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Although persistent homology has emerged as a promising tool for the topological simplification
of complex data, it is computationally intractable for large datasets. We introduce multiresolution
persistent homology to handle excessively large datasets. We match the resolution with the scale
of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-
rigidity index to access the topological connectivity of the data set and define a rigidity density for
the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able
to focus the topological lens on the scale of interest. The proposed multiresolution topological
analysis is validated by a hexagonal fractal image which has three distinct scales. We further
demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In
particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed
which would otherwise be inaccessible to the normal point cloud method and unreliable by using
coarse-grained multiscale persistent homology. The proposed method has also been successfully
applied to the protein domain classification, which is the first time that persistent homology is used
for practical protein domain analysis, to our knowledge. The proposed multiresolution topological
method has potential applications in arbitrary data sets, such as social networks, biological networks,
and graphs. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931733]

I. INTRODUCTION

Proteins are of paramount importance to living organ-
isms. They are essential to almost all the basic functions
at the cellular level, such as providing structural support,
regulating signal transduction, mediating gene transcription
and translation, and catalyzing metabolic reactions. It is
commonly believed that protein functions are determined by
protein structures, the so called structure-function relationship.
However, protein structures are, in turn, determined by the
protein interactions. Protein interactions are inherently of mul-
tiscale in nature, including short range covalent bonds, middle
range hydrogen-bonds, dipole-dipole interactions, van der
Waals interactions, and long range electrostatic interactions.
Consequently, protein structures are intrinsically multiscale as
well, ranging from atomic scale, residue scale, alpha helix
and beta sheet scale, domain scale in a single protein to
protein scale in multiprotein complexes. Geometric analysis
of proteins is usually in terms of coordinates, bond length,
bond angle, surface area, volume, curvature, etc., which often
involve excessively high degrees of freedom and high dimen-
sionality and can be computationally prohibitively expensive.
For example, a human immunodeficiency virus (HIV) capsid
has about 4.2 millions of atoms, giving rise to a problem of
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R12600000 in the molecular mechanics. Topological analysis
of proteins is typically in terms of topological invariants,
namely, connected components, tunnels or rings, and cavities
or voids, which are zero dimensional (0D) and seldom useful.
The complexity and multiscale nature of proteins or protein
complexes call for innovative strategies in protein description,
representation, characterization, and analysis.

Persistent homology has been advocated as a new strategy
for the topological simplification of complex data.9,11,27,41 This
approach generates a family of “copies” for a given dataset
through a filtration process so as to analyze their topologies
and relations. These copies are made slightly different in
geometry, such as a systematic increase in the radius of
each sphere of point cloud data or a systematic decrease
in the isovalue of volumetric data. Simplicial complexes
generated by the filtration process are organized into homology
groups.9,41 Persistent diagrams or barcode representation14 is
introduced to record the “birth” and “death” of topological
invariants, i.e., Betti numbers, of the underlying copies. As
such, the filtration parameter induces a one-dimensional (1D)
topological description of a given data set, in contrast to
the 0D description of the traditional topology and the high
dimensional description of geometry. Therefore, persistent
homology bridges the gap between traditional topology and
geometry. Many elegant computational algorithms have been
proposed for persistent homology analysis in the litera-
ture.6,7,10,21 There is a long list of successful applications of
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persistent homology in a variety of fields, including data anal-
ysis,4,19,22,26,31 image analysis,3,5,12,25,29 shape recognition,8

chaotic dynamics verification,16,20 network structure,15,18,28

computer vision,29 and computational biology.13,17,39 Topolog-
ical characterization identification and analysis (CIA) are some
of the most successful applications of persistent homology.
Indeed, persistent homology has scarcely been utilized for
physical modeling and/or quantitative prediction.

Recently, we have introduced persistent homology for
mathematical modeling and physical prediction of nano-
particles, proteins, and other biomolecules.34,36 We have
proposed molecular topological fingerprint (MTF) to reveal
topology-function relationships in protein folding and protein
flexibility.36 We have devised persistent homology to predict
the stability of proteins36 and the curvature energies of
fullerene isomers.30,34 To proactively extract desirable topo-
logical traits from complex data, we have introduced objective-
oriented persistent homology based on variational principle.30

We have also developed multidimensional persistence to
better analyze biomolecular data.37 We have utilized persistent
homology to resolve ill-posed inverse problems in cryo-EM
structural fitting.38

Figure 1 illustrates the multiscale features of a virus
particle. To understand the physical and biological properties
of viruses and other macromolecular complexes, we need to
have appropriate multiscale and multiresolution descriptions.
The Protein Data Bank (PDB) provides biomolecular structural
information in a high level of detail, including atomic
coordinates, observed sidechain rotamers, secondary structure
assignments, as well as atomic connectivity. This type of
structural data is usually known as point cloud data in persistent
homology analysis. Multiscale description of biomolecules
can be achieved in a variety of ways. Typically, coarse-grained
methods describe biomolecules in terms of superatoms or
super-particles at a given scale. There are many superatom
representations, including residue based, domain based, and
protein based ones. The corresponding persistent homology
analysis based on the residue representation has been explored
in our earlier work.36 Additionally, persistent homology
analysis using protein based coarse-grained representation has
been introduced in our recent work for studying multiprotein
complexes.38 Nevertheless, coarse-grained persistent homol-
ogy might suffer from inconsistency due to the ambiguity in
choosing the coarse-grained particle.

The direct application of persistent homology analysis to
large biomolecules, such as virus capsids which typically have

millions of atoms, is unfeasible at present. One of the reasons
that lead to the failure is the use of a uniform resolution in
the filtration and cross-scale filtration at a high resolution is
prohibitively expensive in the present persistent homology
algorithms. New strategy is required to use topology for
dealing with excessively large datasets.

The objective of the present work is to introduce mul-
tiresolution persistent homology (MPH) for analyzing large
datasets. Our basic idea is to match the scale of interest with
appropriate resolution in the topological analysis. In contrast
to the original persistent homology that is based on a uniform
resolution of the point cloud data over the filtration domain,
the proposed MPH provides a mathematical microscopy of
the topology at various scales through an adjustable resolution
parameter. In spirit of wavelet multiresolution analysis,
resolution based continuous coarse-grained representations are
constructed for complex data sets. MPH can be employed to
capture the topology of a given geometric scale and applied as
a topological focus of lens. MPH becomes powerful when it is
used in conjugation with the data that have a multiscale nature.
For example, one can use MPH to extract the topological
fingerprints of a multiprotein complex either at its atomic scale,
residue scale, alpha helix and beta sheet scale, and domain
scale or at the protein scale.

The rest of this paper is organized as the follows. In
Section II, we introduce multiresolution persistent homology.
The underpinning multiresolution geometric modeling is
accomplished by generalizing a flexibility rigidity index (FRI)
method23,24,35 originally introduced for biomolecular data to
general data. We design a hexagonal fractal image to demon-
strate the multiresolution analysis and investigate associated
multiresolution topological persistence. In Section III, we
explore multiresolution topological fingerprints of images and
biomolecules. We reveal the close relationship between mul-
tiresolution geometry and multiresolution topology. We show
that the FRI method provides a unified framework for both
multiresolution geometric representation and multiresolution
topological analysis. This paper ends with a conclusion.

II. METHOD AND ALGORITHM

In this section, we introduce the theory and algorithm
of multiresolution geometric analysis and multiresolution
persistent homology. We construct the multiresolution geo-
metric representation by using the FRI method,23,24,35 which
converts the point cloud data into a matrix or a density

FIG. 1. Illustration of multiscale features in a virus capsid structure (PDB ID: 1DYL). The capsid has an icosahedral symmetry and consists of 12 pentagons
and 30 hexagons. Each hexagon or pentagon encompasses a multiprotein complex with five or six protein monomers. Each protein monomer has more than a
hundred amino acid residues. Each residue, in turn, has many atoms.
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map. The conversion is modulated by a resolution parameter,
which enables us to facilitate the multiresolution analysis
of complex data. Additionally, FRI provides a resolution-
controlled statistical average of general data. The mul-
tiresolution topological analysis is developed based on the
multiresolution representation of original data. To demonstrate
the utility and examine validity of the proposed multiresolution
geometric and topological methods, we design a hexagonal
fractal image with three distinct scales. We show that the
proposed multiresolution persistent homology is able to
extract the topological information at each of the three
scales. Therefore, the proposed topological method provides a
topological microscopy of multiscale data at a desirable scale.

A. Multiresolution geometric analysis

FRI23,24,35 was originally invented for the flexibility
analysis of biomolecules. It provides an excellent prediction
of macromolecular Debye-Waller factors or B-factors. The
essential idea of FRI is to construct flexibility index and
rigidity index by certain kernel functions and further use them
to describe the topological connectivity of protein structures.
In the present work, we generalize the FRI method for
characterizing the rigidity and flexibility of arbitrary data
sets, such as networks, graphs, etc. The generalized FRI
method facilitates the multiresolution geometric description
of biomolecules, images, and volumetric data in general.

Assume that a data set has a total N entries, which
can be atoms, pixels, or voxels with generalized coordinates
r1,r2, . . . ,rN . In general, the rigidity index of the ith entry can
be expressed as

µi =

N
j

w jΦ(ri j; η j), (1)

where ri j = ∥ri − r j∥ is the generalized distance between
the ith and jth entries, w j is a weight, which can be the
element number of jth atom for biomolecules such as protein,
DNA, and RNA, and Φ(ri j; η j) is a real-valued monotoni-
cally decreasing correlation function or probability density
estimator32 satisfying the following admissibility conditions:

Φ(ri j; η j) = 1 as ri j → 0, (2)

Φ(ri j; η j) = 0 as ri j → ∞. (3)

Here, η j > 0 is a resolution parameter that can be adjusted
to achieve the desirable resolution for a given scale. Delta
sequence kernels of the positive type discussed in an
earlier work32 are admissible correlation functions or ker-
nels. Commonly used correlation functions are generalized
exponential functions

Φ(ri j; η j, κ) = e−(ri j/η j)κ, κ > 0 (4)

or generalized Lorentz functions

Φ(ri j; η j,υ) = 1
1 +

�
ri j/η j

�υ , υ > 0. (5)

Note that, in these functions, the larger the η j value, the lower
the resolution is. The flexibility index of the data set at the ith
entry is defined as the inverse of the rigidity index

f i =
1N

j w jΦ(ri j; η j)
. (6)

Although the generalized distance ∥ri − r j∥ can be
regarded as the Euclidean space distance for biomolecular
atoms, it is more generally defined in the present analysis, such
as the distance between biological species or other entities.
Therefore, the rigidity index and flexibility index are general-
ized concepts for arbitrary data sets, such as social networks,
biological networks, and graphs in the present formulation.

Flexibility index and rigidity index can be easily extended
to more general volumetric flexibility and rigidity functions.
The rigidity function of the data can be expressed as

µ(r) =
N
j

w jΦ(∥ r − r j ∥; η j) (7)

and the flexibility function of the data can be given as

f (r) = 1N
j w jΦ(∥ r − r j ∥; η j)

. (8)

The rigidity function can be regarded as the density
distribution of a macromolecule, a picture, or volumetric
data. Therefore, it provides an analytical representation of
a data structure in R3. More importantly, the resolution
parameter in the rigidity function, i.e., η j, enables us to
represent the data at the scale of interest. One can set η j to
a common constant η for all atoms or data entries. If atoms
in a biomolecular complex are classified into subsets {αk}
according to residues, alpha helices, beta strands, domains,
or proteins, one can also represent each subset of atoms at
a different resolution ηαk

. Similarly, one can choose ηαk
for

subset ηαk
according to other physical traits in general data.

Therefore, the resolution parameter η j offers two types of
multiresolution representations: multiple common resolutions
(η) and a simultaneous multiresolution {ηαk

}.
Since rigidity function gives rise to the density distribution

of a macromolecule or general data, the morphology of the
macromolecule or data can be visualized at either a common
resolution η or a set of resolutions {ηαk

}. Obviously, the
commonly used Gaussian surface40 is a special case of the
present multiresolution geometric model. Figure 2 illustrates
the multiresolution analysis of a hexagonal fractal image
generated by rigidity function µ(r) at various resolutions η.
It can be seen that rigidity functions give rise to a series
of multiresolution geometric representations, focusing on
different length scales of the original hexagonal fractal image.
State differently, varying the resolution enables us to highlight
the scale of interest. Additionally, the present multiresolution
geometric model provides a basis for multiresolution persistent
homology analysis.

B. Multiresolution topological analysis

To generate a persistent homology analysis, a filtration
process is used to construct a family of objects with different
parametrizations. For point cloud data, the radius based
filtration is most commonly employed. In this method, one
associates each point with a ball whose radius is ever-
increasing. When these balls gradually overlap with each
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FIG. 2. Illustration of multiresolution geometric analysis of a 2D hexagonal fractal image. The rigidity functions µ(r) are constructed from various resolution
(η) values.

other, simplicial complexes which are topological spaces
are constructed by connecting corresponding points, line
segments, triangles, and their high dimensional counterparts.
There are various ways to decide which sets of points are
to be connected at each radius. Among them, Vietoris-Rips
complex (or Rips complex), in which a simplex is generated
if the largest distance between any of its vertices is at most
two times the ball radius, is most frequently used. As the
radius increases, the previously formed simplicial complexes
will be included into latter ones and a filtration process
is thus created. In this manner, topological invariants that
arise and perish in this series of simplicial complexes are
measured by their persistent time and visualized through
a barcode representation. Sometimes, another representation
called persistent Betti number (PBN) is used. Basically, PBN
is the histogram of the total number of topological invariants
over the filtration parameter.

The radius based filtration provides an efficient approach
for the persistent homology analysis of point cloud data of
relatively small data sets. However, it fails to capture two
types of important physical properties of biomolecules. First,
the information about element type, such as hydrogen (H),
carbon (C), oxygen (O), nitrogen (N), phosphorous (P), and
sulfur (S), is missing in the normal point cloud representation.
The difference in elements has a dramatic impact to chemical
and physical behaviors. Additionally, radius based filtrations
typically utilize a uniform resolution of the point cloud data
over the full filtration domain, which is computationally expen-
sive and requires huge memories for large biomolecules. State
differently, it usually fails to capture the topological properties
at large or global scales as the number of the constructed
simplicial complexes grows exponentially. Moreover, such
a description at a uniform resolution does not allow us to
emphasize the topology at a given scale or study the topology
with mixed scales for different parts.

We propose the MPH based on the FRI method. Specif-
ically, we construct a matrix based on the FRI correlation
function

Mi j =
w j

wmax
(1 − Φ(ri j; η j)), (9)

where wmax is the largest element number in the biomolecule or
the largest weight in the data set, and 0 ≤ Mi j ≤ 1. Obviously,
Mi j can be viewed as the connectivity between the ith and
jth atoms or entries. The smaller the Mi j value is, the
closer distance between the ith and jth entries is. A filtration
over matrix (Mi j) values can be constructed. Although a
similar matrix based filtration method was introduced in our
earlier work,35 the multiresolution property based on the
resolution parameter η j has never been explored. Compared
with the radius based filtration, the FRI matrix based filtration
incorporates appropriate resolution η j into the simplicial
complex generation and can be used to highlight the topology
at a given scale of interest. In this work, we set η j = η.

Another multiresolution filtration can be constructed
based on a series of isovalues of the rigidity function
volumetric data (µ(r)) shown in Eq. (7). Unlike the commonly
used point cloud representation, rigidity function incorporates
the information of atomic types and the resolution matching
the desirable scale. In this manner, a multiresolution geometric
representation can be obtained. By varying the resolution, our
model can pinpoint to the local atomic detail or focus on
global protein configuration. State differently, we can focus the
lens on biomolecular traits of different scales, such as atom,
residue, secondary-structure, domain, protein complex, and
organelle. More importantly, the persistent homology analysis
is employed in this multiresolution model to deliver a full
“spectrum” of topological characterization of the system. From
the generated barcodes, a series of topological fingerprints
from various scales are obtained.
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C. Validation with a hexagonal fractal image

1. Multiresolution geometric analysis of the hexagonal
fractal image

To demonstrate the proposed multiresolution geometric
analysis and associated multiresolution topological analysis,
we design a two-dimensional (2D) hexagonal fractal image as
depicted in Figure 2. This structure is constructed by replacing
each hexagonal vertex with a smaller hexagon. The coordinates
of largest hexagon are set to (

√
30, 10), (

√
30,−10), (0.0, 20),

(0.0,−20), (−
√

30, 10), and (−
√

30,−10). The computational
domain Ω is set to Ω = [−30,30] × [−30,30], and the grid
spacing is chosen as 0.05 in order to capture all the local
details in the structure. It is easy to see that the length of the
edge is 20. These nodes are then used as centers for second-
level hexagonal structures. The edge length of these hexagons
is 0.25 times of the original edge length (i.e., 5). By removing
all the nodes of the original hexagon, we have totally 36 new
nodes and 6 smaller hexagons in our second level structure. By
repeating this process again, i.e., replacing each node in the
second-level hexagons with a third-level hexagonal structure,
setting the edge length to be 0.25 times of the second level edge
length (i.e., 1.25), and removing all the second level nodes, we
arrive at our final hexagonal fractal image with 216 nodes in
36 third-level hexagons.

The FRI based multiresolution analysis of the hexagonal
fractal image is depicted in Figure 2. Obviously, there are three
scales in the fractal image. The smallest scale is better resolved
at a resolution around 0.4. The middle scale, which shows six
hexagons, is reflected at resolution of 1.0-3.0. At the large
scale, there is only one hexagon which is better represented at
the resolution of 4.0.

2. Topological fingerprint of the hexagonal
fractal image

Typically, barcodes are obtained from persistent homol-
ogy analysis. In our study, we arrange the barcodes in a
sequence according to their birth time. The resulting barcode
pattern for a given data set is called a topological fingerprint,
which can be used to identify the data set. The topological
fingerprint of the hexagonal fractal image can be obtained
from persistent homology analysis. Figure 3 demonstrates
the persistent barcodes of the hexagonal fractal generated by
the radius filtration. The upper and lower panels are barcode
representations of β0 and β1, respectively. For all our persistent
barcodes, the horizontal axis is filtration parameter, i.e., either
the radius (Å) or the rescaled density value.

Topologically, β0 is for isolated components and β1
represents one-dimensional loops or rings. It is seen that
originally there are 216 β0 bars, corresponding to 216 nodes in
the hexagonal fractal. When filtration size goes to 1.25, most
of these β0 bars are simultaneously killed and the total number
of isolated components reduces to 36. This means that 1-
simplexes (edges) begin to form between adjacent 0-simplexes
(nodes) in the related Vietoris-Rips complex, eliminating
isolated components. Meanwhile, 36 individual β1 bars, i.e.,
36 hexagonal rings, emerge simultaneously. With the advance
of the filtration, the PBNs of β0 bars undergo two further reduc-

FIG. 3. Topological fingerprints of a hexagonal fractal image. Top and bot-
tom panels are for β0 and β1 barcodes, respectively. The horizontal axis is the
filtration parameter, i.e., radius. Note the separation of ring structures in the
β1 barcode.

tions. First, PBN descends to 6 at 2.5 and to 1 at 7.5. While
two types of larger scaled β1 bars have been generated. From
a topological point of view, the detailed small-scale structures
are removed by the creation of 2-simplexes, and at the same
time higher level structures appear when more connections (1-
simplexes) are established. In general, it is seen that all three
levels of hexagonal structures are captured in both β0 and
β1 bars. All of these identical bars form a unique topological
pattern which is directly related to their structure properties and
thus is called a topological fingerprint for the fractal image.

3. Multiresolution topological analysis
of the hexagonal fractal image

To generate a multiresolution topological analysis of the
multiscale hexagonal fractal image, we use the exponential
function with κ = 2 and systematically changes the resolution
η. To avoid confusion, we linearly rescale all the rigidity
function values to the region [0, 1] using formula

µs(r) = 1 − µ(r)
µmax

, ∀r ∈ Ω, (10)

where µ(r) and µs(r) are the original and rescaled rigidity
density value, respectively. Here, µmax is the largest density
value in the original data. The rescaled density value is
then used as the filtration parameter. Figure 4 depicts the
multiresolution topological analysis of the hexagonal fractal
image. Clearly, at the resolution of 0.2, the topology is a set
of 216 isolated nodes. At the resolution of 0.4, the topology
shows the formation of 36 small hexagons from 216 nodes.
At the resolution of 3.0, each small-scale hexagon becomes
a “superatom.” Only the middle-scale topological features
appear, namely, the formation of 6 middle-scale hexagons
from 36 “superatoms.” One can also see the formation of a
large ring from 6 middle-scale hexagons. At the resolution of
10.0, no detailed topological structure of the six middle scale
hexagons is visible. The topology shows the formation of the
large-scale ring from 6 “superatoms.” At the lowest resolution
of 30.0, all of the 216 nodes are topologically equivalent to a
superdot and there is no ring structure at all. It is seen that the
varying of the resolution gives rise to a series of topological
representations of the original structure at various scales. State
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FIG. 4. Multiresolution persistence of
the hexagonal fractal image. Top and
bottom panels are for β0 and β1 bar-
codes, respectively. The horizontal axes
denote the rescaled rigidity density
value. The topological fingerprints at
different scales can be identified.

differently, the proposed multiresolution persistent homology
provides an adjustable “topological lens” and enables us to
focus on any scale of interest.

The multiscale nature of the resolution parameter can be
more clearly seen in a multi-dimensional filtration process.
Figure 5 demonstrates the PBNs under various resolution
values. The horizontal axes represent the rescaled rigidity
density value, and the vertical axes are the resolution. The
color bar indicates the common logarithm (logarithm with
base 10) of the PBN values. It should be noticed that in order
to avoid the situation of log10(0), we systematically increase
all the PBNs by one in both β0 and β1 plots. As demonstrated
in Figure 5, there exist three bands in both β0 and β1 plots.
Each band represents a scale in the structure, capturing the
essential multiscale topological properties of the hexagonal
fractal image.

III. MULTISCALE MULTIRESOLUTION TOPOLOGICAL
ANALYSIS OF BIOMOLECULES

In this section, we illustrate how to employ the proposed
multiresolution topological analysis for the study of biomo-
lecular data. We first use a DNA structure to demonstrate mul-
tiscale geometric analysis generated at two atomic scale repre-
sentations and one coarse-grained (nucleic acid) representation
in terms of phosphorus atoms. The associated topological
analysis provides topological fingerprints for biomolecules at
different scales. We further illustrate multiresolution geometric
and topological analysis of biomolecular data. Specifically,

FIG. 5. Illustration of 2D persistent homology in terms of PBNs for the
hexagonal fractal image. The horizontal axes denote the rescaled rigidity
density value, and the vertical axes represent the resolution η. The logarithm
of PBNs for β0 and β1 is plotted in (a) and (b), respectively. Three large bands
in both β0 and β1 indicate three distinguished scales of the fractal topology.

we construct biomolecules at various FRI resolutions using
the rigidity function in our FRI method. The rigidity density,
i.e., volumetric profile of the rigidity function, is used to
create multiresolution topological analysis by varying the
resolution η. Finally, we apply the present multiresolution
persistent homology to protein domain classification. We show
that at appropriate resolutions, the β0 invariants indicate the
separation of domains.

A. Multiscale topological analysis of biomolecules

As discussed earlier, macromolecules are intrinsically
multiscale. On the one hand, persistent homology analysis of
macromolecular data gives rise to multiscale persistence. On
the other hand, the multiscale nature of macromolecules allows
us to carry out the persistent homology analysis at different
scales. For example, multiprotein complexes can be repre-
sented at a variety of scales, including atomic scale, residue
scale, domain scale, and protein scale. The different represen-
tations of a multiprotein complex lead to different topological
fingerprints and associated topological interpretations.

Figure 6 illustrates a multiscale persistent homology anal-
ysis of a DNA molecule (PDB ID: 2M54). The DNA molecule
is described in all-atom representation (Figure 6(a)), all-atom
representation without hydrogen atoms (Figure 6(b)), and
coarse-grained phosphorous representation (Figure 6(c)). The
corresponding topological fingerprints shown in Figures 6(e)
and 6(f) are dramatically different. The building blocks of
nucleotides include nitrogenous base, five-carbon sugar, and
phosphate group. The five-carbon sugar has a pentagonal
ring (PR) and the nitrogenous base has either a hexagonal
ring (HR) or one HR and one PR. It can be seen that these
local structural details are well-resolved in the topological
fingerprint computed from our hydrogen-free all-atom data as
indicated in Figure 6(e). The signatures of HR and PR appear
around 2.0 Å, which is very similar to PRs and HRs in protein
molecules,36 indicating they are consistent in all biomolecular
structures. The selection of coarse-grained DNA models is
very subtle. In our case, a phosphorous atom is chosen to
generate a representation of a nucleotide. In this manner, only
the two strand backbones are preserved, which are represented
by two long persisting bars in β0. There is no ring formation
or β1 bar in the coarse-grained topology.



134103-7 Xia, Zhao, and Wei J. Chem. Phys. 143, 134103 (2015)

FIG. 6. Multiscale analysis of DNA
molecule (PDB ID: 2M54). (a)-(c) Mul-
tiscale geometric analysis of the DNA
molecule in all-atom representation, all-
atom representation without hydrogen
atoms, and coarse-grained representa-
tion (using phosphorous atoms), respec-
tively; (d)-(f) corresponding persistent
barcodes for the above three representa-
tions. Top and bottom panels are for β0
and β1 barcodes, respectively. The hor-
izontal axes denote the filtration param-
eter, i.e., radius (Å). In all-atom repre-
sentation, nearly half of the β0 bars end
around 1.2 Å in (d). With the removal
of the hydrogen atoms, local topolog-
ical invariants representing hexagonal
and pentagonal rings are clearly sepa-
rated from the global topological struc-
tures in (e). The dimensionality reduc-
tion with the coarse-grained model dis-
plays not only the signature of phospho-
rous atoms but also the double string
structure in (f).

For multiprotein complexes, such as viruses and microtu-
bules, it is computationally too expensive to directly compute
the full spectrum of topological fingerprints in the atomic scale.
Multiscale persistent homology based coarse-grained residue
or protein representations provide a potential solution to this
problem. However, one always faces a difficulty as to how to
select representative superatoms for the given atomistic data.
Different choices lead to dramatically different topological
fingerprints. Large topological errors can be generated by
using undesirable superatoms. These issues highlight the
problematic nature of multiscale persistent homology method.

The multiresolution persistent homology proposed in this
work by-passes such a difficulty. It effectively provides a
coarse-grained representation at a large scale. However, unlike
the aforementioned superatom-based coarse-grained represen-
tation, the present resolution based coarse-grained method
provides a faithful representation of the original geometry.

B. Multiresolution topological analysis
of biomolecules

It is well known that in biomolecules, there are various
types of atoms, H, C, O, N, P, S, etc., with a wide range
of element numbers. As discussed in Section II B, tradi-
tional point cloud representation does not discriminate these
chemical elements and treats them equally. Our FRI based
density model can automatically take the element information
into consideration. More importantly, the resolution can be
controlled to match the scale of interest. This enables us to
tackle the topology of macromolecules at large scales that are
intractable with the current point cloud approaches. In this

section, we apply multiresolution persistent homology to two
biomolecular systems, i.e., a complex DNA structure and a
virus capsid structure. In both cases, we use the exponential
function with κ = 2 as the FRI kernel.

1. A complex DNA structure

We present a multiresolution topology analysis for a
complex DNA segment extracted from PDB 1SLS. In the
original PDB structural file, there are 9 frames, with each frame
in a pseudosquare knot configuration. A complex multiscale
DNA structure can be obtained by extracting chain A from
the first frame and removing its all hydrogen atoms. Figure 7
depicts the basic structure and its persistent barcodes generated
from point cloud data. Note that the deletion of hydrogen atoms
facilitates the separation of local and global barcodes. In fact,
the local barcodes, representing the pentagon and hexagon
rings, last from around 1.3 to 2.5 Å in the β1 panel. The global
topological invariants come much later in the filtration process.
Moreover, a long-persisting β1 bar, which persists even over
filtration size 8.0 Å, reveals the global topological invariant in
the DNA structure, i.e., a large loop formed by the backbone
of this special DNA segment.

In our DNA segment structure, remarkably different
scales, including those of atoms, sugar rings, nitrogenous base
rings, inter-nucleic acid structures and backbone structures,
exist simultaneously. To reveal these multiscale properties, we
construct a FRI based density function and perform our MPH
analysis. The rigidity function is of essential importance. On
the one hand, it captures the atomic scale information through
weight coefficients. Normally, we set w j as jth particle’s
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FIG. 7. Geometric and topological analysis of a DNA segment (PDB ID:
1SLS). (a) The atom-bond representation reveals the local nucleotide in-
formation as well as the global loop backbone structure. (b) The persistent
barcodes for the DNA segment. The horizontal axis denotes the filtration
parameter, i.e., radius (Å). Hydrogen atoms are excluded. Local pentagon
and hexagon rings from nucleotide bases and sugars, and global helix strips
appear in two different domains in the β1 panel.

element number. On the other hand, the resolution parameter
η is systematically changed to cover a full “spectrum” of
geometric resolution. For this special DNA structure, we vary
the parameter from 0.2 to 4.0 Å. Once the density maps are
obtained, we linearly rescale them to the range of [0,1] using
Eq. (10), so that we can observe and compare the scales and

their evolution in the series of barcodes. Computationally, a
grid spacing of 0.2 Å is used as a smaller grid spacing can
be prohibitively expensive. However, it should be noticed that
a large grid spacing cannot match with high resolution, as
the local structures will not be fully represented and may
even appear as noise in the data. Therefore, in our MPH
analysis, all the bars with persistent length less than 0.05
are regarded as unreliable results and are removed from the
barcode representation.

Rigidity density isosurfaces at various resolutions provide
a vivid illustration of the multiscale geometric model. Figure 8
demonstrates four DNA isosurfaces from rigidity density maps
at resolutions η = 0.5,1.0,2.0, and 4.0 Å, respectively. Note
that the representative isosurface is extracted from about the
middle value of the density map. It can be seen that the
dominated scales of these representative isosurfaces gradually
shift from the local type, i.e., atoms in Fig. 8(a), sugar rings,
and nitrogenous base rings in Fig. 8(b) to the global type,
i.e., inter-nucleic acid structures in Fig. 8(c) and the backbone
structure in Fig. 8(d). This shift of scales controlled by the
resolution parameter can be more quantitatively characterized
with our MPH analysis.

The essence of our multiresolution persistent homology
analysis is to describe our multiscale geometric model in a
topological representation, i.e., in barcodes or/and persistent
Betti numbers. To illustrate our idea, we systematically change
η from 0.2 Å to 4.0 Å and select six representative resolutions,
i.e., η = 0.2,0.5,0.7,1.0,2.0, and 4.0 Å, to perform MPH
analysis. It can be observed that in Fig. 9(a), when η is around
0.2 Å, the atomic scale detail dominates. There are 507 β0
bars, representing 507 individual atoms. Not all of β0 bars
have the same lengths. A group of 24 bars emerges much

FIG. 8. Multiresolution geometric analysis of a complex DNA segment from 1SLS. The surfaces are extracted from representative isovalues. It can be seen
that, from (a) to (d), there is a very consistent shift in scale from local ones to global ones, namely, from atomic feature in (a), sugar rings, and nitrogenous base
rings (b), to inter-nucleic acid characteristics in (c) and backbone traits in (d). This multiscale nature is well-captured in our MPH analysis as demonstrated in
the barcodes in Figure 9.
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FIG. 9. Multiresolution persistent homology analysis of a DNA segment from 1SLS. It can be observed that at the highest resolution (0.2 Å), only the atomic
information is observed as in (a). Local pentagon and hexagon ring structures start to appear in (b) and (c) when resolution decreases. Inter-nucleic acid structures
emerge and gradually dominate the barcodes if η exceeds 1.0 Å. Further increase in resolution values eliminates most transitional local and global topological
invariants, leaving the largest loop as demonstrated in (f). One can expect that the DNA molecule will evolve into a feature-less sphere if resolution parameter
reaches a certain limit.

earlier in the filtration, representing 24 phosphorus atoms that
have the largest element number. However, due to the limited
grid resolution at the grid spacing of 0.2 Å, many details of the
atom types are not well captured and we cannot distinguish
other types of atoms. With the decrease of the resolution in
Figs. 9(b) and 9(c), more atomic information reveals and
we can distinguish all other three types of atoms, i.e., 153
oxygen atoms, 87 nitrogen atoms, and 243 carbon atoms.
More importantly, local ring structures begin to appear and
gradually dominate. With a suitable resolution as in Fig. 9(c),
we can even clearly identify the three types of rings in β1 bars.
Based on the death time, these 60 β1 bars can be divided into
three groups, i.e., 35 pentagon rings from five-carbon sugars,
35 hexagon rings from nitrogenous bases, and 10 pentagon
ring from nitrogenous bases, from the top to the bottom. Inter-
nucleic acid structures begin to appear with further increase
of η value as demonstrated in Figs. 9(d) and 9(e). Local ring
structures gradually fade away from the barcodes. Finally,
when η is increased to 4.0 Å, only the global loop formed by
the backbone of the DNA segment remains.

2. A virus capsid structure

The virus capsid structure of 1DYL shown in Figure 1 has
multiple scales, ranging from atomic, residual, protein scales
to pentagonal or hexagonal protein complex scales. There are
5705 atoms in each of 12 pentagon-shaped complexes and
6844 atoms in each of 30 hexagon-shaped complexes, leading
to a total of 273 780 atoms in capsid. Computationally, it
is prohibitively expensive to incorporate all the scales in a
uniform topological representation.

In the construction of rigidity density maps, we incor-
porate atom type information by the association of weight
parameters w j with the atomic element number. We set
the grid size to be 2.0 Å to generate density map for the

virus, although a finer grid size of 0.6 Å has been used for
constructing the density maps of a single pentagon-shaped
or a single hexagon-shaped protein complex as shown in
our supplementary material.1 We also linearly rescale all the
generated density maps to the range of [0, 1] using Eq. (10) and
remove the bars with length less than 0.05 in barcodes. Note
that PDB provides the structure information for a single protein
and related symmetry operations. Therefore, pentagon-shaped
protein complexes and pentagon-shaped protein complexes, as
well as the virus capsid, are all constructed using the symmetry
information in the PDB for protein 1DYL.

For the virus capsid structure, the topology at the
multiprotein scale reflects 12 pentagons and 30 hexagons.
There are about 20 triangle circles formed between pentagon
rings and hexagon rings. Each of these triangle circles can
evolve into 4 smaller circles in different rigidity density
isosurfaces when suitable resolutions are employed. All the
above information can be derived from the careful observation
of β1 panels in Figure 10. Especially, in Figures 10(g) and
10(h), we can see that 12 β1 bars emerge first during the density
filtration. Additionally, there are 30 long persisting bars in the
β1 panels due to 30 hexagonal rings. Furthermore, there are 19
short bars, which are originated from 20 triangle circles, as the
whole surface is connected and one β1 bar is removed. Finally,
the 60 more β1 bars are added as each triangle transforms into
4 circles. It is interesting to analyze β0 barcodes as well. In
Figures 10(g) and 10(h), there are roughly three sets of 60 β0
bars appearing according to their generation time during the
filtration process. From the above analysis, we know that 12
pentagon complexes contribute 60 identical β0 bars. Due to the
dimerization, 30 hexagons complexes contribute two types of
β0 bars, each having 60 bars. Furthermore, from the birth and
death time of the first and second sets of β0 bars, we can tell that
the only the second set of 60 β0 bars is due to the pentagon pro-
tein complexes, as 12 β1 bars appear at exactly the same time.
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FIG. 10. Multiresolution analysis of virus capsid structure generated from protein 1DYL. It can be seen from (e) and (f) that topological invariants generated
from the structure details within the protein are captured. Small scale topological details quickly disappear as the resolution parameter increases. Instead global
topological invariants that capture the loops within or between protein-protein complex appear. In (g), at the beginning of the filtration, 12 long and 30 short β1
bars can be identified, which indicates 12 pentagon rings and 30 hexagon rings in the multiprotein complex. Later, 19 more β1 bars emerge, corresponding to
20 loops formed between hexagon and pentagon protein complexes, with 1 loop being left uncounted because of a sphere-like surface.34 The 20 loops further
evolve into 80 loops as demonstrated in (h). For the reason stated above, one loop is not accounted. More interestingly, by examining birth and death times
during the filtration, when β1 bars emerge and β0 bars disappear in (g) and (h), one can find that hexagonal protein complexes contribute the first 60 β0 bars.
Only after a short while during the filtration, the second 60 β0 bars from the pentagonal protein complexes appear. Finally, the third 60 β0 bars come out. They
are from the short bars in hexagonal protein complexes as shown in the supplementary material.1

Figure 11 shows 2D persistence in the virus capsid
structure. The density profiles are generated using the pdb2vol
module in software Situs.33 The Gaussian kernel is used and
the resolution parameter is defined in the region [5 Å, 65 Å].
We use grid spacing 1.5 Å. The PBN diagram demonstrates
the multiscale properties within the protein.

C. Multiresolution topology based protein
domain classification

A protein domain is a relatively conserved part of a
protein structure and has its own independent functions and
structural shape. Protein domains serve as main building
blocks for many large proteins and play an important role
in protein design. For a given protein, identification and
classification of protein domains is a crucial task. Gaussian
network model (GNM),2 FRI, and graph theory can be used for

protein domain analysis. In this work, we illustrate the use of
the proposed multiresolution persistent homology for protein
domain classification, together with two other methods. To our
knowledge, it is the first time that persistent homology is used
for practical protein domain identification.

Figure 12 illustrates the domain predictions by three
methods. Protein 3PGK has two domains as shown in
Figure 12(a). The FRI correlation map {Ci j}i, j=1, ...,N gener-
ated by Ci j = Φ(ri j; η) is shown in Figure 12(b). Clearly, first
200 residues form one domain and the rest residues belong to
another one. Two domains are linked through an alpha helix.
In Figure 12(c), we plot the domain prediction from the second
eigenvector of the FRI matrix

Γi j(Φ) =



−Φ(ri j; η), i , j

−
N

j, j,i
Γi j(Φ), i = j

. (11)

FIG. 11. 2D persistent homology analysis of virus capsid structure generated from protein 1DYL. (a)-(c) The logarithm plots of 2D persistent barcode numbers
for β0, β1, and β2, respectively. The horizontal axes denote the rescaled rigidity density value. Vertical axes are resolution η (Å).
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FIG. 12. The domain partition of pro-
tein 3PGK. The coarse-grained Cα

model is used. In our FRI correlation
map, FRI matrix, and rigidity density,
the Lorentz kernel is employed with υ
= 2 and η = 5 Å. (a) The domain par-
tition using the second smallest eigen-
value of our FRI matrix. The two do-
mains are colored in red and blue, re-
spectively. It should be noticed that
two green surfaces within the protein
are extracted from our rigidity density
map, indicating two isolated compo-
nents in topological analysis. (b) The
FRI correlation map constructed by
Ci j =Φ(ri j;η). (c) FRI matrix con-
structed by the tensor product of the
second eigenvector. (d) The β0 bar-
codes for the FRI rigidity density. It can
be seen that using our multiresolution
representation, we can identify two dif-
ferent domains in the protein.

In this approach, we plot matrix u2uT
2 , where u2 is the second

eigenvector of {Γi j(Φ)}i, j=1, ...,N and T denotes the transpose.
This matrix shows a clear separation of two domains as well.
Finally, the β0 panel of present persistent homology gives rise
to two distinct bars, indicating the existence of two domains
as well.

IV. CONCLUSION REMARKS

Persistent homology is a promising tool for capturing the
multiscale feature in data. However, persistent homology does
not automatically create a multiscale representation on the
data that have multiscale trait. Instead, it applies a uniform
resolution on all scales in the radius based filtration. Since
cross-scale filtration with a fine resolution is computationally
unreachable, current persistent homology fails to work for
large multiscale data, such as multiprotein complexes, which
typically have atomic, residual, domain, protein, and protein-
complex scales and may consist of millions of atoms in the
data. In this work, we introduce multiresolution persistent
homology to overcome this difficulty. Our essential idea
is to choose appropriate resolution to match the scale of
interest in topological analysis. Therefore, in our approach,
low resolution is applied to the analysis of large scale features
whereas high resolution is reserved for small scale details. As
a result, by tuning the resolution, we can focus the topological
lens on the scale of interest in a large dataset.

We construct the multiresolution persistent homology by
extending FRI originally proposed for biomolecular data to
general data.23,35 The FRI method incorporates resolution-
tunable kernel functions to measure the topological connec-
tivity of a data set via a generalized distance and thus gives

rise to a rigidity function for the underlying data. Such a
rigidity function provides a matrix or volumetric density
representation of the data set. Therefore, by an appropriate
selection of the resolution, FRI based density filtration
generates resolution-matched persistent homology analysis at
any specified scale. Additionally, the present FRI method also
provides a multiresolution geometric representation of the data
set to match the scale of interest.

We validate the proposed multiresolution topological
method by a hexagonal fractal image which has a three-scale
structure. We show that by an appropriate choice of resolution,
the proposed method is able to capture the topology at each of
the three scales. We further illustrate the proposed multiresolu-
tion geometric and topological analysis by a few biomolecules.
Multiscale persistent homology analysis is carried out by using
a DNA molecule with all-atom, all-atom without hydrogen,
and coarse-grained (nucleic acid) representations. The topo-
logical fingerprints generated from these representations differ
from each other, implying the potential complication and
inconsistency in multiscale persistent analysis. In contrast
to the multiscale persistent homology analysis, the proposed
multiresolution persistent homology analysis is achieved based
on the all-atom data. In this approach, resolution based
continuous coarse-grained representation at any desirable
scale can be constructed. The utility of the proposed method
is also investigated by using a DNA molecule and a virus
complex consisting of 240 protein monomers, which is too
large to be computed by point cloud methods. The desirable
topological fingerprints of the virus multiprotein complex are
revealed in our numerical experiments. Finally, we apply the
proposed multiresolution topological method to the protein
domain identification. We show that by selecting the resolution
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to match the size of protein domains, the present method can
effectively distinguish domains in a protein complex.

We also discuss the relation between the voxel spacing
and the resolution. Generally, due to the limited computa-
tional resource, the grid spacing cannot be arbitrarily small,
especially for microproteins or protein complexes. On the other
hand, the resolution parameter is limited by the grid spacing.
It is suggested that the resolution should not be smaller than
about three times the size of the grid spacing in a cryo-EM
fitting process. From our persistent homology analysis, we
found that when the resolution is about the same as the grid
spacing, many local details are lost. In our DNA examples, at a
low resolution, the same sized grid spacing cannot distinguish
between different types of atoms within the molecule, even
through accuracy is good enough to discern individual atoms
and preserve the total atom number. Therefore, one should
be very careful in selection of the suitable grid spacing and
resolution value. Also it is always helpful to cross-validate
one’s results with the related multiscale models.

We believe that proposed multiresolution persistent ho-
mology provides a general and practical approach for the
topological simplification of big data in point cloud, pixel,
and voxel formats. The present multiresolution approach can
be directly applied to the geometric and topological analysis of
general data sets, such as social networks, biological networks,
image, and graphs.
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