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Abstract

Background—Investigations of folate-mediated one-carbon metabolism (FOCM) genes and 

gene-nutrient interactions in relation to colorectal cancer (CRC) risk are limited to candidate 

polymorphisms and dietary folate. We comprehensively investigated associations between genetic 

variants in FOCM and CRC risk, and whether FOCM nutrient status modified these associations.
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Methods—We genotyped 288 candidate and tagging single nucleotide polymorphisms (SNPs) in 

30 FOCM genes among 821 incident CRC case-control matched pairs in the Women’s Health 

Initiative Observational Study cohort. FOCM biomarkers (red blood cell [RBC] folate, plasma 

folate, pyridoxal-5’-phosphate [PLP], vitamin B12, and homocysteine) and self-reported alcohol 

consumption were measured at baseline. Conditional logistic regression was implemented; effect 

modification was examined based on known enzyme-nutrient relationships.

Results—We observed statistically significant associations between CRC risk and functionally 

defined candidate SNPs of MTHFD1 (K134R), MTRR (P450R), and PRDM2 (S450N), and a 

literature candidate SNP of TYMS (g.676789A>T) (nominal P<0.05). In addition we noted 

suggestive associations for tagSNPs in CBS, DHFR, DNMT3B, MAT1A, MTHFD1, and MTRR 

(nominal P<0.05; non-significant adjusted P). Significant interactions between nutrient biomarkers 

and candidate polymorphisms were observed for (i) plasma/RBC folate and FOLH1, PON1, 

TCN2, DNMT1, and DNMT3B; (ii) plasma PLP and TYMS TS3; (iii) plasma B12 and BHMT2; (iv) 

homocysteine and MTHFR and AARS.

Conclusions—Genetic variants in FOCM genes are associated with CRC risk among 

postmenopausal women. FOCM nutrients continue to emerge as effect modifiers of genetic 

influences on CRC risk.
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INTRODUCTION

Folate-mediated one-carbon metabolism (FOCM; Supplemental Figure 1) has important 

implications in colorectal carcinogenesis.1,2 Folate functions as a donor of one-carbon units 

and is essential for methylation reactions and for nucleotide synthesis, and thus DNA 

stability and repair.1 Low folate intakes, or biomarkers of low-folate status, have been 

implicated in increased risk of CRC.3,4 Also, a number of functional polymorphisms in the 

genes encoding enzymes and co-enzymes5–8 and their interactions with folate7–9 are linked 

to CRC risk. However, genetic variants other than the known functional polymorphisms and 

influences of other important FOCM nutrients, namely vitamin B6 and B12,6,7,10 on genetic 

polymorphisms in relation to CRC risk remain largely unexplored. Also, data are sparse on 

using biomarkers to indicate the status of FOCM nutrients in the investigations of gene-

nutrient interaction on CRC risk.8 Studying the impact of FOCM nutrients and genetics on 

CRC risk remains important in light of recent debate on whether the U.S. folic acid 

fortification program poses risks or benefits.11

The primary objective of this study was to comprehensively investigate whether genetic 

variants in FOCM-related genes were associated with CRC. In addition to known functional 

polymorphisms, we examined tagging-single-nucleotide-polymorphisms (tagSNPs) that 

capture genetic variation over the entire genetic region. We further evaluated interactions 

between genetic variants and biomarkers of folate, vitamin B6, vitamin B12, and 

homocysteine, an integrated marker of one-carbon status. We also investigated alcohol 
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consumption as an effect modifier because it can alter folate absorption and disturb DNA 

methylation.12

METHODS

Study population

The current study used a nested case-control design in the Women’s Health Initiative 

Observational Study (WHI-OS) cohort.13 We selected all confirmed invasive colorectal 

cancers as of April 24, 2008, and controls were matched by risk-set sampling on age (±3 

years), race/ethnicity, enrollment date (±1 year), hysterectomy status, family history of 

CRC, and time of blood draw (±6 months). A total of 988 case-control pairs were selected 

for genotyping. The study was approved by the human subjects review boards; written 

informed consent was obtained from all participants.

Genotyping

A total of 30 FOCM genes were identified (Supplemental Table 1). Genotyped SNPs 

included both candidate polymorphisms with a high likelihood of functional impact, based 

on amino-acid change, genomic location, and laboratory and epidemiologic studies, and 

tagSNPs selected based on linkage-disequilibrium (LD). LD was determined from the CEPH 

population (Utah residents with ancestry from Northern and Western Europe) from HapMap 

2 (data release #24, NCBI B36 assembly),14 with a cutoff of minor allele frequency (MAF) 

at 5% and r2=0.80.15 TagSNPs covered from 10KB upstream to 5KB downstream of each 

gene, or through the end of LD blocks, whichever was greater. A total of 295 SNPs were 

selected (Supplemental Table 2). SNPs were genotyped using the Illumina 384-plex 

BeadXpress GoldenGate genotyping platform. Laboratory personnel were blinded to case-

control status. For quality control, 30 CEPH trios (Coriell Cell Repository, Camden, NJ), 

genotyped by the HapMap project, and 5% blinded duplicates (42 case-control pairs) were 

included. Concordance among the blind duplicates was excellent: 38 pairs had 100% 

concordance and 3 pairs had a concordance of ≥95% (1 sample failed to genotype). SNPs 

were excluded for any of the following reasons: <95% call rate, <95% concordance with 

blind or non-blind duplicates, deviations from expected MAF, or Hardy-Weinberg 

equilibrium (HWE) p<0.0001; 254 SNPs successfully passed quality control (QC) 

procedures. Subsequently, 34 of the 41 SNPs which failed QC were re-genotyped using 

Sequenom iPLEX MassARRAY Typer v3.4 (Sequenom, San Diego, CA) or pre-designed 

TaqMan assays (Applied Biosystems, Carlsbad, CA). A total of 288 of the 295 SNPs (98%) 

were successfully genotyped. Samples were also genotyped for insertion-deletion and repeat 

polymorphisms in the thymidylate synthase gene (TYMS): TS3 (3’UTR 1494delTTAAAG, 

rs151264360) and TS5 (5’-UTR enhancer region with two or three repeats of a 28-bp 

sequence, a.k.a., TSER, rs34743033) using PCR and fluorescent size discrimination by 

capillary electrophoresis. Individuals carrying the 3 repeat TS5 genotype were further 

interrogated for the G>C SNP (TSER*3 G>C) by restriction fragment length polymorphism 

method.16 We excluded 74 samples due to average call rates <95% and 26 samples due to 

potential errors during blood or DNA processing. We further excluded participants with 

race/ethnicities other than white (167 case-control pairs) due to large MAF differences 

among racial groups. Subsequently, 821 case-control pairs entered statistical analysis.
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FOCM biomarkers and covariates

A 12-hour fasting blood specimen was obtained at baseline clinic visit. The mean duration 

from blood draw to CRC diagnosis was 5.3 years (standard deviation=3.1 years). Total 

plasma homocysteine and pyridoxal-5’-phosphate (PLP), indicating vitamin B6 status, were 

determined by high-performance liquid chromatography (HPLC) with post-column 

fluorescence detection.17,18 Red blood cell (RBC) and plasma folate and plasma vitamin 

B12 were determined by radioassays (SimulTRAC, MP Biomedicals, Orangeburg, NY). 

Inter-assay coefficients of variation (CV) of blinded duplicate control samples for each of 

the assays were: plasma homocysteine, 6.5%; RBC folate, 10.2%; plasma folate, 4.8%; 

plasma PLP, 4.8%; and plasma vitamin B12, 6.2%.

Demographic characteristics, medical history, and lifestyle factors were recorded at study 

enrollment using standardized questionnaires. Height and weight were measured by trained 

staff. Number of servings per week of beer, wine, and/or liquor based on a medium serving 

size (12 oz. of beer, 6 oz. of wine, and 1.5 oz. of liquor) was assessed by a food frequency 

questionnaire.

Statistical analysis

Baseline characteristics of CRC cases and controls were compared by Wilcoxon tests (for 

continuous variables) and Chi-square tests (for categorical variables). Conditional logistic 

regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted 

for age (continuous). OR estimates were assessed based on co-dominant inheritance models, 

unless the number of participants was <0 in a cell, in which cases a dominant model was 

used. Global P-values were obtained by likelihood ratio tests. P-values for trend were 

obtained via log-additive models. To account for multiple testing of tagSNPs on the gene 

level, p-values adjusted for correlated tests (PACT) were calculated.19 P-values for candidate 

SNPs were not adjusted for multiple comparisons, as we had specific prior hypotheses.

We investigated interactions between FOCM SNPs and RBC and plasma folate, plasma 

PLP, plasma B12, plasma homocysteine, and alcohol intake. All interactions were planned a 

priori with specific hypotheses based on the enzyme-nutrient functions (Supplemental Table 

6). The biomarker concentrations and intake values were categorized into tertiles based on 

the distribution in the control participants. Participants with the lowest category of 

biomarker concentrations or alcohol intake levels and the homozygous wild-type genotype 

were assigned as the reference group. The interaction analyses were adjusted for a priori 

selected potential confounders – baseline age, body mass index (BMI), and smoking pack-

years (all in continuous). P-values of interactions were determined by likelihood ratio tests. 

We calculated false discovery rate (FDR) q-values at the gene level to account for multiple 

testing for interactions.20 We used a q-value threshold of 0.25, and thus we expected to have 

a 3 in 4 chance of actually being a true positive among all declared significant. Statistical 

significance for nominal P-values and PACT was defined as P<0.05; all statistical tests were 

2-sided.
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RESULTS

Compared to controls, cases had a higher BMI, more pack-years of smoking, a higher 

proportion of polyp removal and higher concentrations of plasma homocysteine, but had a 

lower proportion of receiving colonoscopy or sigmoidoscopy screening (Table 1; see 

Supplemental Table 3 for the distributions by tumor location and stage). Our main effect 

analysis showed that candidate polymorphisms in methylenetetrahydrofolate dehydrogenase 

1 (MTHFD1, K134R), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase 

(MTRR, P450R, in high LD with R442C and S284T), PRDM2 (S450N), which encodes a 

zinc finger protein, and TYMS (g.676789A>T), were significantly associated with CRC risk 

(Table 2). In addition, we observed nominally significant associations between CRC risk 

and tagSNPs in genes encoding these enzymes: cystathionine-beta-synthase (CBS), 

dihydrofolate reductase (DHFR), DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B), 

methionine adenosyltransferase I alpha (MAT1A), MTHFD1, and MTRR (Table 3; see 

Supplemental Table 4 for tumor location-specific risks and Supplemental Table 5 for full 

results). These associations of tagSNPs did not remain statistically significant after 

correcting for multiple testing (PACT >0.05).

Table 4 presents a summary of nominally significant gene-nutrient interactions, which were 

pre-hypothesized according to the functions of FOCM enzymes and nutrients, for candidate 

polymorphisms. Notably, the variant genotypes of a candidate polymorphism in folate 

hydrolase 1 (FOLH1, rs10839236) were significantly associated with higher risk of CRC in 

the presence of lower (tertile 1), but not higher (tertile 3) plasma folate concentrations, 

compared to the wild-type genotype in the presence of lower plasma folate concentrations. 

In addition, plasma or RBC folate modified CRC risk associated with candidate 

polymorphisms in paraoxonase 1 (PON1, L55M), transcobalamin II (TCN2, R232P), and 

DNMT1 (I311L), and DNMT3A (rs11695471). Interactions were also observed between 

plasma homocysteine and methylenetetrahydrofolate reductase (MTHFR) R594Q and 

alanyl-tRNA synthetase (AARS) rs2070203; plasma PLP and TYMS TS3; plasma B12 and 

betaine-homocysteine S-methyltransferase 2 (BHMT2) rs626105; and alcohol intake and 

DNMT3B –149C>T and –579G>T (all P-interaction<0.05 and FDR q-value<0.25). A 

number of tagSNPs in the above genes as well as in other FOCM genes were also 

significantly modified by the study nutrients in relation to CRC risk (see Supplemental 

Table 7 for the full summary by the functions of FOCM enzymes and Supplemental Table 8 

for OR and 95% CI).

DISCUSSION

In this national sample of postmenopausal women, candidate genetic variants in MTHFD1, 

MTRR, PDRM2 and TYMS were associated with CRC risk and there were suggestive 

associations for several tagSNPs. Data from our interaction analyses support the importance 

of FOCM nutrients in modifying the CRC risk associated with genetic factors.

Our findings on several commonly studied polymorphisms are consistent with those 

reported in the literature. For example, the variant genotypes compared to the wild type of 

SHMT L474F (rs1979277) and TYMS TS5 were associated with lower CRC risk both in a 
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recent meta-analysis5 and in our study population (Supplemental Table 5), although the 

associations in our data were not statistically significant in part due to a relatively small 

number of participants with the variant genotypes. In addition, our findings for MTRR 

P450R may be important, as the polymorphism is associated with colorectal adenoma 

among White individuals.5 However, the MTHFD1 K134R homozygous variant versus 

wild-type was associated with an increase in rectal cancer with TP53 mutation,21 but not 

CRC risk overall.5 PRDM2 S450N and TYMS g.676789A>T have not been reported for their 

associations with CRC risk.

The tagSNP approach allowed us to explore genetic regions and loci beyond candidate 

SNPs. For example, data from the Encyclopedia of DNA elements (ENCODE)22 show that 

the tagSNP CBS rs11701048 is in high LD with a group of intronic SNPs in CBS in DNAse 

hypersensitivity sites containing histone modifications characteristic of weak transcriptional 

enhancers or promoters (Supplemental Table 9). These SNPs are also linked to active 

transcriptional start sites specifically within colorectal mucosal tissue, suggesting their 

regulatory functions in developing CRC.

We identified several novel FOCM gene-nutrient interactions. While plasma and RBC folate 

concentrations did not predict CRC risk in our study population,23 the significant interaction 

between FOLH1 and plasma folate suggests that the absorption and uptake of folate prior to 

the metabolic reactions in the cell may have important implications in colorectal 

carcinogenesis. Also, our data suggest that the relationship between TCN2 R232P, in which 

the variant allele may result in a lower affinity and less efficient transport of B12 compared 

to the wild-type allele24 and an increased CRC risk,25 may depend on long-term folate 

status, represented by RBC folate concentrations.

Paraoxonase metabolizes homocysteine thiolactone to homocysteine (Supplemental Figure 

1), and higher versus lower plasma homocysteine is associated with an increased CRC risk 

in our study population.26 For the polymorphism PON1 L55M, both our study 

(Supplemental Table 5) and another investigation27 observed a non-significant increase in 

CRC risk associated with the M allele, which is linked to lower activity and serum 

concentrations of paraoxonase compared to the L allele. However, multiple significant 

interactions observed for PON1 L55M and several tagSNPs (Supplemental Table 7) suggest 

that the paraoxonase-CRC risk connection may be dependent on the statuses of folate and 

homocysteine. These tagSNPs are related to DNA methylation, GATA2 binding (rs854540, 

tagged by rs8491), and miR-218, a moderately conserved microRNA binding site (rs854552, 

tagged by both rs854548 and rs854551),22 although these lines of evidence were not directly 

observed in colorectal tissues.

Our data also suggest complex FOCM gene-nutrient interactions in the processes of DNA 

methylation and translation. First, DNMT3B is postulated to be a de novo 

methyltransferase.28 In our data, alcohol intake modified the associations of DNMT3B –

149C>T, –579G>T and tagSNP 15193C>T (rs2424908) with CRC risk, as alcohol intake 

can interrupt DNA methylation.12 Second, DNMT1 is considered the “maintenance” DNMT 

that copies methylation patterns after DNA replication. Our data suggest that long-term 

folate status can also play a role in this mechanism. Third, PRDM2 is an important 

Cheng et al. Page 6

Cancer. Author manuscript; available in PMC 2016 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modulating factor of DNA methylation and has been linked to colorectal carcinogenesis.29 

Lastly, we observed an important interaction between plasma homocysteine and a genetic 

variant in AARS potentially because alanyl-tRNA synthetase maintains the accuracy of 

amino acid selection, including preventing homocysteine from disrupting translation.30 The 

gene-nutrient interactions among these epigenetic regulators are novel and need further 

confirmation.

The strengths of our study include its population-based design, standardized specimen and 

data collection, and physician-adjudication of CRC cases. The studied SNPs 

comprehensively covered relevant FOCM gene regions. By using measured biomarkers, we 

had a more objective and reliable assessment of internal doses of nutrients compared to self-

reported dietary assessment and use of single or multivitamin supplements.

Several limitations should be noted. First, the recruitment of WHI-OS spanned the pre- 

(1994–1995), peri- (1996–1997), and post- (1998) periods of nationally mandatory folic acid 

fortification, which led to an upshift in folate status.31 Thus, the expression of FOCM genes 

and their influences on CRC risks might have been modified in the era of folic acid 

fortification.32 Second, a certain number of false-positive results might have occurred when 

we investigated the gene-nutrient interactions despite that we implemented several measures 

to minimize this possibility. Third, the generalizability of our study findings may be limited 

because we performed the analyses among white women only, and WHI participants were 

healthy volunteers with high education attainments, higher use of colonoscopy, and overall a 

higher nutritional status than postmenopausal women in general.

In conclusion, our observations highlight the importance of nutrient status when 

investigating FOCM-related genetic influences on CRC risk in postmenopausal women. 

Future studies should pursue potentially causal loci in the regions prioritized by our tagSNPs 

and the influence of these SNPs on FOCM biomarkers to further elucidate their roles in 

CRC prevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Baseline characteristics of the colorectal cancer cases and controls in the Women’s Health Initiative 

Observational Study, 1983–2008

Cases (n=821) Controls (n=821) P-value

Characteristic Mean (SD) or % Mean (SD) or %

Age, years 67 (7) 67 (7) 0.49

Body-mass index, kg/m2 27.8 (5.7) 26.8 (5.8) <0.01

Pack-years of smoking 14 (22) 9 (18) <0.01

History of colonoscopy or sigmoidoscopy (yes) 54% 62% <0.01

History of colon polyp removal (yes) 26% 19% 0.01

Family history of colorectal cancer 21% 19% 0.31

Any one-carbon supplement use (yes)1 57% 56% 0.79

Alcohol intake, drinks/week 2.4 (5.1) 2.4 (4.6) 0.72

Red blood cell folate, ng/mL 610 (254) 627 (265) 0.25

Plasma folate, ng/mL 19.9 (15.1) 20.7 (14.4) 0.06

Plasma B6 (pyridoxal-5'-phosphate), nmol/L 96.1 (92.9) 105.2 (104.7) 0.05

Plasma B12, pg/mL 515 (280) 529 (264) 0.06

Plasma homocysteine, µmol/L 8.81 (2.99) 8.39 (2.58) 0.003

Tumor location –

    Proximal 59%

    Distal 21%

    Rectal 18%

    Overlapping lesion/Unknown 2%

Tumor grade –

    Well differentiated 7%

    Moderately differentiated 63%

    Poorly differentiated 20%

    Anaplastic 1%

    Unknown/not done 8%

Tumor stage (SEER staging) –

    Localized 44%

    Regional 42%

    Distant 13%

    Unknown/not done 2%

1
Any current consumption of dietary supplements containing vitamins B2, B6, B12, or folic acid.
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