by weak selection. In the
House-of-Cards (HC) model (Kingman 1978; Turelli 1984;
Burger et al. 1989), mutations are infrequent, their effects
can exceed standing genetic variation, and selection is corre-
spondingly stronger to maintain equilibrium levels of genetic
variation.

Empirical data characterizing mutational input permit the
evaluation of these longstanding evolutionary hypotheses
against one another, in part because the variance in muta-
tional effects should be much larger under an HC than under
a Gaussian process of stabilizing selection. As a consequence
of the direction and magnitude of mutational effects, some
phenotypes could evolve neutrally, though for organismal
level traits, phenotypic evolution under strict neutrality is
thought to be relatively rare (Estes and Arnold 2007). To
better characterize the effects of mutations, the rate at
which mutation contributes new variation to a population
each generation, or mutational variance (Vm), has been esti-
mated using mutation accumulation experiments. For a
number of organismal traits including Drosophila viability,
bristle number, and alcohol dehydrogenase activity,
Tribolium pupal weight, Daphnia life history, corn vegetative
and reproductive traits, barley biomass and grain yield, and
mouse skeletal traits, these experiments suggest that muta-
tion supplies substantial mutational variation consistent with
evolution in the HC domain (Lynch 1988; Vm/Ve = 10�4–
10�2). Estimates of mutational variance for gene expression
tend to be substantially smaller (Denver et al. 2005; Rifkin
et al. 2005; Landry et al. 2007; Vm = 10�5–10�4).
Furthermore, the strength of selection on expression level
of single genes might be supposed to be substantially less,
at least on average, than that imposed on organismal traits
more proximal to fitness. Both observations raise the question
of whether stabilizing selection on gene expression might be
more consistent with a Gaussian or even a neutral model of
phenotypic evolution. Identifying a theoretical model capable
of capturing the patterns evident in natural populations for
this fundamental molecular phenotype could have the po-
tential to illuminate evolutionary principles at higher levels of
biological organization.

As mutation accumulation experiments and measure-
ments of genetic variance for gene expression become in-
creasingly accessible for emerging model species
(Pannebakker et al. 2008; Roles and Conner 2008; Molnar
et al. 2011; Ness et al. 2012; Hall et al. 2013; Latta et al.
2013), one of the key empirical unknowns required for param-
eterizing theoretical models of stabilizing selection is the
number of loci controlling gene expression levels. Because
the availability of new variation in expression scales with
the number of loci at which mutations can induce changes
in expression, this parameter fundamentally influences infer-
ences about the strength of selection. Despite its importance,

the number of genes controlling gene expression has been
challenging to characterize empirically. Studies identifying
eQTLs have historically been underpowered to map loci
with small effects, and are restricted to variants currently
segregating in natural populations. More manipulative
assays, like screens for the effects of gene deletions on gene
expression, have been confined to analyses of nonessential
genes in tractable model organisms. These methodological
limits may yet be overcome (e.g., Bloom et al. 2013; Duveau
et al. 2014), but for the moment, the level of selection can be
inferred in relation to a range of likely values corresponding to
the unknown genetic architectures.

Here we apply genomic measurements of mutational var-
iance, the number of loci contributing to gene expression,
population variation, and mutation rates to evaluate the ap-
propriate model for gene expression evolution. We calculate
the level of stabilizing selection according to the best-
supported model to ascertain the possible strengths of stabi-
lizing selection on gene expression, from nearly neutral to
strong constraint. We then contrast our range of estimates
for the strength of stabilizing selection on gene expression
with estimates of stabilizing selection for other phenotypes as
well as other sources of empirical data addressing the effect of
expression change on fitness in order to confirm and
more fully characterize the dynamics of gene expression evo-
lution. We verify our inference by comparing the level of
selection inferred across genes with other sources of
empirical data addressing the effect of expression change
on fitness, and contrast the observed patterns of evolution
in this important molecular phenotype with other
organismal traits.

Results

Theory

The neutral (N) approximation for genetic variance (Vg) pre-
dicts the magnitude of Vg as

Vg
N ¼ 2NeVm ð1Þ

where Ne is the effective population size and Vm is mutational
variance (Lynch and Hill 1986). Because Vg, Ne, and Vm are
each measurable, the neutral prediction of the genetic vari-
ance VN

g can be calculated from measured Ne and Vm and
then compared with the empirical estimate of Vg. In contrast,
the Gaussian (G; Lande 1976) and HC (Kingman 1978; Turelli
1984) models allow a role for stabilizing selection in constrain-
ing genetic variance, and thus feature a common parameter
for selective variance Vs. As a metric of the breadth of the
fitness landscape around the optimal phenotype that is in-
versely proportional to the strength of stabilizing selection
(Johnson and Barton 2005), Vs is challenging to measure
(Kingsolver et al. 2001; Rest et al. 2013). Theoretical and sim-
ulation work has demonstrated that these two models are
accurate in different regions of mutation–selection parameter
space (Turelli 1984; B€urger 2000), and has identified the do-
mains of their accuracy. Thus, to establish which model
applies, we calculate Vs for each model from its measurable
parameters and check whether estimates of Vs based on the
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two models are consistent with their domains of accuracy.
Accordingly, the original forms of the approximations can be
solved for selective variance, Vs, to yield

Vs
G ¼

Vg
2

2nVm
ð2Þ

Vs
HC ¼

Vg

2n�
ð3Þ

where Vs is defined based on the magnitude of Vg, Vm, the
number of loci contributing to expression variation (n), and the
phenotypic mutation rate (�). The Stochastic House-of-Cards
(SHC) approximation (Turelli 1984) relaxes the assumption of
infinite population size by incorporating effective population
size (Ne). It can be solved for Vs using substitutions based on the
definition of mutational variance, Vm ¼ 2n��2, where �2 is
the variance in mutational effects, to yield

Vs
SHC ¼

NeVgVm

2n�ð2NeVm � VgÞ
ð4Þ

Consistent with their differing assumptions about the relative
importance of standing genetic variation and the variance in
mutational effects, the G and HC estimates of Vs differ by a
factor of

Vg

2n�2 :To differentiate between these stabilizing selec-
tion scenarios, the empirically measured values for the rele-
vant parameters and the calculated value of Vs for each
model can be contrasted with the boundary line between
the domains in which the G and HC models apply,
20�Vs =�2 (Turelli 1984), and the results based on Vs can
be compared. Evolution characterized by frequent mutations
of small effect under weak selective constraint lies in the
G domain

20�Vs 4 �2 ð5Þ

and is well described by the Gaussian description of muta-
tion–selection balance. Evolution characterized by rarer,

more variable mutational effects under moderate selective
constraint lies in the HC domain

20�Vs < �2 ð6Þ

and is well described by the HC class of models. We can
empirically determine the consistency of data with this
boundary using the HC, G, or a model-averaged approach
to determine Vs.

Nearly neutral theory predicts that selection is most effec-
tive at large population sizes and that population dynamics
become more similar to neutral drift as Ne or selection coef-
ficients (s) decline; nearly neutral evolution is predicted to
occur around Nes&1 (Ohta 1976; Ohta and Gillespie 1996).
To estimate the typical selective effects of individual delete-
rious alleles s from the population level measure of selection
Vs, we used B€urger’s (2000, p. 280) approximation of the
average selective effect of a deleterious mutation in a popula-
tion s ¼ �2

2Vs
. To be consistent with a trait evolving under

nearly neutral evolution, inferred jNe s j&1.

Analysis

Data on the budding yeast, Saccharomyces cerevisiae, yielded
estimates and uncertainty distributions for the necessary pa-
rameters to analyze these models. We assembled gene-speci-
fic genetic variances among largely Italian vineyard-derived
isolates for gene expression, mutational variances based on
mutation accumulation lines, estimates of the number of loci
n controlling gene expression encompassing two data sets
capturing the effects of gene knockouts on expression
levels, a global rate of mutations, �, likely to influence gene
expression based on the frequency of phenotype-altering mu-
tations, and an effective population size based on wine yeast
nucleotide diversity scaled by mutation rate for 3,412 genes
(Materials and Methods and table 1). By sampling from the
uncertainty distribution for each estimated parameter and
calculating results through equations (1)–(4), our analysis
generated uncertainty distributions for VN

g , VG
s , and VHC

s .

Table 1. Genome-Wide Summary of Parameter Estimates and Their Sources.

Saccharomyces
cerevisiae

Caenorhabditis
elegans

Drosophila
melanogaster
(The Netherlandsa)

Drosophila
melanogaster
(Zimbabwe)

No. of Genes Analyzed 3,412 930 4,950 563

Vg Median 0.101 0.050 0.097 0.088
Interquartile range 0.073–0.145 0.031–0.90 0.054–0.147 0.052–0.158
No. of individuals 9 5 8 8
Ref. Fay et al. (2004) Denver et al. (2005) Hutter et al. (2008) Hutter et al. (2008)

Vm Median 1.12� 10�4 3.90� 10�4 3.43� 10�5

Interquartile range 7.17� 10�5–1.70� 10�4 2.61� 10�4–6.67� 10�4 1.96� 10�5–7.24� 10�5

No. of lines 4 4 12
Ref. Landry et al. (2007) Denver et al. (2005) Rifkin et al. (2005)

l Median 1.08� 10�5

Interquartile range 3.53� 10�6–2.51� 10�5

Ref. Kondrashov (2003)

Ne Point estimate 1.06� 106 1.75� 104 2.6� 106

Ref. Lynch et al. (2008);
Elyashiv et al. (2010)

Denver et al. (2005) Andolfatto et al. (2011)

aDrosophila melanogaster Vg data from the Netherlands population are used for results reported in the main text. Further analyses are presented in the supplementary material,
Supplementary Material online.
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For all genes, estimates of VN
g were much larger than ob-

served Vg (fig. 1), and estimates of VG
s and VHC

s differed sub-
stantially (supplementary table S2, Supplementary Material
online). Estimates of the selective variance Vs for each gene
individually exhibited considerable uncertainty. Nevertheless,
both VG

s and VHC
s , when sampled from their uncertainty with

other parameters, yielded values that were consistent with
equation (6), indicating that gene expression fell into the
space described by HC models comprising stochastically
large mutations and moderate selection. Although the
Gaussian model could not be rejected for every gene, esti-
mates of the variance of mutational effects (�2Þ and the joint
effect of the phenotypic mutation rate and selection (�Vs)
nearly all fell outside the regime that would support a
Gaussian model (fig. 2a). Relaxing the infinite population
size assumption of the HC model through the SHC approx-
imation (eq. 4), which interpolates between HC stabilizing
selection and neutral drift, produced outcomes nearly iden-
tical to HC (fig. 2a and supplementary fig. S1, Supplementary
Material online). Whether the Gaussian model was rejected or
not, the likeliest estimate for virtually all genes fell in the
parameter space corresponding to HC conditions (99.5% of
measured genes). Indeed, in no case could we reject the pos-
sibility that a yeast gene evolved under HC conditions. The
number of loci controlling gene expression (n) does not
impact model choice. This insensitivity is expected as a con-
sequence of the term 1

n appearing on both sides of the in-
equality in the definitions of Vs and �2.

While evaluating the inequalities in equations (5) and (6)
yielded support for the HC model for all n, the strength of
selection inferred under the model depended on the choice of
n (table 2). Taking the number of eQTLs detected as a proxy
for the number of loci controlling gene expression to calculate

VHC
s (hereafter Vs) yielded large values genome-wide, with a

positive skew (median gene-specific Vs = 2.2� 103).
Progressively larger values for n decreased the magnitude of
Vs (fig. 3) with Vs estimated using mean values of n drawn
from expression profiling of gene deletion mutants represent-
ing substantially stronger selection (KO1: n = 48, median gene-
specific Vs = 88.4; KO2: n = 169, median gene-specific
Vs = 26.2). Despite this uncertainty, Vs estimates for gene ex-
pression generally indicated weaker stabilizing selection than
standardized selection gradients (�) previously reported for
morphological and phenological traits (Kingsolver and
Diamond 2011) using the approximation Vs

Vp
¼ � 1

2�
(Johnson and Barton 2005). This approach to detection of
stabilizing selection in morphological and phenological traits

FIG. 2. Scatter plot of the variance in mutational effects for gene ex-
pression (�2) by the product of mutation rate and the inverse strength
of selection (20�Vs) for identifying the appropriate evolutionary model.
The solid line represents the boundary between the domain of the
Gaussian and HC models estimated by Turelli (1984). For each gene,
the median of the uncertainty distribution for �2, estimated as Vm/2n�,
is plotted on the x axis for nKO1

, and the median of the uncertainty
distribution for the quantity 20�Vs is plotted on the y axis for (a)
Saccharomyces cerevisiae genes using the Gaussian (open maroon
squares), HC (blue circles), and SHC (dark blue crosses) approximation
for Vs; and for (b) Drosophila melanogaster (green squares) and
Caenorhabditis elegans (blue triangles) genes using the HC-Gaussian
model-averaged estimate for Vs.

FIG. 1. Scatter plot of predicted genetic variance in gene expression
based on a strictly neutral model versus observed genetic variance.
The solid line represents the neutral prediction. Predicted and observed
genetic variances are plotted for genes in Caenorhabditis elegans (blue
triangles, 930 genes), Drosophila melanogaster (green boxes, 563 genes),
and Saccharomyces cerevisiae (orange diamonds, 3,405 genes). Points
plotted are the medians of the posterior distributions for each gene.
Caenorhabditis elegans genes with confidence intervals that overlap
neutrality are shaded in gray (seven genes for which P 4 0.05).
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relies on partial regressions of fitness on trait values that
provided limited power to detect weak stabilizing selection
(Kingsolver et al. 2001; see also Stinchcombe et al. 2008). If we
limit our attention to the domain of n supported by empirical
data, the magnitude of selection inferred on gene expression
is weaker than reported estimates of selection on phenolog-
ical and morphological traits (fig. 3, median Vs

Vp
¼3.1). We

specified a normal distribution describing selection parame-
terized by the mean population expression and selective var-
iance for all of our yeast genes. A logistic regression on
“knockout values” based on the amount of this normal dis-
tribution that fell below zero predicted an independent, em-
pirically determined data set on gene essentiality in rich
media (Seringhaus et al. 2006; P< 0.001).

We also analyzed the neutral, Gaussian, and SHC models in
two other model taxa, the fruit fly Drosophila melanogaster
and the nematode Caenorhabditis elegans. As in yeast, VN

g was
much greater than observed Vg for gene expression (fig. 1) in
both European and African populations of fruit flies (Hutter
et al. 2008) and in a cosmopolitan sample of nematodes
(Denver et al. 2005). Using mutation accumulation expression
data and a range of values for n to estimate �2 and Vs values
for each gene (fig. 3), the best estimates for gene expression in
the fruit fly and nematode fell clearly within the domain of
the HC model (e.g., with nKO1

= 48, 99.7% of worm genes and
91.6% of fly genes; fig. 2b). Using VHC

s for Vs to evaluate the
inequality 20�Vs<�

2 yielded rejection of the Gaussian
model for 88% of measured genes for nematodes and
30.2% for fruit fly (P< 0.05; a lower fruit fly Vm leads to esti-
mates of �2 that are closer to 20�Vs; fig. 2b and supplemen-
tary table S1, Supplementary Material online). Using VG

s to
evaluate the inequality was less conservative, rejecting the

Gaussian model for 95% of nematode genes and 51% of
fruit fly genes (P< 0.05). VHC

s and VSHC
s estimates were virtu-

ally identical for fruit fly genes. Typically, VSHC
s was greater

than VHC
s for nematode genes, but resampling gene-specific

or genome-wide uncertainty distributions for VHC
s and VSHC

s
did not yield statistically significant differences between the
two models. These two multicellular organisms yielded re-
markably similar levels of selective constraints to yeast
under the HC model, with many genes in the range of mod-
erate selective constraint (e.g., with nKO1

= 48, fly median
VHC

s = 70.5, worm median VHC
s = 41; fig. 4). Repeating the

Drosophila analysis for 260 genes in which estimates for the
heritability of male gene expression permitted Vg to be dis-
tinguished from Vp (h2 median = 0.19, range from 3.8� 10�21

to 0.588; Wayne et al. 2007) strengthened the support for the
HC model (20�Vs<�

2 for 99.2% of tested genes), and sub-
stantially increased the strength of stabilizing selection in-
ferred (e.g., with nKO2

= 48, the median VHC
s = 1.3, and the

interquartile range was 0.22–5.8).
Using an approximation for the average deleterious effect

of a mutant allele for a population under stabilizing selection
s ¼ �2

2Vs
(B€urger 2000, p. 280) facilitated further characteriza-

tion of the level of selection in the context of population size.
For yeast and fruit flies, few genes were consistent with nearly
neutral evolution (based on the KO1 gene deletion-derived
values of Vs, yeast median jNes j = 2.8� 104, 99.9% of genes
significantly greater than 1 at P< 0.05; fruit fly median
jNes j = 1.1� 104, 99.9% of genes significantly greater than
1 at P< 0.05). Although the average population s values in-
ferred for the nematode worm gene expression were inter-
mediate between those of yeast and fruit flies, the smaller
population size of this self-fertilizing species produced esti-
mates consistent with nearly neutral evolution across most of
the genome (median jNes j = 1.3� 102, 35% of genes signif-
icantly greater than 1 at P< 0.05).

Inferred levels of selection were robust to the choice of
natural population. Recalculating Vs based only on the isolates
collected from an Italian vineyard in two consecutive years
demonstrated that results were robust to the inclusion of
three non-Italian isolates (HC model linear regression:
y = 0.96x + 78, R2 = 0.93; supplementary fig. S2a,
Supplementary Material online). Similarly, repeating the
Drosophila analysis with an independent population of
African flies illustrated that the genome-wide distribution of
Vs values was robust to choice of fruit fly populations (sup-
plementary fig. S2b, Supplementary Material online).

Discussion
We have demonstrated that the HC model best describes the
patterns of genome-wide gene expression evolution observed
across the model species S. cerevisiae, D. melanogaster, and C.
elegans. The neutral model predicted a much larger Vg than
was observed for all genes. Combining the distribution of
mutational effects with the selective variance inferred under
two different selective models provided support for the HC
models over the Gaussian model, a result that was robust to
contrasting estimates of the number of genes regulating gene
expression. This support agrees with the functional

Table 2. Parameter Estimates for the Number of Loci Controlling
Gene Expression and their Sources.

Data
Source

Saccharomyces
cerevisiae

Caenorhabditis
elegans

Drosophila
melanogaster

eQTL No. of genes
analyzed

3,412 930 563

Median n 2 1 1
Interquartile

range
1–3 1–1 1–3

Ref. Smith and
Kruglyak
(2008)

Vinuela
et al.
(2010)

Ruden
et al.
(2009)

KO1 No. of
mutants
analyzed

211 — —

Median n 48 — —
Interquartile

range
24–96 — —

Ref. Hughes et al.
(2000)

— —

KO2 No. of
mutants
analyzed

754 — —

Median n 169 — —
Ref. Ho and Zhang

(2014)
— —
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observation that mutation of one or a few nucleotides can
produce large changes in gene expression (Brown et al. 2008).
The selection of the HC models, characterized by high muta-
tional variance and moderate selective constraint, as best
supported for gene expression phenotypes also agrees with
analyses of mutational variance for several organismal pheno-
types (Lynch 1988).

By providing a common theoretical framework, these
quantitative genetic models allow comparisons across

disparate species when parallel data sets are available. Using
comparable sources of parameter values to identify Vs for a
unicellular fungal microbe and two highly divergent multi-
cellular animals revealed remarkably similar levels of selective
constraint suggesting fundamental parallels in the action of
natural selection on gene expression, filtered by the particu-
lars of demography and life history. Examining estimated se-
lection coefficients in the light of the relative population sizes
suggested that even the weak selection inferred with n values

FIG. 3. The influence of the number of loci controlling gene expression (n) on the genome-wide strength of selection. The median genome-wide Vs

based on the HC model is plotted on the y axis based on values of n drawn from exponential distributions with means represented on the x axis for
yeast genes (blue circles, 3,412 genes), fruit fly genes (green triangles, 4,950 genes), and nematode genes (red squares, 930 genes). Dotted lines represent
the quartiles across all genes analyzed. Triangles on the x axis represent three empirical estimates for n (see table 2). The triangle on the y axis represents
the median magnitude of stabilizing selection inferred on morphological and phenological traits for data reanalyzed from Kingsolver and Diamond
(2011).

FIG. 4. The genome-wide frequency distributions of Vs based on the HC model. Vs values based on n estimated from differential expression
in gene deletion strains (nKO1

= 48) are binned and charted as bars for yeast (blue, 3,412 genes), fruit fly (green, 4,950 genes), and nematode (red,
930 genes).
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based on eQTLs is nonetheless sufficiently strong to constrain
population variation in gene expression for S. cerevisiae and D.
melanogaster. The Vs values inferred for nematode C. elegans
were on the same order of magnitude as the other two spe-
cies, but were not as highly constrained, as would be expected
if the species less efficiently removes deleterious variation,
given its smaller effective population size and self-fertilizing
life-history. For all three species, our use of empirical estimates
of phenotypic variance (Vp) to approximate genetic variance
(Vg) biases our estimate of Vs toward inferring weaker selec-
tion (greater Vs) than would be inferred from a known Vg. This
bias is on the order of broad sense heritability as Vg = H2Vp

(Lynch and Walsh 1997). The effect of this bias is conservative
for our conclusion that the HC model applies better than the
Gaussian model (20�Vs<�

2), providing robust support for
the HC model of stabilizing selection on the trait of gene
expression.

The magnitude of stabilizing selection on gene expression
inferred under the HC model was sensitive to the number of
loci controlling gene expression variation, n, yielding relatively
weak selection for n estimated from eQTLs to moderately
strong stabilizing selection for n estimated from gene deletion
studies. These estimates likely bound the true range of n:
Underpowered eQTL studies frequently provide significant
underestimates of n (Bloom et al. 2013), whereas the n de-
rived from the effects of gene deletions on genome-wide gene
expression might represent an overestimate of the number of
genes in which variation arises by mutation in natural popu-
lations (Stern 2000). Support for the hypothesis that n is in
the lower range we explored here for the majority of genes
comes from explicit regulatory network models integrating
diverse genomic data sets: The number of regulators repre-
sented by in-degree in these network models is another ap-
proximation of n. A recent predictive model in Drosophila
using machine learning to integrate TF binding, sequence
motif, chromatin modification, and expression data inferred
a median genome-wide in-degree of 10 with a maximum of
188 (Marbach et al. 2012, Yang B, personal communication)
Similarly, yeast network analysis has suggested that 93% of
genes are regulated by 5 or fewer transcription factors
(Guelzim et al. 2002). These results suggest that for the ma-
jority of the genome an appropriate effective value for n lies
between neQTL and nKO1

, implying the strength of stabilizing
selection centers around the lower end of the range estimated
here. The HC and Gaussian models have been formulated
under an assumption that all n regulators are interchangeable
either in their rate of mutation or in their mutational effects.
Improved information about the distribution of effect sizes on
expression levels (Ho and Zhang 2014) and their frequency
(Metzger et al. 2015) could make it possible to relax this
assumption, exploring the influence of realistic variation in
mutational effect size and frequencies. For example, muta-
tions in cis and trans may occur at different frequencies or
exhibit different magnitudes of effect (Gruber et al. 2012).
Models capable of incorporating or accounting for a greater
complexity of mutational frequency and effect (or even se-
lective consequences, e.g., Coolon et al. 2014) could guide

future hypotheses regarding the consequences of stabilizing
selection on gene expression variation.

At the low end of the possible range of estimates of n, the
predicted intensity of stabilizing selection on gene expression
was sufficiently weak that one might ask if the level of selec-
tive constraint that we detect within populations contributes
to meaningful changes in fitness. Several lines of evidence
confirm that, at least for yeast, it does. In a previous analysis
of the energetic cost of gene expression for yeast
populations, Wagner (2007) identified a selective threshold,
s = 1.47� 10�7, below which he suggests that genetic drift
dominates. The level of selection we estimate here for every
yeast gene is stronger than that threshold. Thus, this inde-
pendently established threshold supports our finding that
even the weakest stabilizing selection detected in the yeast
analysis could suffice to forestall large changes in gene expres-
sion and constrain the population distribution of expression
variation when population sizes are sufficiently large.
Accordingly, careful laboratory analyses manipulating expres-
sion levels have revealed impacts on fitness of even small
changes in gene expression within yeast (Rest et al. 2013).
Constraint on changes in gene expression is also evident
even on longer time scales such as the divergence of species
of Drosophila (Bedford and Hartl 2009). Furthermore, our
observation that the inferred level of selection on zero expres-
sion in yeast significantly predicts the gene essentiality of the
yeast knockout collection demonstrates that the selection
detected here relates to the effect of fully abolishing
expression.

Mutation–selection balance models such as the HC model
miss some of the complexities that may be important in gene
expression evolution. An analysis by Rockman et al. (2010) of
population variation in C. elegans highlighted the role that
genomic context can have in shaping expression variation:
Inbreeding due to self-fertilization in this species reduces the
rate of recombination, and these authors show that muta-
tional pressure and frequency of recombination between
linked sites are the most significant predictor of expression
variation in this species. One implication of this finding is that
models such as the Gaussian or HC model that neglect the
role of genomic context may be most applicable to species
with relatively high rates of recombination like yeast
(Magwene et al. 2011) or fruit flies (Chan et al. 2012).
Nonetheless, even with an estimate of population size that
was highly conservative for this purpose, our analysis within
these models did yield differences in the effectiveness of se-
lective constraint in removing deleterious mutants between
C. elegans and the other two species, consistent with the
observed pattern of reduced recombination in the nematode.
More complex models that incorporate the particularities of
the life history and demography of the species under study
would be of interest in extending the scope and accuracy of
inferences of stabilizing selection within populations.

A key element for future estimates of stabilizing selection
on gene expression will be the extension of models to incor-
porate interactions among genes. Covariances among traits
are likely to be particularly important for expression pheno-
types, which arise from interactions of transcription factors
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and other regulatory molecules with cis regulatory DNA
(Harbison et al. 2004; Choi and Kim 2009). These interactions
are challenging to characterize at a genome-wide scale due to
the number of potential interactions, which goes up as the
square of the number of genes. Covariances can arise in evo-
lution as a consequence of correlated mutational effects as
well as correlated selection on independent mutational ef-
fects (Walsh and Blows 2008). Disentangling the two requires
assessing covariances among traits separately for new muta-
tions and for segregating variants in natural populations.
Fortunately, high throughput methods for identifying the fre-
quency and identity of new mutations (Gruber et al. 2012;
Duveau et al. 2014) as well as the source of segregating var-
iation in natural populations (Ehrenreich et al. 2010; Taylor
and Ehrenreich 2014) promise to accelerate the pace at which
empirical data characterizing variation for gene–gene inter-
actions become available (Mackay 2014). Investigations sep-
arating the influences of mutation from selection should also
enable collection of more precise estimates of the rate at
which mutations introduce phenotypic variation into a pop-
ulation (�), as well as identify covariation between the
number of genes affecting a trait and the magnitude of mu-
tational effects on that trait. A model-based incorporation of
interactions between genes into this evolutionary framework
would strengthen our understanding of genome-wide gene
expression evolution and enhance its realism (e.g., Innocenti
and Chenoweth 2013). In particular, network output could be
a more coherent unit of selection compared with individual
gene expression (Harcombe et al. 2013).

Fully explaining the low selective constraint on gene ex-
pression estimated in these model organisms will also require
greater consideration of the role of the environment in mod-
ulating selection on gene expression. Because gene expression
is highly plastic to environmental variation, the degree of
constraint detected will depend both on the strength of se-
lection in the selective environment and on the correlation
between population expression in the selective environment
and in the environment in which expression was assayed.
Laboratory environments, characterized by ideal conditions
and enriched nutrition, are likely to be particularly permissive
of variant expression, as illustrated by the survival of a large
proportion of yeast gene knockout strains in this environ-
ment (Giaever et al. 2002). Moreover, correlations of gene
expression among individuals within a population decrease
in permissive environments (Hodgins-Davis et al. 2012). For
these reasons, stabilizing selection on gene expression in nat-
ural environments might be considerably stronger than that
measured here in artificial environments. Further resolution
of the population genetics of stabilizing selection on gene
expression requires studies that gather additional population
variation and mutational accumulation data exploring gene
expression across diverse environments. Incorporating a di-
versity of environments that are as close to natural as possible
would provide further insight into the importance of
mutation–selection balance in maintaining population
genetic variation for gene expression.

The ascertainment of the appropriate model for popula-
tion genetic variation in gene expression can facilitate efforts

to appropriately parameterize gene expression evolution
within populations and between species. Additionally, the
estimates of the magnitude of the strength of stabilizing se-
lection on genome-wide gene expression can facilitate diverse
other molecular evolutionary studies ranging from the evolu-
tion of codon bias, transcription, and translation, to gene
essentiality and gene duplication. Ultimately, comparisons
to other modes of evolution including frequency-dependent
selection or heterosis (Bulmer 1989) should be performed.
Ideally, future studies should also map out the validity of
the HC model across environments, identify how variation
in ecological context influences the strength of selection on
genome-wide gene expression, and fully characterize the
strength of selection on expression across genes.

Materials and Methods
To estimate the magnitude of Vs under each model, each
model parameter was estimated from empirical genomic
data incorporating the full uncertainty inferred from available
data, summarized in table 1. Uncertainty distributions for Vg

and Vm were calculated from microarray data on mutation
accumulation lines and population isolates of yeast (Fay et al.
2004; Landry et al. 2007), fruit flies (Rifkin et al. 2005; Hutter
et al. 2008), and nematodes (Denver et al. 2005). Estimates of
natural variation captured by Vg were derived from a popu-
lation of yeast largely sampled from an Italian vineyard (Fay
et al. 2004), European and African populations of fruit flies
(Hutter et al. 2008), and a cosmopolitan sample of nematodes
(Denver et al. 2005) and chosen so that the environment and
developmental stage in which gene expression was assayed
was matched as closely as possible to the mutation accumu-
lation data available. Normalized fluorescence intensities were
obtained from NCBI GEO, then analyzed using BAGEL
(Townsend and Hartl 2002) to generate posteriors for relative
gene expression level. We sampled from these posterior dis-
tributions for each genotype to create gene-specific uncer-
tainty distributions for phenotypic (Vp) and mutational (Vm)
variances. Because gene expression phenotypes in clonal cul-
tures of S. cerevisiae exhibit extremely high heritabilities
(median 84%; Brem et al. 2002), we approximated Vg with
Vp for most of the analyses presented here. For Drosophila, the
consequences of approximating Vg with Vp were assessed by
calculating Vg for genes for which nonzero estimates of her-
itability were available for male gene expression (Wayne et al.
2007). Estimates of Vm were scaled by generations of muta-
tion accumulation (yeast: 4,000; flies: 200; worms: 280). For
yeast, a common genotype in the data sets (Fay et al. 2004;
Landry et al. 2007) facilitated a common scaling of Vg and Vm;
for worms, population and mutation accumulation data sets
had already been compared within a single microarray study;
for flies, each data set was scaled by the mean value of the
population measured.

To establish the robustness of inferred levels of selection to
the choice of natural population, two further analyses were
carried out. First, to ensure that Vg was not artificially inflated
by inclusion of a cosmopolitan sample of S. cerevisiae geno-
types, yeast population data were reanalyzed excluding three
lab and oak isolates to characterize the Vs values based only
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on isolates collected from an Italian vineyard in two consec-
utive years. Second, because the American D. melanogaster
lab strain used to found the mutation accumulation lines was
likely more closely related to European than African popula-
tions (Laurent et al. 2011), Vs values reported in the main text
for D. melanogaster drew on Vg derived from a population of
fruit flies collected in the Netherlands. However, an additional
population of D. melanogaster collected from Zimbabwe pro-
vided an independent estimate of Vg (table 1; Hutter et al.
2008) and the analysis was repeated with this population.

Estimates of Ne were drawn from the literature for D.
melanogaster and C. elegans (Cutter 2006; Andolfatto et al.
2011). S. cerevisiae Ne was derived by scaling measured
nucleotide diversity (�) for wine yeast (Elyashiv et al.
2010) by the empirically measured nucleotide
mutation rate (�nt, distinct from the phenotypic
mutation rate � of the models) (Lynch et al. 2008),
using the classically defined relationship �= 4Ne�nt

(Charlesworth 2009).
Empirical sources of data characterizing the number of loci

controlling a given gene expression trait (table 2) include
eQTL studies (Smith and Kruglyak 2008; Ruden et al. 2009;
Vinuela et al. 2012) and gene expression profiling of the yeast
gene knockout collection (Hughes et al. 2000). Because eQTL
studies have limited power, we corrected for unobserved loci
in yeast using the approach of Otto and Jones (2000), apply-
ing a genome-wide threshold for eQTL detection rather than
a gene-specific threshold. Our uncertainty distribution was
defined by the likelihood of each number of eQTL loci (eq. 7
of Otto and Jones 2000) over a domain of 1–30 loci (supple-
mentary fig. S4, Supplementary Material online). Because
eQTL studies likely underestimate the total number of
genes contributing to gene expression variation, we also an-
alyzed a second yeast data set to provide a maximum possible
n for yeast gene expression that characterized the conse-
quences of gene deletion on genome-wide gene expression
(Hughes et al. 2000). The proportion of 211 diploid gene de-
letion strains that significantly changed gene expression
(P< 0.01) was multiplied by the number of total genes in
the yeast genome. These values were treated as point esti-
mates of n and were used to recalculate Vs for those genes for
which all data sources were available. A third estimate of n
was drawn from the analysis of trait importance for gene
expression by Ho and Zhang (2014). In this work, the authors
perform a combined analysis of the effect of several experi-
ments testing the effect of deletion of 754 different genes on
genome-wide gene expression as measured in microarray ex-
periments, identifying a 2-fold change in expression in 3.3% of
the genome. The number of genes influencing gene expres-
sion could be extrapolated directly from the number of gene
deletions captured by this survey to the total number of genes
in the yeast genome. For all three empirical estimates, values
for n were drawn from an exponential distribution whose
mean was defined by the point estimates. To thoroughly
explore the behavior of these models across the uncertainty
of n, response of Vs estimates and model probabilities were
calculated for exponential distributions with mean values up
to a maximum of n = 500.

To parameterize a gamma uncertainty distribution for mu-
tation rate �, we used the method of moments on direct
estimates of phenotypic mutation rate for 20 Mendelian dis-
ease-causing loci in humans (Kondrashov 2003), yielding a
mean 4.7� 10�4 and variance 0.22. Substituting a point esti-
mate for � drawn from mutational analysis of gene expres-
sion for the yeast gene TDH3 (Gruber et al. 2012) produced
comparable results (supplementary fig. S3, Supplementary
Material online).

Uncertainty distributions for selective variance based on
the HC (Turelli 1984), SHC (Turelli 1984), and Gaussian ap-
proximations (Lande 1976) were calculated based on 10,000
independent draws from each parameter uncertainty distri-
bution. Uncertainty distributions for both 20�Vs and �2 ¼
Vm

2n� were calculated similarly, using the Gaussian, HC, SHC,
and model-averaged estimates of Vs (supplementary material,
Supplementary Material online). P values for the statistical
significance of model rejection and for the model weights
for the model-averaging were determined by the proportion
of joint samples from these distributions that satisfied
20�Vs<�

2.
The prediction of nearly neutral theory that s& 1

N, where s
is a selective coefficient and N is population size (Ohta and
Gillespie 1996), was used to identify the consistency of the
empirically estimated Vs values with the domain of nearly
neutral evolution for all three species. To estimate s, we
used B€urger’s (2000, p. 280) approximation that s ¼ �2

2Vs
is

the deleterious effect of an average mutant within a popula-
tion, and calculated the uncertainty distribution for the quan-
tity jNes j based on 10,000 samples from parameter
distributions for Vs and �2. P values for the consistency of
the quantity jNes j with nearly neutral evolution were deter-
mined by the proportion of samples from the jNes j distri-
butions that were� 1.

To test whether the degree of selective constraint pre-
dicted essentiality for each gene, we parameterized a
normal distribution with the first central moment defined
by the median of the uncertainty distribution for mean pop-
ulation expression level and the second central moment de-
fined by the median of the posterior distribution for HC Vs.
The cumulative density function of this distribution was eval-
uated at 0 as a hard selective bound on expression level, and
used as a logistic predictor for independently gathered data
on essentiality in rich media (Seringhaus et al. 2006). Diverse
other genomic correlates, listed in the Supplementary
Material online, did not show significant relationships with Vs.

Supplementary Material
Supplementary materials and methods, figures S1–S3, and
tables S1 and S2, file, and references are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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