

HHS Public Access

Author manuscript *Prev Med.* Author manuscript; available in PMC 2016 November 01.

Published in final edited form as:

Prev Med. 2015 November ; 80: 67-74. doi:10.1016/j.ypmed.2015.04.009.

Smoking and Cardiac Rehabilitation Participation: Associations with Referral, Attendance and Adherence

Diann E. Gaalema^{1,2,3}, **Alexander Y. Cutler**^{1,2}, **Stephen T. Higgins**^{1,2,3}, and **Philip A. Ades**^{1,4} ¹Vermont Center on Behavior and Health, University of Vermont

²Department of Psychiatry, University of Vermont

³Department of Psychology, University of Vermont

⁴Department of Medicine, Division of Cardiology, University of Vermont Medical Center

Abstract

Objective—Continued smoking after a cardiac event greatly increases mortality risk. Smoking cessation and participation in cardiac rehabilitation (CR) are effective in reducing morbidity and mortality. However, these two behaviors may interact; those who smoke may be less likely to access or complete CR. This review explores the association between smoking status and CR referral, attendance, and adherence.

Methods—A systematic literature search was conducted examining associations between smoking status and CR referral, attendance and completion in peer-reviewed studies published through July 1st, 2014. For inclusion, studies had to report data on outpatient CR referral, attendance or completion rates and smoking status had to be considered as a variable associated with these outcomes.

Results—Fifty-six studies met inclusion criteria. In summary, a history of smoking was associated with an increased likelihood of referral to CR. However, smoking status also predicted not attending CR and was a strong predictor of CR dropout.

Conclusion—Continued smoking after a cardiac event predicts lack of attendance in, and completion of CR. The issue of smoking following a coronary event deserves renewed attention.

Keywords

cardiac rehabilitation; smoking; smoking cessation; referral; attendance; enrollment; participation; adherence; dropout

Conflict of Interest Statement

The authors declare that there are no conflicts of interest.

Corresponding author: Diann Gaalema. 1 S. Prospect St., UHC OH3 MS 482, Burlington, VT 05401. (802) 656-9874, dgaalema@uvm.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Referral, Attendance and Adherence

Smoking Prevalence in Cardiac Patients

Smoking prevalence in coronary heart disease (CHD) patients is higher than in the general population (Aguëro et al., 2013; Bellow et al., 2011). Multisite studies in the US report smoking prevalence of 27 to 36% in those hospitalized for an acute cardiac condition compared to a smoking rate of about 18% in the general adult population (LaBresh et al., 2007; Leifheit-Limson et al., 2013; Agaku et al., 2014). However, while smoking rates continue to decline in the general population, a similar decline has not been observed in cardiac populations (Richardson et al., 2000). This same pattern is also seen in Europe where smoking rates overall are slowly decreasing while smoking prevalence among cardiac patients remained at 20% over a 20 year period (Kotseva et al., 2009).

During hospitalization almost all cardiac patients in developed countries are required to abstain from smoking, with a preponderance receiving their care in smoke-free hospitals. Most of these hospitals offer cessation programs (e.g. Smith and Taylor, 2013), and self-reported smoking status does decline after a hospitalization for heart disease. Generally, cessation support services during hospitalization are strong but there is little systematic sustained support following discharge (Boggon et al., 2014). Not surprisingly, relapse following discharge is a problem. Rates of longer-term abstinence vary, but generally half or fewer of smokers who quit following their cardiac event are still abstinent at 6 to 12 months later (Berndt et al., 2013; Newsom et al., 2012; Larsen et al., 2011; Attebring et al., 2004). When smoking status is biochemically verified, allowing for an objective, rigorous measurement of smoking status, quit rates are even lower (e.g. 30%, Chouinard and Robichaud-Ekstrand, 2007; 22%, Johnston et al., 2004).

Smoking After an Acute Cardiovascular Event

Smoking status following an acute cardiac event is a powerful predictor of future morbidity and mortality. Among smokers hospitalized for acute coronary syndrome, those who quit have markedly lower rates of major adverse cardiac events (RR 0.61) and mortality (RR 0.49) compared to those who continue smoking (Boggon et al., 2014). In a large, multicountry study, quitting smoking was associated with a markedly reduced incidence of myocardial infarction (OR 0.57) over a 6-month period (Chow et al., 2010). In another rigorous study where smoking status was biochemically verified, the risk of recurrent cardiovascular disease events was reduced by 40% within one year of smoking cessation (Twardella et al., 2004). Meta-analyses show that in patients with CHD, smoking cessation is associated with significant decreases in mortality and recurrent myocardial infarction (OR 0.54; Wilson et al., 2000); those who quit benefit from a 36% reduction in crude relative risk of mortality regardless of age, sex, index cardiac event, country, or year of study (Critchley et al., 2003). Quitting smoking is considered the single most effective way to decrease risk of future morbidity and mortality following an acute cardiac event (Perk et al., 2012).

Benefits of Cardiac Rehabilitation

Cardiac rehabilitation (CR) is a treatment model designed specifically for individuals who have had a major cardiac event or have an established history of chronic heart disease. It includes a structured exercise program, usually lasting several months, and is combined with educational and behavior-modifying interventions focused on improving dietary and lifestyle habits (Ades, 2001; Hamm et al., 2011). The American Heart Association and the American Association of Cardiovascular and Pulmonary Rehabilitation (AACVPR) recognize that CR is an integral part of comprehensive care for patients with CHD (Balady et al., 2007). CR programs vary in length but generally consist of 24–36 sessions held 2–3 times weekly over 3–4 months (Wenger, 2008). Perhaps the most important element of CR is an individualized, structured, progressive exercise program (preferably initially supervised) that needs to be continued long-term (Ades, 2001). Additional elements include counseling to help improve adherence to diet and medication recommendations while minimizing the psychological effects of coronary illness. Only occasionally do CR programs offer specific behavioral and pharmacological interventions for smoking cessation (Balady et al., 2007).

CR is highly effective at reducing morbidity and mortality rates following a myocardial infarction (MI) or coronary revascularization, while also reducing disability and promoting a healthy, active lifestyle (Clark et al., 2004; Taylor et al., 2004; Wenger, 2008). Participation in CR results in a 31% reduction in cardiac re-hospitalizations over a 12-month horizon and a 26% decrease in cardiac mortality over 3 years (Taylor et al., 2004; Heran et al., 2011). Thus benefits of participation accrue rapidly and limit rehospitalization costs (Heran et al., 2011). These effects of CR are also dose dependent, with reductions in mortality increasing with the number of sessions attended and with adherence to risk factor reduction strategies (Suaya et al., 2009; Hammill et al., 2010).

The benefits of CR reach beyond reduced risks for morbidity and mortality with measures of anxiety, depression, self-confidence, and patient-reported quality of life all improve after CR (Ades, 2001). Other benefits of CR with strong empirical support include improvements in symptoms, tolerance for exercise, psycho-social well-being and stress reduction (Wenger, 2008), all of which facilitate returning to work as well as resumption of active recreational activities (Dugmore et al., 1999).

Smoking Status and Cardiac Rehabilitation Participation

Given that smoking cessation and CR attendance are both effective at reducing morbidity and mortality, interactions between these types of behavior change are of great interest. Ideally patients would both attend CR and stop smoking. However, continued smoking following a cardiac event tends to co-exist with failure to change other unhealthy behavior patterns such as improving diet or exercise habits (Chow et al., 2010; Hahn et al., 2014; Kuhl et al., 2009). These same negative relationships between smoking and participating in healthy behavior change could also be present in how patients access CR.

Of interest is how smoking status affects the likelihood of accessing cardiac rehabilitation. The process of patient involvement in CR can be broken into three parts: 1. Referral: Was

Page 4

the patient referred to CR by the health care-provider following their cardiac event? 2. Attendance: Did the patient attend even one session of CR? 3. Adherence: Did the patient complete their recommended course of CR? A systematic literature search was conducted to examine associations between smoking status and these three aspects of CR.

Methods

The online databases PubMed, PsychINFO and Web of Knowledge were systematically searched using the search terms smoking and cardiac rehabilitation. Additional potential reports were identified by using Google Scholar where the search terms were combined with terms indicative of participation in CR (referral, attendance, participation, adherence, and dropout). Publications were restricted to what is commonly known as "Phase 2" CR. These programs are distinct from "Phase 1" rehabilitation, which takes place in the hospital and "Phase 3 CR" which is a long-term maintenance program. Phase 2 CR begins shortly after hospital discharge and generally lasts 3 to 4 months. All publications prior to July 1st, 2014 were considered. Full texts of these articles were independently reviewed for inclusion by two authors (DEG, AYC) and any discrepancies resolved. Additionally, reference sections of relevant articles were reviewed for other relevant citations that were evaluated for possible inclusion. In total, 701 articles were identified as potentially relevant. Studies were included if the following criteria were met: results were published in a peer-reviewed journal in English, data were reported on CR referral, attendance or completion rates, smoking was included as a possible variable associated with these outcomes, the statistical significance of the effect of smoking status was reported, and the program being studied was "Phase 2" CR. With these criteria, 56 studies were rated eligible for inclusion. The significance of associations between smoking status and CR referral, attendance, or adherence was defined as the original author's determination of statistical significance. A criterion of p < .05 was used across most studies; the few exceptions are noted in the tables.

Results

Effects of Current Smoking Status on Referral to CR

Ideally individuals who have experienced a qualifying cardiac event would be referred to CR while in the hospital. Referral rates are not optimal, however, and one quality improvement project increased referral rates from 16.9% to 41.7% (Zhang et al., 2005). While not all patients are appropriate for CR, these referral rates still leave room for improvement. Referrals that are not made systematically leave room for bias and those who get referred may differ significantly from those who do not. We assessed whether smoking status was associated with differences in CR referral rates.

Six studies were identified that provided data on smoking status and referral rates (Table 1). Three (50%) reported that current or recent smoking significantly increased a patient's chance of being referred to CR (Aragam et al., 2011; Brady et al., 2013; Brown et al., 2009). Two studies (33%) found no significant association between smoking status and referral (Bittner et al., 1999; Kotseva et al., 2013). Additionally, one study (17%) found a significant negative relationship between smoking status and referral (Barber et al., 2001). While more data on this issue are clearly needed, it appears that reporting current smoking may increase

a patient's probability of CR referral. This is in contrast to other risk factors such as obesity and diabetes that generally reduce the likelihood of a patient receiving all available therapies, including referral to CR (Motivala et al., 2011).

Effect of Smoking on CR Participation/Attendance

After a patient has been referred to CR, he or she must decide whether to attend. This is a potential point of self-selection as not all referred patients attend CR. One common metric for reporting attendance is determining whether a patient attends at least one CR session. Thirty-three studies provided data about the characteristics for those who did versus did not attend at least one CR session (see Table 2).

Thirteen studies (39%) provided evidence that smokers were significantly less likely to attend even one session (Ades, Huang et al., 1992; Deskur-Smielecka et al., 2009; Fontana et al., 1986; Goel et al., 2011; Kerins et al., 2011; Kotseva et al., 2004; 2013; Lindsay et al., 2003; Redfern et al., 2007; Taylor et al., 2001; Turk-Adawi et al., 2014; Tzou et al., 2004; Weingarten et al., 2011). In eighteen studies (55%) there was no significant association between smoking status and attendance (Beauchamp et al., 2012; Blackburn et al., 2000; CDC, 2003; Cooper et al., 1999; Dunlay et al., 2009; Evenson et al., 1998; Farley et al., 2003; Fridlund et al., 2000; Grace et al., 2007; 2008; Harlan et al., 1995; Higgins et al., 2008; King et al., 2001; Lane et al., 2001; Pasquali et al., 2003; Ramm et al., 2001; Salamonson et al., 2007; Whitmarsh et al., 2003). Lastly, in two additional studies (6%) smoking was a positive predictor of CR attendance (King et al., 1999; Witt et al., 2004).

In summary, most studies (55%, 18/33) did not find a significant association between smoking status and attendance. However in the 15 studies that found a significant positive or negative relationship between smoking and CR attendance 87% (13/15) found that smoking predicts CR non-participation. Variability could be due in part to how smoking was assessed in each study (Table 2). Smoking definitions varied from "current or former smoker" to "smoked in the last 12 months" to "current smoker". Quality of assessment also varied considerably, with some studies relying on hospital records, others on self-report, and with almost no studies biochemically verifying smoking status. Future studies looking at attendance and smoking might be improved by having very specific definitions of smoking status (i.e. differentiating between never smokers, former smokers, those who have recently quit, and current smokers) and, if possible, biochemically verifying smoking status.

Effect of Smoking on Adherence/Dropout

The number of CR sessions attended is also of interest. As noted above, the benefits of CR appear to accrue in a dose-dependent fashion (Hammill et al., 2010; Suaya et al., 2009), with those dropping out early not benefiting as much from CR as those who complete the whole program. Twenty-one studies provided data on smoking status and CR completion (see Table 3). In all studies reviewed number of sessions completed was examined only in those who had at least entered the CR program.

In thirteen of the 21 studies (62%), smoking significantly predicted early dropout (Beauchamp et al., 2012; Beckie et al., 2010; Digenio et al., 1992; Dorn et al., 2001; Kerins et al., 2011; Marzolini et al., 2008; Oldridge et al., 1978; Oldridge et al., 1983; Oldridge and

Streiner, 1990; Sanderson et al., 2003; Sarrafzadegan et al., 2007; Waites et al., 1983; Wittmer et al., 2012). In two other studies (10%), results also suggested a negative association of smoking and CR completion, but differences were not definitive. In one study the proportion of smokers did not differ between completers and dropouts, but smokers who dropped out were heavier smokers than those who did not (Eyherabide and Yates, 1985) and in the other smoking was only a significant predictor of dropout among men but not women (Worcester et al., 2004). In six of the 21 studies (29%) smoking status did not significantly predict dropout (Fontana et al., 1986; Oldridge et al., 1992; Sanderson and Bittner, 2005; Soleimani et al., 2009; Taylor et al., 1988; Yohannes et al., 2007. Overall, most studies (62%) demonstrated a significant association between smoking status and CR dropout and in no study was smoking a positive predictor of completion.

Discussion

Smoking status is robustly associated with how people access CR. While reporting smoking on hospital admission may make referral to CR more likely, those who smoke appear to be less likely to attend even a single CR session and are much more likely to drop out if they do attend.

The process underlying the association between smoking status and accessing CR likely differs at these different time points. During referral, an increase in referral for smokers would be logical, as those with greater risk factor burdens seem high priority targets for additional services. The association between smoking and CR attendance and CR dropout is likely different than CR referral, as accessing CR is dependent on the patient's behavior rather than the physician's. While smoking status may directly affect how patients access CR there is likely a third variable that underlies these associations. Smoking is much more prevalent among those with lower educational attainment and those living below the poverty line (Garrett et al., 2013). As such, smoking may be serving as a marker of other patient characteristics that may limit CR attendance such as limited education, lack of financial resources, or transportation issues. As clinical databases rarely include characteristics such as financial standing or educational attainment, smoking may be serving as a reasonable proxy for these other variables.

Another characteristic potentially influencing CR attendance is gender. While more males than females have diagnoses that qualify them for CR, women do appear to access CR at lower rates than men. Studies have demonstrated that women appear to have lower referral rates (Colella et al., 2015), are less likely to attend CR (Samayoa et al., 2014), and are potentially less likely to complete CR (Colbert et al., 2014; but see Turk-Adawai, et al., 2013). Given that women are underrepresented in these studies, drawing conclusions about the relationship between smoking and CR participation in women should be done cautiously.

While other variables are likely responsible for the association between smoking and CR attendance there is reason to think that at least in regards to early dropout there may be a partial direct contribution of smoking to these outcomes. The relationship between smoking and dropping out of CR seems particularly strong, even in studies examining multiple possible predictors of dropout in multivariate analyses (Oldridge et al., 1983; Wittmer et al.,

2012) and considering the physiological effects of continued smoking on exercise capacity (e.g. Smarz et al., 2012), smoking status may indeed directly increase dropout rates.

Effects of smoking on CR benefits

It is certainly reasonable to think that smoking may undermine CR participation in that smoking may make exercise more difficult, or interfere with improvements in fitness such that smokers do not feel like they are benefiting from CR or become frustrated with their progress and thus stop attending. As suggested above, there is evidence to support this view. First, smoking has known effects on cardiopulmonary function that make aerobic activities more difficult. For example, current smokers have decreased oxygen uptake at peak exercise (Smarz et al., 2012) and impaired ventilatory efficiency and lower peak heart rates (Sven et al., 2010). Also, the gains from CR may not be apparent to smokers. At least one study reported that current smokers perceive that their current cardiac health did not significantly improve during CR (Tzou et al., 2004). Also important to consider is that smoking cessation is viewed as especially challenging by CR patients. For example, cardiac patients are more optimistic about their ability to begin regular exercise than their ability to quit smoking (Johnston et al., 2004) and their inability to quit is a source of frustration, which they report interferes with completion of their other health-related behavior-change goals (Grace et al., 2005).

There is a literature that suggests that indeed smokers do not benefit as much from CR as non-smokers. Short-term intensive CR can improve metabolic syndrome parameters, but only in non-smokers (Mlakar et al., 2013). This lack of gains could be a result of a variety of factors, for example, smokers spend fewer minutes exercising per session in CR than non-smokers (Digenio et al., 1992). Regardless of the proximal cause, current smokers are less likely to reach maximal capacity exercise goals at the end of CR (Weinberger et al., 2014) and current smoking is associated with less gain in health-related quality of life (Oldridge et al., 1998). There is also compelling evidence that smoking directly inhibits fitness gains. One study examined the effects of continued smoking versus abstinence in 600 smokers enrolled in smoking-cessation trials (Asthana et al., 2012). Even after controlling for possible covariates, smokers had lower fitness scores than abstainers. Only abstainers had measurable improvement in fitness suggestive of an improved CVD profile (lower exercise capacity, lower HR reserve, and a blunted exercise HR response).

Health Risks of Continued Smoking

Regardless of the nature of the association between smoking status and CR attendance, smoking during CR is of significant concern. Compared to nonsmokers, smokers are more likely to suffer medical events during and following completion of CR. In one study on risks of serious complications during CR, the only significant predictor of complications was current cigarette smoking (17% of complication group vs. 1% of the non-complication group; Paul-Labrador et al., 1999). Smoking is also a strong predictor of recurrent CV events following CR (Griffo et al., 2013) and eventual mortality (Kavanagh et al., 2002). Considering the robust negative associations of smoking and CR completion, together with the unequivocal health benefits of smoking cessation, an increased focus on smokingcessation in CR patients is warranted.

Implications for Supporting Cardiac Patients who Smoke

Given the negative health effects of continued smoking and the potential negative effects of smoking on CR attendance and adherence, increased attention should be paid to cardiac patients who report smoking, even before they are entered into a CR program. If a patient reports smoking while in hospital that could trigger a flag that the patient may need additional support achieving secondary prevention goals in general. Patients could be queried about potential areas needing support, are they in need of transportation vouchers to make follow-up visits, home nurse visits, or reduced cost medications? Patients who smoke may have greater needs and stronger support in hospital could help them achieve more secondary prevention goals upon returning home.

Smoking cessation should, of course, be a focus during hospitalization. Several approaches could be taken in the hospital to provide additional support. Patients could be offered prescriptions for smoking cessation medication, provided with nicotine replacement therapy, or referred to smoking cessation programs. However, while cessation support is generally offered to hospitalized patients, support following discharge is rare (Boggon et al., 2014). Ideally hospitals would provide an intensive smoking cessation program that built off the initial abstinence achieved by being hospitalized. This program would then be continued in the months following discharge and would help bridge the transition of returning home and promote maintained cessation.

Patients who report smoking will likely also need support in attending CR. Patients who smoke should be given strong recommendations to attend CR. They could be told that continued smoking puts them at increased risk of a future event making it is even more important that they attend CR. Strong physician referrals are a powerful predictor of CR attendance (Balady et al., 2011) and an increased emphasis on referral could get more smokers at CR. Additionally, CR programs should have intensive ongoing support available for smoking cessation. This could be provided as group educational sessions focused on cessation support with individualized counseling available as needed, pharmacologic support when indicated, and frequent monitoring with long-term follow up and support in place in case of relapse. The provision of an intensive cessation support program in CR could have multiple benefits: the presence of such a program could entice more smokers to attend CR and the increased support for cessation they receive could encourage them to remain in the CR program generally.

Conclusion

Smoking status is robustly associated with how people access cardiac rehabilitation. While reporting smoking on hospital admission may increase the rate of referral to CR, those who smoke are less likely to attend even a single session of CR and are much more likely to drop out prior to completion if they do attend. The issue of smoking following a coronary event deserves renewed attention.

Acknowledgements

This research was supported in part by National Institutes of Health Center of Biomedical Research Excellence award P20GM103644 from the National Institute of General Medical Sciences and Tobacco Centers of Regulatory

Science award P50DA036114 from the National Institute on Drug Abuse and U.S. Food and Drug Administration. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the Food and Drug Administration.

References

- Ades PA. Cardiac rehabilitation and secondary prevention of coronary heart disease. New England Journal of Medicine. 2001; 345(12):892–902. [PubMed: 11565523]
- Ades PA, Huang D, Weaver SO. Cardiac rehabilitation participation predicts lower rehospitalization costs. American Heart Journal. 1992; 123(4):916–921. [PubMed: 1550000]
- Agaku IT, King BA, Husten CG, Bunnell R, Ambrose BK, Hu SS, Day HR. Tobacco product use among adults—United States, 2012–2013. MMWR Morb Mortal Wkly Rep. 2014; 63(25):542–547. [PubMed: 24964880]
- Agüero F, Dégano IR, Subirana I, Grau M, Zamora A, Sala J, Elosua R. Impact of a partial smoke-free legislation on myocardial infarction incidence, mortality and case-fatality in a population-based registry: the REGICOR Study. PLoS One. 2013; 8(1):e53722. [PubMed: 23372663]
- Aragam KG, Moscucci M, Smith DE, Riba AL, Zainea M, Chambers JL, Gurm HS. Trends and disparities in referral to cardiac rehabilitation after percutaneous coronary intervention. American Heart Journal. 2011; 161(3):544–551. [PubMed: 21392610]
- Arbel Y, Matetzky S, Gavrielov-Yusim N, Shlezinger M, Keren G, Roth A, Goldenberg I. Temporal trends in all-cause mortality of smokers versus non-smokers hospitalized with ST-segment elevation myocardial infarction. International Journal of Cardiology. 2014; 176(1):171–176. [PubMed: 25065334]
- Asthana A, Piper ME, McBride PE, Ward A, Fiore MC, Baker TB, Stein JH. Long-term effects of smoking and smoking cessation on exercise stress testing: three-year outcomes from a randomized clinical trial. American Heart Journal. 2012; 163(1):81–87. [PubMed: 22172440]
- Attebring MF, Hartford M, Hjalmarson A, Caidahl K, Karlsson T, Herlitz J. Smoking habits and predictors of continued smoking in patients with acute coronary syndromes. Journal of Advanced Nursing. 2004; 46(6):614–623. [PubMed: 15154902]
- Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JM, Southard D. Core Components of Cardiac Rehabilitation/Secondary Prevention Programs: 2007 Update A Scientific Statement From the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007; 115(20):2675–2682. [PubMed: 17513578]
- Balady GJ, Ades PA, Bittner VA, Franklin BA, Gordon NF, Thomas RJ, Yancy CW. Referral, enrollment, and delivery of cardiac rehabilitation/secondary prevention programs at clinical centers and beyond a presidential advisory from the American Heart Association. Circulation. 2011; 124(25):2951–2960. [PubMed: 22082676]
- Barber K, Stommel M, Kroll J, Holmes-Rovner M, McIntosh B. Cardiac rehabilitation for communitybased patients with myocardial infarction: factors predicting discharge recommendation and participation. Journal of Clinical Epidemiology. 2001; 54(10):1025–1030. [PubMed: 11576814]
- Beauchamp A, Worcester M, Ng A, Murphy B, Tatoulis J, Grigg L, Goble A. Attendance at cardiac rehabilitation is associated with lower all-cause mortality after 14 years of follow-up. Heart. 2012
- Beckie TM, Beckstead JW. Predicting cardiac rehabilitation attendance in a gender-tailored randomized clinical trial. Journal of Cardiopulmonary Rehabilitation and Prevention. 2010; 30(3): 147. [PubMed: 20216324]
- Bellow A, Epstein JF, Parikh-Patel A. Peer Reviewed: Lifestyle Behaviors Associated With Secondary Prevention of Coronary Heart Disease Among California Adults. Preventing Chronic Disease. 2011; 8(2):A31. [PubMed: 21324245]
- Berndt NC, Hayes AF, Verboon P, Lechner L, Bolman C, De Vries H. Self-efficacy mediates the impact of craving on smoking abstinence in low to moderately anxious patients: Results of a moderated mediation approach. Psychology of Addictive Behaviors. 2013; 27(1):113. [PubMed: 22663344]

Gaalema et al.

- Bittner V, Sanderson B, Breland J, Green D. Referral patterns to a university-based cardiac rehabilitation program. The American Journal of Cardiology. 1999; 83(2):252–255. [PubMed: 10073829]
- Blackburn GG, Foody JM, Sprecher DL, Park E, Apperson-Hansen C, Pashkow FJ. Cardiac rehabilitation participation patterns in a large, tertiary care center: evidence for selection bias. Journal of Cardiopulmonary Rehabilitation and Prevention. 2000; 20(3):189–195.
- Boggon R, Timmis A, Hemingway H, Raju S, Malvestiti FM, Van Staa TP. Smoking cessation interventions following acute coronary syndrome: a missed opportunity? European Journal of Preventive Cardiology. 2014; 21(6):767–773. [PubMed: 22952289]
- Brady S, Purdham D, Oh P, Grace S. Clinical and sociodemographic correlates of referral for cardiac rehabilitation following cardiac revascularization in Ontario. Heart & Lung: The Journal of Acute and Critical Care. 2013; 42(5):320–325. [PubMed: 23998380]
- Brown TM, Hernandez AF, Bittner V, Cannon CP, Ellrodt G, Liang L, Fonarow GC. Predictors of Cardiac Rehabilitation Referral in Coronary Artery Disease PatientsFindings From the American Heart Association's Get With The Guidelines Program. Journal of the American College of Cardiology. 2009; 54(6):515–521. [PubMed: 19643312]
- Centers for Disease Control and Prevention (CDC). Receipt of cardiac rehabilitation services among heart attack survivors--19 states and the District of Columbia, 2001. MMWR. Morbidity and Mortality Weekly Report. 2003; 52(44):1072. [PubMed: 14603183]
- Chouinard MC, Robichaud-Ekstrand S. Predictive value of the transtheoretical model to smoking cessation in hospitalized patients with cardiovascular disease. European Journal of Cardiovascular Prevention & Rehabilitation. 2007; 14(1):51–58. [PubMed: 17301627]
- Chow CK, Jolly S, Rao-Melacini P, Fox KA, Anand SS, Yusuf S. Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes. Circulation. 2010; 121(6):750–758. [PubMed: 20124123]
- Clark AM, Barbour RS, White M, MacIntyre PD. Promoting participation in cardiac rehabilitation: patient choices and experiences. Journal of Advanced Nursing. 2004; 47(1):5–14. [PubMed: 15186462]
- Colbert JD, Martin BJ, Haykowsky MJ, Hauer TL, Austford LD, Arena RA, Stone JA. Cardiac rehabilitation referral, attendance and mortality in women. European journal of preventive cardiology. 2014
- Colella TJ, Gravely S, Marzolini S, Grace SL, Francis JA, Oh P, Scott LB. Sex bias in referral of women to outpatient cardiac rehabilitation? A meta-analysis. European journal of preventive cardiology. 2015; 22(4):423–441. [PubMed: 24474091]
- Cooper A, Lloyd G, Weinman J, Jackson G. Why patients do not attend cardiac rehabilitation: role of intentions and illness beliefs. Heart. 1999; 82(2):234–236. [PubMed: 10409543]
- Critchley JA, Capewell S. Mortality risk reduction associated with smoking cessation in patients with coronary heart disease. JAMA: the Journal of the American Medical Association. 2003; 290(1): 86–97. [PubMed: 12837716]
- Deskur-Smielecka E, Borowicz-Bieokowska S, Brychcy A, Wilk M, Przywarska I, Dylewicz P. Why patients after acute coronary syndromes do not participate in an early outpatient rehabilitation programme? Kardiologia Polska. 2009; 67(6):632–638. [PubMed: 19618319]
- Digenio AG, Padayachee N, Groeneveld H. Multivariate models for compliance with phase 3 cardiac rehabilitation services in Johannesburg. Annals of the Academy of Medicine, Singapore. 1992; 21(1):121–127.
- Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to smoking: 50 years' observations on male British doctors. BMJ. 2004; 328(7455):1519. [PubMed: 15213107]
- Dorn JOAN, Naughton JOHN, Imamura DAI, Trevisan MAURIZIO. Correlates of compliance in a randomized exercise trial in myocardial infarction patients. Medicine and Science in Sports and Exercise. 2001; 33(7):1081–1089. [PubMed: 11445753]
- Dunlay SM, Witt BJ, Allison TG, Hayes SN, Weston SA, Koepsell E, Roger VL. Barriers to participation in cardiac rehabilitation. American Heart Journal. 2009; 158(5):852–859. [PubMed: 19853708]

- Dugmore LD, Tipson RJ, Phillips MH, Flint EJ, Stentiford NH, Bone MF, Littler WA. Changes in cardiorespiratory fitness, psychological wellbeing, quality of life, and vocational status following a 12 month cardiac exercise rehabilitation programme. Heart. 1999; 81:359–366. [PubMed: 10092561]
- Evenson KR, Rosamond WD, Luepker RV. Predictors of outpatient cardiac rehabilitation utilization: the Minnesota heart survey registry. Journal of Cardiopulmonary Rehabilitation and Prevention. 1998; 18(3):192–198.
- Eyherabide A, Yates BC. The effects of cardiac rehabilitation on compliance in the coronary artery bypass surgery patient. Cardio-vascular Nursing. 1984; 21(6):31–35. [PubMed: 3878732]
- Farley RL, Wade TD, Birchmore L. Factors influencing attendance at cardiac rehabilitation among coronary heart disease patients. European Journal of Cardiovascular Nursing. 2003; 2(3):205–212. [PubMed: 14622628]
- Fontana AF, Kerns RD, Rosenberg RL, Marcus JL, Colonese KL. Exercise training for cardiac patients: Adherence, fitness, and benefits. Journal of Cardiopulmonary Rehabilitation and Prevention. 1986; 6(1):4–15.
- Fridlund B. Self-rated health in women after their first myocardial infarction: a 12-month comparison between participation and nonparticipation in a cardiac rehabilitation programme. Health Care for Women International. 2000; 21(8):727–738. [PubMed: 11813764]
- Garrett BE, Dube SR, Winder C, Caraballo RS. Cigarette Smoking—United States, 2006–2008 and 2009–2010. CDC Health Disparities and Inequalities Report—United States, 2013. 2013; 62(3): 81–84.
- Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Stroke SS. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014; 129(3):e28. [PubMed: 24352519]
- Goel K, Lennon RJ, Tilbury RT, Squires RW, Thomas RJ. Impact of cardiac rehabilitation on mortality and cardiovascular events after percutaneous coronary intervention in the community. Circulation. 2011; 123(21):2344–2352. [PubMed: 21576654]
- Grace SL, Abbey SE, Pinto R, Shnek ZM, Irvine J, Stewart DE. Longitudinal course of depressive symptomatology after a cardiac event: effects of gender and cardiac rehabilitation. Psychosomatic Medicine. 2005; 67(1):52–58. [PubMed: 15673624]
- Grace SL, Scholey P, Suskin N, Arthur HM, Brooks D, Jaglal S, Stewart DE. A prospective comparison of cardiac rehabilitation enrolment following automatic versus usual referral. Journal of Rehabilitation Medicine. 2007; 39(3):239–245. [PubMed: 17468793]
- Grace SL, Gravely-Witte S, Brual J, Monette G, Suskin N, Higginson L, Stewart DE. Contribution of patient and physician factors to cardiac rehabilitation enrollment: a prospective multilevel study. European Journal of Cardiovascular Prevention & Rehabilitation. 2008; 15(5):548–556. [PubMed: 18830085]
- Griffo R, Ambrosetti M, Tramarin R, Fattirolli F, Temporelli PL, Vestri AR, Tavazzi L. Effective secondary prevention through cardiac rehabilitation after coronary revascularization and predictors of poor adherence to lifestyle modification and medication. Results of the ICAROS Survey. International Journal of Cardiology. 2013; 167(4):1390–1395. [PubMed: 22575623]
- Hahn LA, Galletly CA, Foley DL, Mackinnon A, Watts GF, Castle DJ, Morgan VA. Inadequate fruit and vegetable intake in people with psychosis. Australian and New Zealand Journal of Psychiatry. 2014
- Hamm LF, Sanderson BK, Ades PA, Berra K, Kaminsky LA, Roitman JL, Williams MA. Core competencies for cardiac rehabilitation/secondary prevention professionals: 2010 update: position statement of the American Association of Cardiovascular and Pulmonary Rehabilitation. Journal of Cardiopulmonary Rehabilitation and Prevention. 2011; 31(1):2–10. [PubMed: 21217254]
- Hammill BG, Curtis LH, Schulman KA, Whellan DJ. Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly Medicare beneficiaries. Circulation. 2010; 121(1):63–70. [PubMed: 20026778]
- Harlan WR III, Sandier SA, Lee KL, Choi Lam L, Mark DB. Importance of baseline functional and socioeconomic factors for participation in cardiac rehabilitation. The American Journal of Cardiology. 1995; 76(1):36–39. [PubMed: 7793400]

- Heran BS, Chen JM, Ebrahim S, Moxham T, Oldridge N, Rees K, Taylor RS. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2011; 7(7)
- Higgins RO, Murphy BM, Goble AJ, Le Grande MR, Elliott PC, Worcester MU. Cardiac rehabilitation program attendance after coronary artery bypass surgery: overcoming the barriers. Medical Journal of Australia. 2008; 188(12):712–714. [PubMed: 18558894]
- Hiscock R, Bauld L, Amos A, Fidler JA, Munafo M. Socioeconomic status and smoking: a review. Annals of the New York Academy of Sciences. 2012; 1248(1):107–123. [PubMed: 22092035]
- Johnston DW, Johnston M, Pollard B, Kinmonth AL, Mant D. Motivation is not enough: prediction of risk behavior following diagnosis of coronary heart disease from the theory of planned behavior. Health Psychology. 2004; 23(5):533–538. [PubMed: 15367073]
- Kavanagh T, Mertens DJ, Hamm LF, Beyene J, Kennedy J, Corey P, Shephard RJ. Prediction of longterm prognosis in 12 169 men referred for cardiac rehabilitation. Circulation. 2002; 106(6):666– 671. [PubMed: 12163425]
- Kenfield SA, Stampfer MJ, Rosner BA, Colditz GA. Smoking and smoking cessation in relation to mortality in women. JAMA. 2008; 299(17):2037–2047. [PubMed: 18460664]
- Kerins M, McKee G, Bennett K. Contributing factors to patient non-attendance at and non-completion of Phase III cardiac rehabilitation. European Journal of Cardiovascular Nursing. 2011; 10(1):31– 36. [PubMed: 20457543]
- King KM, Humen DP, Teo KK. Cardiac rehabilitation: the forgotten intervention. The Canadian Journal of Cardiology. 1999; 15(9):979–985. [PubMed: 10504179]
- King KM, Humen DP, Smith HL, Phan CL, Teo KK. Predicting and explaining cardiac rehabilitation attendance. The Canadian Journal of Cardiology. 2001; 17(3):291–296. [PubMed: 11264562]
- Kotseva K, Wood DA, De Bacquer D, Heidrich J, De Backer G. Cardiac rehabilitation for coronary patients: lifestyle, risk factor and therapeutic management. Results from the EUROASPIRE II survey. European Heart Journal Supplements. 2004; 6(suppl J):j17–j26.
- Kotseva K, Wood D, De Backer G, De Bacquer D. Use and effects of cardiac rehabilitation in patients with coronary heart disease: results from the EUROASPIRE III survey. European Journal of Preventive Cardiology. 2013; 20(5):817–826. [PubMed: 22718794]
- Kotseva K, Wood D, De Backer G, De Bacquer D, Pyörälä K, Keil U. Cardiovascular prevention guidelines in daily practice: a comparison of EUROASPIRE I, II, and III surveys in eight European countries. The Lancet. 2009; 373(9667):929–940.
- Kuhl EA, Fauerbach JA, Bush DE, Ziegelstein RC. Relation of anxiety and adherence to risk-reducing recommendations following myocardial infarction. The American Journal of Cardiology. 2009; 103(12):1629–1634. [PubMed: 19539067]
- LaBresh KA, Fonarow GC, Smith SC Jr, Bonow RO, Smaha LC, Tyler PA. Get With The Guidelines Steering Committee. Improved treatment of hospitalized coronary artery disease patients with the get with the guidelines program. Critical Pathways in Cardiology. 2007; 6(3):98–105. [PubMed: 17804969]
- Lane D, Carroll D, Ring C, Beevers DG, Lip GY. Predictors of attendance at cardiac rehabilitation after myocardial infarction. Journal of Psychosomatic Research. 2001; 51(3):497–501. [PubMed: 11602219]
- Larsen KK, Vestergaard M, Søndergaard J, Christensen B. Rehabilitation status three months after first-time myocardial infarction. Scandinavian Journal of Primary Health Care. 2011; 29(4):210– 215. [PubMed: 22126219]
- Leifheit-Limson EC, Spertus JA, Reid KJ, Jones SB, Vaccarino V, Krumholz HM, Lichtman JH. Prevalence of traditional cardiac risk factors and secondary prevention among patients hospitalized for acute myocardial infarction (AMI): variation by age, sex, and race. Journal of Women's Health. 2013; 22(8):659–666.
- Lindsay GM, Hanlon WP, Smith LN, Belcher PR. Experience of cardiac rehabilitation after coronary artery surgery: effects on health and risk factors. International Journal of Cardiology. 2003; 87(1): 67–73. [PubMed: 12468056]
- Marzolini S, Brooks D, Oh PI. Sex differences in completion of a 12-month cardiac rehabilitation programme: an analysis of 5922 women and men. European Journal of Cardiovascular Prevention & Rehabilitation. 2008; 15(6):698–703. [PubMed: 18981927]

- Mlakar P, Salobir B, Cobo N, Prezelj M, Tercelj M, Šabovic M. Influence of Short-Term Cardiac Rehabilitation on Oxidative Stress in Men After Myocardial Infarction Depends Upon Smoking Status. Journal of Cardiopulmonary Rehabilitation and Prevention. 2013; 33(6):401–405. [PubMed: 24189214]
- Motivala AA, Cannon CP, Srinivas VS, Dai D, Hernandez AF, Peterson ED, Fonarow GC. Changes in Myocardial Infarction Guideline Adherence as a Function of Patient Risk An End to Paradoxical Care? Journal of the American College of Cardiology. 2011; 58(17):1760–1765. [PubMed: 21996387]
- Newsom JT, Huguet N, McCarthy MJ, Ramage-Morin P, Kaplan MS, Bernier J, Oderkirk J. Health behavior change following chronic illness in middle and later life. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences. 2012; 67(3):279–288.
- Oldridge NB, Donner AP, Buck CW, Jones NL, Andrew GM, Parker JO, Sutton JR. Predictors of dropout from cardiac exercise rehabilitation: Ontario Exercise-Heart Collaborative Study. The American Journal of Cardiology. 1983; 51(1):70–74. [PubMed: 6336878]
- Oldridge N, Gottlieb M, Guyatt G, Jones N, Streiner D, Feeny D. Predictors of health-related quality of life with cardiac rehabilitation after acute myocardial infarction. Journal of Cardiopulmonary Rehabilitation and Prevention. 1998; 18(2):95–103.
- Oldridge NB, Ragowski B, Gottlieb M. Factors Associated With Attendance. Journal of Cardiopulmonary Rehabilitation and Prevention. 1992; 12(1):25–31.
- Oldridge NB, Streiner DL. The health belief model: predicting compliance and dropout in cardiac rehabilitation. Medicine & Science in Sports & Exercise. 1990; 22(5):678–683. [PubMed: 2233208]
- Oldridge NB, Wicks JR, Hanley C, Sutton JR, Jones NL. Noncompliance in an exercise rehabilitation program for men who have suffered a myocardial infarction. Canadian Medical Association Journal. 1978; 118(4):361–364. [PubMed: 630495]
- Pasquali SK, Alexander KP, Coombs LP, Lytle BL, Peterson ED. Effect of cardiac rehabilitation on functional outcomes after coronary revascularization. American Heart Journal. 2003; 145(3):445– 451. [PubMed: 12660667]
- Paul-Labrador M, Vongvanich P, Merz CNB. Risk stratification for exercise training in cardiac patients: do the proposed guidelines work? Journal of Cardiopulmonary Rehabilitation and Prevention. 1999; 19(2):118–125.
- Perk J, De Backer G, Gohlke H, Graham I, Reiner Ž, Verschuren M, Baigent C. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012) The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). European Journal of Preventive Cardiology. 2012; 19(4): 585–667. [PubMed: 22763626]
- Ramm C, Robinson S, Sharpe N. Factors determining non-attendance at a cardiac rehabilitation programme following myocardial infarction. New Zealand Medical Journal. 2001; 114(1132): 227–229. [PubMed: 11453358]
- Rea TD, Heckbert SR, Kaplan RC, Smith NL, Lemaitre RN, Psaty BM. Smoking status and risk for recurrent coronary events after myocardial infarction. Annals of Internal Medicine. 2002; 137(6): 494–500. [PubMed: 12230350]
- Redfern J, Ellis ER, Briffa T, Freedman SB. High risk-factor level and low risk-factor knowledge in patients not accessing cardiac rehabilitation after acute coronary syndrome. Medical Journal of Australia. 2007; 186(1):21–25. [PubMed: 17229029]
- Richardson LA, Buckenmeyer PJ, Bauman BD, Rosneck JS, Newman I, Josephson RA. Contemporary cardiac rehabilitation: patient characteristics and temporal trends over the past decade. Journal of Cardiopulmonary Rehabilitation and Prevention. 2000; 20(1):57–64.
- Rosenberg L, Palmer JR, Shapiro S. Decline in the risk of myocardial infarction among women who stop smoking. New England Journal of Medicine. 1990; 322(4):213–217. [PubMed: 2294448]

- Salamonson Y, Everett B, Davidson P, Andrew S. Magnitude of change in cardiac health-enhancing behaviours 6 months following an acute myocardial infarction. European Journal of Cardiovascular Nursing. 2007; 6(1):66–71. [PubMed: 16777487]
- Samayoa L, Grace SL, Gravely S, Scott LB, Marzolini S, Colella TJ. Sex differences in cardiac rehabilitation enrollment: a meta-analysis. Canadian Journal of Cardiology. 2014; 30(7):793–800. [PubMed: 24726052]
- Sanderson BK, Bittner V. Women in cardiac rehabilitation: outcomes and identifying risk for dropout. American Heart Journal. 2005; 150(5):1052–1058. [PubMed: 16290995]
- Sanderson BK, Phillips MM, Gerald L, DiLillo V, Bittner V. Factors associated with the failure of patients to complete cardiac rehabilitation for medical and nonmedical reasons. Journal of Cardiopulmonary Rehabilitation and Prevention. 2003; 23(4):281–289.
- Sarrafzadegan N, Rabiei K, Shirani S, Kabir A, Mohammadifard N, Roohafza H. Drop-out predictors in cardiac rehabilitation programmes and the impact of sex differences among coronary heart disease patients in an Iranian sample: a cohort study. Clinical Rehabilitation. 2007; 21(4):362–372. [PubMed: 17613578]
- Simons LA, Simons J. Coronary risk factors six to 12 months after coronary artery bypass graft surgery. The Medical Journal of Australia. 1987; 146(11):573–577. [PubMed: 3497329]
- Smarz K, Zaborska B, Jaxa-Chamiec T, Maciejewski P, Budaj A. Right ventricular dysfunction and exercise capacity after inferior (posterior) wall acute myocardial infarction. The American Journal of Cardiology. 2012; 110(6):784–789. [PubMed: 22651879]
- Smith, PM.; Taylor, CB. Implementing an inpatient smoking cessation program. Psychology Press; 2013.
- Soleimani A, Abbasi A, Nejatian M, Salarifar M, Darabian S, Karimi AA, Sheikhfathollahi M. Factors predicting discontinuation of a hospital-based cardiac rehabilitation programme. Kardiologia Polska. 2009; 67(2):140–146. [PubMed: 19288376]
- Suaya JA, Stason WB, Ades PA, Normand SLT, Shepard DS. Cardiac rehabilitation and survival in older coronary patients. Journal of the American College of Cardiology. 2009; 54(1):25–33. [PubMed: 19555836]
- Sven G, Koch B, Ittermann T, Christoph S, Marcus D, Felix SB, Hansen JE. Influence of age, sex, body size, smoking, and β blockade on key gas exchange exercise parameters in an adult population. European Journal of Cardiovascular Prevention & Rehabilitation. 2010; 17(4):469– 476. [PubMed: 20305565]
- Taylor CB, Houston-Miller N, Haskell WL, Debusk RF. Smoking cessation after acute myocardial infarction: the effects of exercise training. Addictive Behaviors. 1988; 13(4):331–335. [PubMed: 3239464]
- Taylor FC, Victory JJ, Angelini GD. Use of cardiac rehabilitation among patients following coronary artery bypass surgery. Heart. 2001; 86(1):92–93. [PubMed: 11410574]
- Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, Oldridge N. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. The American Journal of Medicine. 2004; 116(10):682–692. [PubMed: 15121495]
- Thun MJ, Carter BD, Feskanich D, Freedman ND, Prentice R, Lopez AD, Gapstur SM. 50-year trends in smoking-related mortality in the United States. New England Journal of Medicine. 2013; 368(4):351–364. [PubMed: 23343064]
- Turk-Adawi KI, Oldridge NB, Tarima SS, Stason WB, Shepard DS. Cardiac rehabilitation patient and organizational factors: what keeps patients in programs? Journal of the American Heart Association. 2013; 2(5):e000418. [PubMed: 24145743]
- Turk-Adawi KI, Oldridge NB, Tarima SS, Stason WB, Shepard DS. Cardiac Rehabilitation Enrollment Among Referred Patients: PATIENT AND ORGANIZATIONAL FACTORS. Journal of Cardiopulmonary Rehabilitation and Prevention. 2014; 34(2):114–122. [PubMed: 24142042]
- Twardella D, Küpper-Nybelen J, Rothenbacher D, Hahmann H, Wüsten B, Brenner H. Short-term benefit of smoking cessation in patients with coronary heart disease: estimates based on selfreported smoking data and serum cotinine measurements. European Heart Journal. 2004; 25(23): 2101–2108. [PubMed: 15571825]

Gaalema et al.

- Tzou W, Vitcenda M, McBride P. Smoking status after cardiac events and participation in outpatient cardiac rehabilitation. Journal of Cardiopulmonary Rehabilitation and Prevention. 2004; 24(2): 94–99.
- US Department of Health and Human Services (USDHHS). The health consequences of smoking— 50 years of progress: A report of the surgeon general. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2014.
- Waites TF, Watt EW, Fletcher GF. Comparative functional and physiologic status of active and dropout coronary bypass patients of a rehabilitation program. The American Journal of Cardiology. 1983; 51(7):1087–1090. [PubMed: 6601451]
- Weinberger AH, Mazure CM, McKee SA, Caulin-Glaser T. The association of tobacco use and gender to cardiac rehabilitation outcomes: a preliminary investigation. Journal of Substance Use. 2014; 19(1–2):171–175. [PubMed: 24817825]
- Weingarten MN, Salz KA, Thomas RJ, Squires RW. Rates of enrollment for men and women referred to outpatient cardiac rehabilitation. Journal of Cardiopulmonary Rehabilitation and Prevention. 2011; 31(4):217–222. [PubMed: 21317800]
- Wenger NK. Current status of cardiac rehabilitation. Journal of the American College of Cardiology. 2008; 51(17):1619–1631. [PubMed: 18436113]
- Whitmarsh A, Koutantji M, Sidell K. Illness perceptions, mood and coping in predicting attendance at cardiac rehabilitation. British Journal of Health Psychology. 2003; 8(2):209–221. [PubMed: 12804334]
- Wilson K, Gibson N, Willan A, Cook D. Effect of smoking cessation on mortality after myocardial infarction: meta-analysis of cohort studies. Archives of Internal Medicine. 2000; 160(7):939– 944. [PubMed: 10761958]
- Witt BJ, Jacobsen SJ, Weston SA, Killian JM, Meverden RA, Allison TG, Reeder GS. Cardiac rehabilitation after myocardial infarction in the community. Journal of the American College of Cardiology. 2004; 44(5):988–996. [PubMed: 15337208]
- Wittmer M, Volpatti M, Piazzalonga S, Hoffmann A. Expectation, satisfaction, and predictors of dropout in cardiac rehabilitation. European Journal of Preventive Cardiology. 2012; 19(5):1082– 1088. [PubMed: 21788251]
- Worcester MU, Murphy BM, Mee VK, Roberts SB, Goble AJ. Cardiac rehabilitation programmes: predictors of non-attendance and drop-out. European Journal of Cardiovascular Prevention & Rehabilitation. 2004; 11(4):328–335. [PubMed: 15292767]
- Yohannes AM, Yalfani A, Doherty P, Bundy C. Predictors of drop-out from an outpatient cardiac rehabilitation programme. Clinical Rehabilitation. 2007; 21(3):222–229. [PubMed: 17329279]
- Zhang H, Alexander JA, Luttrell J, O'Connor GT, Daley J, Paris M. Data feedback and clinical process improvement in acute myocardial infarction. American Heart Journal. 2005; 149(5):856–861. [PubMed: 15894968]

Highlights

Those who smoke may be more likely to be referred to CR but less likely to attend.

Those who smoke are much more likely to drop out of CR.

Smoking in patients following a coronary event deserves increased attention.

Author Manuscript

The effects of reported smoking status on likelihood of referral to a cardiac rehabilitation program.

Author	Year	Year Location	u	sex	Effect Direction Size of Effect	Size of Effect
Brady et al.	2013	Ontario, Canada	3,739	76% M	+ *	Smokers more likely to be referred (AOR 1.53)
Brown et al.	2009	156 hospitals in USA 72,817	72,817	68% M	*	Smokers more likely to be referred (AOR 1.10)
Aragam et al.	2011	Michigan, USA	145,661	66% M	+	Within those referred 27.4% were smokers vs. 24.9% within those not referred
Bittner et al.	1999	Alabama, USA	995	65% M	II	13.8% smokers referred vs. 10.2% of nonsmokers
Kotseva et al.	2013	76 centres in Europe	8,845	76% M	II	31.6 % smokers referred vs. 29.0% of nonsmokers
Barber et al.	2001	2001 Michigan, USA	347	64% M	I	9.4% of smokers referred compared to 13.9% of nonsmokers

no significant relationship and a - denotes a significant negative association. An * denotes studies using multivariate analyses that accounted for other common predictors of attendance such as age, gender Note: Significance is defined as the original author's determination of statistical significance. A criterion of p < .05 was used across all studies. A + denotes a significant positive association, an = denotes and qualifying diagnoses. Author Manuscript

The effects of reported smoking status on likelihood of attending even one session at a cardiac rehabilitation program.

Author	Year	Location	u	sex	Effect Direction	Size of Effect	Smoking Definition
Turk-Adawi et al.	2014	Wisconsin, USA	6,874	69% M	 *	Smokers less likely to attend (AOR) 0.59	Smoked in last 12 months
Kotseva et al.	2013	76 centres in Europe	3,950	77% M	 *	33.3% of non-attenders smoked vs. 28.1% of attenders	Smoked in month prior to event
Goel et al.	2011	Minnesota, USA	2,395	68% M	 *	Current smokers less likely to attend (OR 0.68)	Current smoker, no definition, but distinct from former
Weingarten et al.	2011	Minnesota, USA	450	66% M	 *	Current smoking predictive of failure to enroll (AOR 3.38)	Current smoker based on hospital record
Taylor et al.	2001	Bristol, UK	187	M %62	 *	Current smokers less likely to attend (AOR 0.39)	Still smoking at discharge
Kotseva et al.	2004	47 centres in Europe	2,382	78% M	I	22.4% of non-attenders smoked vs. 18.7% of attenders	Smoked in month prior to event
Ades, Huang et al.	1992	Vermont, USA	580	87% M	I	38% of non-attenders smoked vs. 14% of attenders	Reported current smoking while in hospital
Tzou et al.	2004	Wisconsin, USA	630	Unknown	I	30.5% of non-attenders smoked vs. 13.6% of attenders	Smoked in last 12 months
Deskur- Smielecka et al.	2009	Poland	70	73% M	-, p = .052	None of those who continued smoking attended	Continued smoking after event
Redfern et al.	2007	Sydney, Australia	446	76% M	I	21% non-attenders smoked vs. 1% of attenders	Current, self-report confirmed by CO
Kerins et al.	2011	Dublin, Ireland	268	72% M	I	37% non-attenders smoked vs. 10% of attenders	Self-reported "smoker"
Fontana et al.	1986	Connecticut, USA	95	100% M	I	Smokers half as likely to attend	Smoked in last 6 months
Lindsay et al.	2003	Glasgow, UK	183	Unknown	I	43% non-attenders smoked vs. 14% of attenders	Current smoker at time of event
Lane et al.	2001	London, UK	263	75% M	 *	Current smoking not significantly associated with attendance (OR 0.80)	Current at time of hospitalization
Harlan et al.	1995	North Carolina, USA	393	76% M	 *	Only non-attenders reported any daily smoking	Current cigarettes per day
Higgins et al.	2008	Melbourne, Australia	184	78% M	 *	13% non-attenders smoked vs. 8% of attenders	Current smoker, no definition but distinct from former
Ayala et al.	2003	19 states and DC, USA	720	63% M	 *	24.5% non-attenders smoked vs. 19.3% of attenders	Current smoker, no definition but distinct from former
Blackburn et al.	2000	Ohio, USA	3,331	70% M	 *	19% non-attenders smoked vs. 16% of attenders	Current smoker, from clinical record

Author	Year	Location	u	SUX	Direction		D
Pasquali et al.	2003	North Carolina, USA	700	64% M	" *	61.1% non-attenders smoked vs. 57.0% of attenders	"History of smoking"
Cooper et al.	1999	London, UK	137	M %77	 *	Equal percent of never smokers in attenders and non-attenders (27%)	Past, present or never smoker
Dunlay et al.	2009	Minnesota, USA	179	66% M	 *	17.2% non-attenders smoked vs. 21.7% of attenders	Current smoking from hospital record
Grace et al.	2007	Ontario, Canada	506	M %77	 *	Current smoking not significantly associated with attendance (OR 1.36)	Current smoking after event
Grace et al.	2008	Ontario, Canada	1,490	72% M	 *	7.8% non-attenders smoked vs. 8.6% of attenders	Smoking in last 3 months
Farley et al.	2003	Adelaide, Australia	165	71% M	 *	No difference in attendance for smokers (OR 0.96)	Combined current and former smokers
King et al.	2001	Western Canada	304	76% M	 *	Smoking status not significantly associated with attendance (OR 0.67)	Smoked in last 3 months
Whitmarsh et al.	2003	UK	93	80% M	 *	58% of non-attenders smoked vs. 65% of attenders	Smoked prior to MI - may combine recent quitters with distant quitters
Evenson et al.	1998	Minnesota, USA	2,150	63% M	 *	Smoking rates similar in attenders (35%) and non-attenders (34%)	Current smoker, no definition but distinct from former
Salamonson et al.	2007	New South Wales, Australia	106	73% M	II	16% non-attenders smoked vs. 6% of attenders	Current at time of hospitalization
Ramm et al.	2001	Auckland, NZ	324	74% M	П	Data not provided	Smoking status at admission to hospital
Fridlund et al.	2000	Sweden	240	0% M	11	23% non-attenders smoked vs. 24% of attenders	Smoking: yes/no? Not defined
Beauchamp et al.	2013	Melbourne, Australia	544	73% M	II	Smoking rates similar in attenders (23%) and non-attenders (22%)	Currently smokes at least the occasional cigarette
King et al.	6661	Western Canada	1,245	77% M	*+, criterion not specified	Current smokers more likely to attend (OR 1.51)	Smoked in last 3 months
Witt et al.	2004	Minnesota, USA	1,821	58% M	+ *	Current smokers more likely to attend (OR 2.22)	"Current smoker" - no definition

Note: Significance is defined as the original author's determination of statistical significance. A criterion of p < .05 was used across all studies unless specifically noted otherwise. A + denotes a significant positive association, an = denotes no significant relationship and a – denotes a significant negative association. An * denotes studies using multivariate analyses that accounted for other common predictors of attendance such as age, gender and qualifying diagnoses.

Gaalema et al.

Author Manuscript

Author Manuscript

The effects of reported smoking status on likelihood of dropping out of a cardiac rehabilitation program.

Author	Year	Location	u	sex	Effect Direction	Size of Effect
Oldridge & Streiner	1990	Canada	120	100% M	+ *	15.5% of completers were current smokers vs.
Oldridge et al.	1983	Canada	733	100% M	*	37.1% of dropouts Smokers more likely to drop out (AOR 2.46)
Dom et al.	2001	6 states and DC, USA	931	100% M	*	r –0.21 between current smoking and program compliance (completing 50% or more sessions)
Beckie et al.	2010	Southeastern US	252	0% W	*	Smokers attend 4 fewer sessions on average
Sarrafzadegan et al.	2007	Iran	5	77% M	+ *	Nonsmokers more likely to complete (AOR 1.779)
Wittmer et al.	2011	Switzerland	2,37 1	85% M	+ *	Smokers more likely to drop out (AOR 2.338)
Marzolini et al.	2008	Toronto, Canada	5,92 2	82% M	+ *	Smokers more likely to drop out (AOR 2.307)
Sanderson et al.	2003	Alabama	526	65% M	+ *	Smokers more likely to drop out (AOR 2.1)

Author Manuscript

Gaalema et al.

Author	Year	Location	и	sex	Effect Direction	Size of Effect
Digenio et al.	1992	South Africa	711	Unknow n	*	Percent attendance current (45.96%) lower than non and former (57.84– 59.76%)
Beauchamp	2013	Melbourne, Australia	281	73% M	+	More low attenders were current smokers (40%), than were high attenders (18%)
Kerins et al.	2011	Ireland	187	71% M	+	9.6% of completers smokers vs. 31.4% of dropouts
Oldridge et al.	1978	Hamilton, Canada	163	100% M	+	43% of compliers and 58% of noncomplier s were smokers
Waites et al.	1983	Atlanta, Georgia	22	86% M	+, criterion not specified	No smokers completed the program

Prev Med. Author manuscript; available in PMC 2016 November 01.

Smokers in best attending group smoked 12.2 smoked 12.2 vs 35 in worst attending

=/+*

81% M

236

Eyherabide and Yates 1985 Wisconsin

Current smoking predicts drop out in men (AOR 3.33), but not in small sample of women

=/+*

70% M

573

Melbourne, Australia

2004

Worcestor et al.

⊳
É
Z
Ÿ
\leq
ar
č
SC
Ē
¥

Author	Year	Location	и	sex	Effect Direction	Size of Effect
Sanderson and Bittner	2005	Alabama	228	0% M	 *	Smokers less likely to complete program (AOR 0.4)
Taylor et al.	1988	California	76	100% M	11 *	Adherence lower in current smokers (80%) than in non and former smokers (88– 89%)
Yohannes et al.	2007	Manchester, UK	189	74% M	11 *	26.2% of drop-out patients were smokers vs. 16.3% of completers
Oldridge et al.	1992	Wisconsin	492	68% M	 *	Both smokers and nonsmokers completed about 75% of sessions
Soleimani et al.	2009	İran	1,98 6	73% M	II	23.9% of dropouts smoke compared to 21.6% of completers
Fontana et al.	1986	Connecticut	95	100% M	Ш	Raw data not provided

Note: Significance is defined as the original author's determination of statistical significance. A criterion of p < .05 was used across all studies unless specifically noted otherwise. A + denotes a significant positive association, an = denotes no significant relationship and a +/= denotes that significant effects were found in one subset of a population but not another. An * denotes studies using multivariate analyses that accounted for other common predictors of completion such as age, gender and qualifying diagnoses.