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Summary

The MYC oncogene encodes a transcription factor, MYC, whose broad effects make its precise 

oncogenic role enigmatically elusive. The evidence to date suggests that MYC triggers selective 

gene expression amplification to promote cell growth and proliferation. Through its targets, MYC 

coordinates nutrient acquisition to produce ATP and key cellular building blocks that increase cell 

mass and trigger DNA replication and cell division. In cancer, genetic and epigenetic 

derangements silence checkpoints and unleash MYC’s cell growth- and proliferation-promoting 

metabolic activities. Unbridled growth in response to deregulated MYC expression creates 

dependence on MYC-driven metabolic pathways, such that reliance on specific metabolic 

enzymes provides novel targets for cancer therapy.

MYC function

c-MYC (termed MYC henceforth), like its family members N-MYC and L-MYC, is a 

transcription factor that dimerizes with MAX to bind DNA and regulate gene expression (1). 

A nuclear localization sequence, DNA binding domain, helix-loop-helix (HLH) dimerization 

domain, and transcriptional regulatory domain underlie this functional ability. MYC was 

first discovered as the cellular homolog of the retroviral v-myc oncogene identified from 

studies of oncogenic retroviruses (2–4). Soon after its discovery, chromosomal 

translocations that juxtapose MYC to immunoglobulin enhancers were documented in B cell 

Burkitt lymphomas (5). Classical in vitro assays using normal primary rat embryo 

fibroblasts then documented MYC’s transforming activity in cooperation with activated RAS 

and the sufficiency of these two oncogenes to transform normal cells (6). Tightly regulated 

in non-cancerous cells (Figure 1A), MYC is now known to be one of the most frequently 

deregulated oncogenes. It is frequently translocated in hematopoietic cancers and was found 

in a pan-cancer copy number analysis to be the third most amplified gene in human cancers 

(Figure 1B) (7, 8). Deregulated expression of MYC in transgenic murine tissues of many 

varieties can trigger tumorigenesis in those tissues, illustrating its transforming activity in 

vivo and supporting the notion that it is a human oncogene (9).
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Because of its oncogenic potential, the MYC proto-oncogene is tightly regulated in normal 

cells at the transcriptional and post-transcriptional levels (Figure 1A) (10). Post-

transcriptionally, it is regulated by microRNAs and by translation of its mRNA (11–13). 

Post-translationally, Myc protein half-life and transcriptional activity are controlled by 

kinases, ubiquitin ligases, acetyl transferases and other interacting proteins (11–16), and 

indeed, oncogenic KRAS and ERK can upregulate Myc in part through enhanced protein 

stability (17–20). Recent studies show that long non-coding RNAs control MYC activity and 

protein stability altering post-translational modification (15, 21). Exquisite regulatory 

restraint is also achieved through the governance of MYC proto-oncogene enhancers that 

appear cell-type specific (22–25) (Figure 2A). Many growth-promoting signal transduction 

pathways downstream of ligand-membrane receptor engagement, such as Notch and EGFR 

converge on MYC, underscoring the centrality of MYC to cell growth regulation (26–32) 

(Figure 2A). Activation of the proto-oncogene is invariably dependent upon such 

stimulation by growth factors. In contrast, in cancer, MYC amplifications that increase MYC 

copy number, translocations that pair MYC with highly active enhancers, or viral insertional 

events in the MYC locus sever MYC from its dependence on growth factor signaling (1) 

(Figure 1B and 2B). Changes in the activity of MYC’s enhancers can likewise uncouple 

MYC expression from its normally required stimuli, affecting cancer risk and progression. 

For example, Notch-dependent enhancers of MYC appear to be intimately involved in 

activation of MYC in human T-cell lymphoma (22, 23). Other enhancers exhibit single 

nucleotide polymorphisms that affect transcriptional activator TCF-7 binding and predispose 

to prostate and colon cancer (33–36).

In non-cancerous cells, check-points further protect against deregulated MYC expression. 

As such, in experimental transgenic models, acute deregulated MYC expression does not 

induce cell proliferation; rather, it results in the activation of checkpoints including those 

through p53, ARF, BIM, and PTEN that can cause cell growth arrest or death (Figure 2A) 

(37–40). For example, in a MYC driven lymphoma model increased nuclear localization of 

the transcription factor FOXO3a can activate ARF to suppress growth (41). Further, ARF 

can bind MYC and directly inhibit its transcriptional activity (42). Loss of these checkpoints 

synergizes with MYC to promote transformation. Not surprisingly then, AKT, which can 

phosphorylate and inhibit FOXO3a, cooperates with MYC in neoplastic transformation (43). 

Genetic inactivation of FOXO3a can substitute for AKT activation and was documented to 

be sufficient to transform primary murine embryonic fibroblasts in cooperation with MYC 

(43) (Figure 2A). These observations are consistent with the finding that MYC-driven 

murine lymphomas are all virtually devoid of p53 or ARF, indicating that elimination of 

checkpoints are essential for MYC-mediated tumorigenesis (38). Indeed, human Burkitt’s 

lymphoma loses TP53 in up to 40% of cases (44, 45).

The MYC-MAX heterodimeric transcription factor has been documented to bind consensus 

DNA sites, termed E-boxes (5′-CACGTG-3′), with high affinity and non-consensus sites 

with lower affinities (Figure 2) (46). MYC binding to proximal gene promoter sequences 

relieves transcriptionally paused RNA polymerases and catalyzes transcriptional elongation 

(Figure 3A) (47). In this regard, it has been proposed that MYC is a general transcription 

factor which amplifies the expression of genes that are already expressed at basal level, 
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seemingly without any specificity (“general amplification” model) (48–50). The general 

amplification model, however, does not account for the ability of MYC to repress genes, 

such as those activated by the transcription factor MIZ-1 (46). Thus, counter to this general 

amplifier viewpoint is the hypothesis that MYC targets are largely dictated by chromatin 

accessibility (51), which permits MYC to bind target genes and cooperate with other 

transcription factors to activate or repress gene expression selectively (“selective 

amplification”) (52, 53). That is, the degree by which MYC stimulates expression of a gene 

is dependent on other transcription factors bound to the gene and or to nearby enhancers.

Two recent papers provide evidence of both selective gene expression amplification that 

promotes cell growth and direct gene repression by MYC (53, 54). As non-dividing cells 

tightly control their expression of metabolic enzymes to tailor metabolism for homeostasis, 

it stands to reason that MYC activation would selectively amplify many metabolic genes 

required for the building blocks required for growth. Genes involved in non-proliferative 

cellular functions and cell cycle inhibition driven by MIZ-1 would, on the other hand, be 

repressed by MYC (54). Collectively, the studies suggest that MYC binds DNA to promote 

gene expression by relieving paused RNA polymerases. However, the means by which 

MYC binds DNA and activates or represses gene expression is influenced by chromatin 

accessibility that is marked by factors such as WDR5, which was recently shown to be 

required for MYC to bind its targets (55). Indeed, recent work suggests a centrally 

degenerate E-box motif in closed chromatin may be accessible to MYC employing a 

partially unfolded DNA-binding domain when assisted by other factors, adding a structural 

rationale to the idea that MYC’s ability to impact gene expression is a confluence of DNA 

consensus sequence affinity, chromatin accessibility, and interaction with other proteins 

(56). Overexpression of MYC can in turn upregulate chromatin modifiers to further alter 

chromatin accessibility, as suggested by the MYC mediated induction of the Polycomb 

complex member EZH2 (40, 57, 58). In addition, high levels of deregulated oncogenic MYC 

further perturb transcription by invading enhancer sequences, causing non-linear 

amplification of target gene expression and supporting constitutive biomass accumulation in 

cancer cells, which are driven by MYC (48, 53, 54). However, it is notable that high levels 

of MYC did not further increase biomass in U2OS cells, but instead induced genes involved 

in processes such as angiogenesis, metastasis and cell migration (54). U2OS cells are 

distinct, however, because ectopic MYC expression is detrimental, resulting in cell death 

rather than promoting cell growth and proliferation (48, 53, 54) (Figure 2B). Regardless of 

the exact function of MYC in regulating gene expression, studies to date support the notion 

that activation of MYC results in a genomic program that promotes ribosome biogenesis, 

cell growth and subsequently cell proliferation (8, 59).

In addition to its transcriptional role, MYC has roles both indirect and direct (i.e. 

independent of transcription) in regulating protein translation (Figure 3B). As will be 

discussed further in later sections, MYC transactivates genes encoding the RNA and protein 

components of ribosomes as well as the nutrient importers and nucleotide synthesis enzymes 

needed to support this ribosomal assembly. Additionally, MYC promotes cap-dependent 

translation through the direct stimulation of cap methylation and the transcriptional 

activation of translation initiation factors and genes involved in mRNA capping (60–66). 
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The production of tRNAs is also stimulated through MYC’s effects on Pol III transcription 

(67).

Building a cell

T cell lymphocytes serve as a useful model for understanding the role of the transcriptional 

program driven by growth factor-regulated (non-cancerous) MYC in normal cells (68). 

Resting, non-proliferating cells, such as dormant stem cells or memory T cells, need 

nutrients for homeostasis. Maintenance of cell membrane potentials and protein synthesis 

are two major energy demanding cellular processes that must be sustained for survival (69). 

Energy and nutrients are also required during homeostasis for redox control and replacement 

of damaged macromolecules and organelles (70, 71). Intriguingly, in the case of resting 

memory T cells, a major source of energy for homeostasis is a futile cycle of oxidation of de 

novo synthesized lipids (72). Glucose and glutamine carbons are imported into cells and 

then converted to citrate for lipogenesis. In contrast to MYC-mediated proliferating cells, 

which use de novo lipogenesis to produce membranes for cell growth, resting T cells oxidize 

the de novo synthesized fatty acids for ATP production. Additional studies to determine 

whether dormant cancer cells use this previously unsuspected memory T cell futile cycle 

may reveal additional metabolic rewiring pathways used by cancer cells (73, 74).

Upon experimental growth stimulation with anti-CD3 and anti-CD8 antibodies, normal T 

cells are activated through the T-cell receptor, which transmits growth signals that induce 

metabolic changes required for proliferation. T cells from mice with floxed alleles of Myc 

have revealed that the transcriptionally driven metabolic reprogramming necessary for T cell 

proliferation requires Myc (68). Elimination of floxed Myc by Cre recombinase resulted in T 

cells that were unable to mount a growth response. This study corroborates previous studies 

documenting the role of MYC in driving a transcriptional program that promotes cell 

metabolism, growth, and proliferation, as will be discussed in detail in subsequent sections 

(68). Once stimulated, T cells begin to acquire nutrients, particularly glucose and glutamine, 

and convert them to the necessary components for making new DNA and RNA, new 

enzymes, new cytoskeleton, new membranes, new organelles, and new copies of genetic 

material (Figure 4). Ribosomes, which mediate translation of existing mRNAs in the resting 

cell for homeostasis, become especially critical during cell growth. Once a requisite cell size 

is reached and adequate nucleotide pools are achieved, the cell undergoes DNA replication 

while constantly monitoring the replicated DNA for errors and correcting them. After DNA 

is replicated, the cell then undergoes division using components, such as the cytoskeleton 

and membrane components, built from the raw nutrients that were required to overcome the 

checkpoints blocking cell cycle progression.

Nutrient sensing, FOXO, HIF, and MYC

The availability of nutrients is essential for cell growth and proliferation. In fact, lower 

organisms have developed nutrient sensing mechanisms that are coordinated with growth. 

The yeast Saccharomyces cerevisiae has a remarkable glucose and glutamine sensing 

mechanism that involves signaling through Target of Rapamycin Complex (TORC) to 

inhibit two key transcriptional repressors of ribosome biogenesis, Dot6 and Tod6 (75). 
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Nutrient insufficiency causes decreased TORC signaling, resulting in the inhibition of the 

production of ribosomes and cell growth through the activation of Dot6 and Tod6 (75). 

Yeast mutants lacking these functional repressors are rendered constitutive for cell growth, 

causing them to be ‘addicted’ to nutrients, such that withdrawal of glucose and glutamine 

culminates in non-viability. With nitrogen starvation in the presence of limited carbon 

sources, normal yeast cells undergo meiosis and sporulation that suspends yeast cells in a 

quiescent metabolic state (76). The slime mold Dictyostelium discoideum are amoeba-like 

unicellular organisms that have a life cycle of active feeding on bacteria. When nutrients 

become scarce, Dictyostelium aggregate to form a slug and then a fruiting body for 

sporulation in a TOR dependent manner (77, 78). The released spores can be re-animated 

into amoebae when nutrients become available again. These TOR regulated adaptive 

mechanisms are recapitulated in the higher organism Caenorhabditis elegans which can go 

into the dormant ‘dauer’ state with severe nutrient deprivation (79, 80). Hence, throughout 

evolution, organisms incorporate adaptive mechanisms in response to periods of feast and 

long periods of famine (81).

However, mammalian cells, owing to perfusion by the circulatory system, are constantly 

bathed in nutrients, particularly when food and oxygen are available. Under starvation a 

number of adaptive mechanisms have evolved that are cell intrinsic as well as non-cell 

autonomous (82). At the organismal level, fat depots and the liver are two major energy 

storage sources. White fat can be mobilized by lipolysis in response to starvation, while liver 

glycogen, synthesized from excess glucose, can be mobilized through glycogenolysis. While 

poorly vascularized tumors or acutely ischemic tissues may have disruption of nutrient 

availability, these organismal level processes and others normally maintain sufficient 

circulating levels of key nutrient sources, including a tightly regulated glucose level and 

more dynamic levels of circulating lipoprotein particles and glutamine, the most abundant 

plasma amino acid (83). With severe starvation or pathologic processes that disrupt tissue 

perfusion, cell autonomous nutrient-sensing mechanisms protect cells through pathways 

aimed at preserving adequate ATP pools. The mammalian Target of Rapamycin (mTOR), 

AMP kinase (AMPK), and GCN2 pathways are key to survival of cells under nutrient 

deprivation. Lack of amino acids attenuates mTOR activity through sensing by the Rag 

proteins on the lysosomal membrane (84), thereby both diminishes protein synthesis and 

cellular processes that would consume nutrients and ATP and relieves the inhibitory block 

on autophagy (84). Deprivation of amino acids also results in non-aminoacylated tRNAs that 

bind to and activate GCN2 and the stress response transcription factor ATF4, which 

mediates the unfolded protein response (85). When ATP is consumed and AMP is produced, 

AMPK is activated and its phosphorylation of key substrates(86), such as acetyl-CoA 

carboxylase (ACACA), diminishes fatty acid synthesis and other high energy consuming 

pathways. AMPK also increases glycolysis and activates autophagy to produce ATP while 

simultaneously inhibiting mTOR to slow energetically costly macromolecule synthesis (86).

In addition to its response to growth factor stimulation, MYC also appears to be involved in 

nutrient sensing downstream of different signaling pathways. As discussed, the yeast 

Saccharomyces cerevisiae senses glucose and glutamine to regulate ribosome biogenesis and 

cell growth (75). While yeasts do not have a MYC homolog, Drosophila dMyc is 
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functionally equivalent to mammalian MYC. Intriguingly, with nutrient starvation, 

diminished TOR activity attenuates cell growth through diminished expression of dMyc. 

This pathway appears to involve TOR-dependent AKT phosphorylation and inactivation of 

FOXO transcription factors, which bind to and negatively regulate dMyc expression through 

a FOXO-responsive cis-element that senses nutrients through TOR and FOXO (87). 

Mutation of the dMyc FOXO-responsive cis-elements renders the mutant flies nonviable 

with nutrient depletion. Mammalian MYC activity also depends on nutrient status sensed 

through mTOR via mTOR’s regulation of MYC translation (Figure 2A) (14, 88). Further, 

PI3K/AKT inhibits mammalian FOXO, which when active antagonizes MYC through 

several mechanisms (89). FOXO3a can transactivate the MYC antagonist and transcriptional 

repressor, MXI-1 (also called MXD2), which dimerizes with MAX to bind and inhibit MYC 

target genes (90). Additionally, FOXO3a was documented to inhibit mitochondrial 

biogenesis by antagonizing MYC’s ability to activate genes involved in mitochondrial 

function (91, 92). Downstream of the mTOR complex 2 or MK5/PRAK, FOXO3a activity 

can also control MYC levels through induction of miR-34b/c (93, 94). Additionally, mTOR-

dependent nutrient sensing controls MYC stability through the autophagy scaffolding 

protein AMBRA1 (95). When mTOR is inhibited by branched amino acid starvation, 

AMBRA1 promotes dephosphorylation of serine 62 of MYC by protein phosphatase 2 

(PP2A). This dephosphorylation, which destabilizes MYC, is rescued by AMBRA1 

downregulation (95). These studies collectively indicate that nutrient sufficiency and growth 

factor signaling are required for MYC to carry out its transcriptional program—a 

transcriptional program that serves to propagate the translational growth program triggered 

by mTOR, a key activator of cap-dependent translation (96).

In addition to nutrients, oxygen is also required for various metabolic enzymatic activities 

and for proper mitochondrial function. As such, limitation of oxygen, termed hypoxia, also 

regulates MYC function. In non-transformed cells, endogenous MYC function can be 

attenuated by hypoxia at several levels including protein stability and protein function. 

Under hypoxia, MYC protein levels are diminished by proteolytic degradation that can be 

accentuated by concurrent glucose deprivation (97, 98). Through substrate (O2) limitation, 

hypoxia diminishes hydroxylation of HIF-α subunits by prolyl hydroxylases (PHDs), which 

would otherwise lead to targeting of HIF-α subunits for rapid proteasomal degradation (99–

101). Additionally, hypoxia-induced reactive oxygen species can contribute to the 

stabilization of HIF-1α (102). HIF-1α is pivotal for hypoxic survival through its 

transcriptional activation of target genes involved in glycolysis and attenuation of 

mitochondrial function. HIF-1α activates the expression of MXI-1, a MYC antagonist that 

attenuates MYC induced mitochondrial biogenesis (98, 103). Another study suggests that 

HIF-1α can compete directly with MYC by binding MAX (104). The complexity of the 

crosstalk between HIF and MYC is further heightened by the role of the HIF-1α target 

FOXO3a, which antagonizes MYC in a multitude of ways as discussed above (91, 92). As 

an attenuator of ROS (91), hypoxia-induced FOXO3a could reduce HIF-α stabilization, 

reminiscent of the negative feedback loop in which HIF-mediated activation of prolyl 

hydroxylases in turn decreases HIF-1α protein levels (105). Interestingly, however, 

overexpressed MYC can both overwhelm ROS-attenuating mechanisms induced by FOXO 

and bypass the repressive activity of HIF on MYC. HIF-1α and MYC, hence, can cooperate 
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when MYC is overexpressed (106). By contrast, HIF-2α has been reported to promote 

MYC-MAX activity and therefore cooperates presumably with both endogenous and ectopic 

MYC (104). Nutrient and hypoxia sensing in non-transformed cells, therefore, are not 

equivalent to the rewiring of nutrient sensing and metabolism in MYC-transformed cells, 

which have lost many of the feedback regulatory loops that restrain cell growth under 

nutrient or oxygen deprivation.

MYC, intermediary metabolism, and macromolecular synthesis

Despite different levels, endogenous and oncogenic MYC appear to share target genes 

involved in several facets of intermediary metabolism from glycolysis and glutaminolysis to 

nucleotide and lipid synthesis (46). In this regard, we surmise that the posited gene 

expression amplifier function of MYC is compatible with MYC’s ability to alter metabolism 

across many cell types, particularly since nearly all cells basally express metabolic genes, 

such as those encoding enzymes required for glycolysis, mitochondrial function, and 

oxidative phosphorylation. When MYC is induced, metabolic genes that are already 

expressed would be further amplified to support the bioenergetic needs of the growing cell 

(46). In fact, many canonical MYC target genes involved in metabolism have conserved 

high affinity MYC consensus E-box binding sites in their proximal promoters (53, 107). 

Non-consensus sites to which MYC binds with lower affinities, particularly when MYC 

levels are high and deregulated, have also been identified (Figure 2B)(48). In addition to the 

presence of other transcription factors, the binding of MYC to any gene locus is dictated by 

open chromatin structure as well as the binding site affinity (53). Hence, it is hypothesized 

that MYC would occupy the highest affinity binding sites at lower levels of MYC (46). In 

retrospect, it does not seem surprising now that some of the earliest MYC-responsive genes 

identified are involved in metabolism, such as lactate dehydrogenase A (LDHA) and 

ornithine decarboxylase (ODC), enzymes involved in glycolysis and polyamine synthesis 

(108, 109). Both of these genes have canonical MYC E-boxes in their proximal promoter 

regions. As the low throughput candidate gene or subtraction cloning approaches are 

replaced by unbiased genome-wide gene expression and chromatin-immunoprecipitation 

(ChIP) analyses using next-generation sequencing, we now witness the entire spectrum of 

MYC’s transcriptional perturbation across the genome and its encoded metabolic pathways 

(48, 50, 53).

Glycolysis and Glutaminolysis

Cancer cells show profound metabolic changes that provide the energy and building blocks 

to sustain proliferation (Figure 4). The first noted change in cancer metabolism was the 

increased conversion of glucose to lactate discovered by Otto Warburg over 90 years ago 

(110, 111). Later studies indicated that glutamine, the most abundant circulating free amino 

acid in human plasma, can act as a source of carbon and nitrogen in cancer cells (112). In 

glutaminolysis, the enzyme glutaminase converts glutamine taken up by the cell to 

glutamate, which in turn, is converted by glutamate dehydrogenase or transaminases to α-

ketoglutarate that is further catabolized in the TCA cycle (Figure 4). Similar to MYC 

dependent activated lymphocytes (68), MYC-transformed cells were found to have 

increased glucose and glutamine utilization and increased expression of key glycolytic and 
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glutaminolytic enzymes (107, 108, 113–116). Previous studies documenting MYC’s 

regulation of glycolytic and glutaminolytic genes are now corroborated by genome-wide 

RNA-seq and ChIP-seq studies (48). MYC, in essence, regulates virtually all genes involved 

in glycolysis and many in glutaminolysis (113, 114, 117, 118). It also is particularly notable 

that MYC appears to not only drive expression of these genes but also favor specific mRNA 

splice variants, such as glycolysis-impacting PKM2 over PKM1 (119). Although resting 

cells also express many enzymes in these metabolic pathways, cells that are stimulated to 

grow must take up nutrients and catabolize these nutrients to make key building blocks. To 

achieve this end, MYC drives transcription to ultimately generate not only the enzymes that 

directly constitute these metabolic pathways but also the plasma membrane nutrient 

transporters needed to supply them. Key MYC targets include glucose membrane 

transporters such as GLUT1 (or SLC2A1) and glutamine transporter SLC1A5 (or ASCT2) 

(113, 114), loss of function of which diminishes cell proliferation and highlights their 

critical importance in cell growth (113, 115). Likewise, knock-down or inhibition of key 

enzymes in glycolysis or glutaminolysis diminishes cell growth.

MYC-driven buildup of glycolytic intermediates also fuels pathways that share 

intermediates with glycolysis. The pentose phosphate pathway (PPP), which uses glycolysis-

derived glucose-6-phosphate as a starting substrate, produces the reducing equivalent 

NADPH and the nucleotide synthesis substrate ribose (Figure 4). Through upregulation of 

enzymes in the pathway, MYC has been shown to increase shunting of glucose to the PPP in 

both cancer and lymphocytes (68, 120). The glycolytic intermediate 3-phosphoglycerate can 

be shunted to synthesize serine (Figure 4), which in the mitochondria can be converted to 

glycine while producing 5,10-methylenetetrahydrofolate (5,10-CH2-THF) by the 

mitochondrial enzyme serine hydroxymethyltransferase 2 (SHMT2). 5,10-CH2-THF can 

then be converted to formate by methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), 

which also generates the reducing equivalent NADPH. Folate plays a key role in nucleotide 

synthesis and the production of carbon donors that regulate epigenetic marks (121). While 

the role of MYC in regulating lymphocyte serine biosynthesis is poorly understood (68), 

serine biosynthesis increased in cancer by MYC through the elevation of the expression 

enzymes in the pathway (120, 122–125).

As both glucose and glutamine oxidation in the mitochondria generate reactive oxygen 

species, sufficient levels of the anti-oxidant tripeptide glutathione (L-glutamyl-L-cysteinyl-

glycine) or peroxiredoxins (which are induced by MYC (126)), must be maintained to 

effectively titrate and attenuate these otherwise damaging byproducts. Glutamine-derived 

glutamate and glucose-derived glycine are themselves substrates for the synthesis of 

glutathione. Additionally, the NADPH derived from glucose through the PPP and serine 

metabolism, as well as glutamine-derived NADPH (via malic enzyme (127, 128)), is 

essential to the regeneration of glutathione, in addition to its role in reductive biosynthesis 

and redox homeostasis. Indeed, MYC-regulated SHMT2-dependent NADPH production 

was shown to be required for redox control and cell survival of MYC transformed cells in 

hypoxia (129). Intriguingly, SHMT2 was identified as the only gene that could partially 

rescue the slowed growth of Myc-null fibroblasts in an expression screen (130). 

Additionally, genetic reduction of MTHFD2 leads to oxidative stress, illustrating the 
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importance of this pathway in a model cell culture system (131). Glucose and glutamine, 

hence, play a vital role in the production of ATP, reducing equivalents for biosynthesis, and 

building blocks for growing cells.

Metabolism of glucose and glutamine also produces toxic byproducts and acids that must be 

eliminated (Figure 4). Lactic acid produced from glucose is extruded by monocarboxylic 

acid transporters MCT1, a MYC target, and MCT4, a target of HIF-1α (132, 133). Inhibition 

of either of these transporters can markedly diminish cell growth or in vivo tumorigenesis 

(132, 133). Glutaminolysis involves the production of ammonia, which can be toxic. The 

mode by which cells eliminate ammonia metabolically is not well understood other than 

what we know about the urea cycle, which is found in specialized cells. Some cells express 

glutamine synthetase that can produce glutamine from glutamate and ammonia, while 

transaminases can deaminate glutamine and glutamate without producing ammonia (134, 

135). Additional studies are necessary for fuller understanding of ammonia metabolism in 

cancer cells.

De novo nucleotide synthesis

The increased nucleotide synthesis required by cancers to maintain proliferation necessitates 

the coupling of nucleotide synthesis and the reprogramming of metabolism. MYC 

coordinately regulates nucleotide synthesis enzymes and other metabolic enzymes to 

achieve this increased nucleotide production (Figure 4). MYC binds to and regulates many 

genes involved in purine and pyrimidine synthesis (136, 137). Importantly, the generation of 

glycine from glucose and aspartate from glucose or glutamine are major contributors to the 

synthesis of purines and pyrimidines, respectively. In purine metabolism, MYC binds to the 

bi-directional promoter of phosphoribosyl pyrophosphate amidotransferase (PPAT) and 

phosphoribosylaminoimidazole carboxylase, phosphoriboxylaminoimidazole 

succinocarboxamide synthetase (PAICS), but regulates these genes differentially as they 

serve at different steps in purine synthesis. In pyrimidine synthesis, MYC is known to 

regulate carbamoyl-phosphate synthetase (CAD), one of the earliest identified MYC target 

genes (138). In addition, MYC directly regulates dihydroorate dehydrogenase (DHODH), an 

enzyme that couples with the mitochondrial electron transport chain to oxidize 

dihydroorotate to orotic acid, a pyrimidine precursor. In a time-series study of the human 

P493-6 lymphoma model cell line, these target genes had variable responses to MYC 

induction with phosphoribosylformylglycinamidine synthase (PFAS) in purine synthesis 

being most highly activated (136). Many of these genes were also induced by MYC in vivo 

using a transgenic model of inducible MYC in mouse liver (136). High-throughput genome-

wide ChIP-seq experiments corroborated MYC binding to these genes as documented earlier 

by ChIP-PCR (48, 139, 140). Knockdown of MYC in various cell lines also resulted in 

diminished nucleotide gene expression providing the converse evidence for nucleotide 

metabolic genes as MYC targets. Further, ectopic expression of the MYC targets 

thymidylate synthetase (TS), inosine-5′-monophophate dehydrogenase (IMPDH2), and 

PRPS2 diminished the proliferative arrest caused by MYC knock-down, illustrating the 

functional role of nucleotide biosynthesis in MYC-induced cell growth (137).
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In addition to glucose and glutamine, de novo synthesis of nucleotides also requires folate as 

co-factor for various enzymatic steps (121). De novo synthesis of purines occurs on the PPP-

derived ribose-5-phosphate scaffold, which is derived from glucose. Biochemical activation 

of ribose to phosphoribose pyrophosphate (PRPP) by the enzyme phosphoribosyl 

pyrophosphate synthetase (PRPS2) and ATP prepares the scaffold for addition of a nitrogen 

from glutamine, which initiates the purine scaffold that is sequentially built up with glycine, 

additional glutamine nitrogens, and single carbons transferred from the folate carrier. MYC 

coordinates the increase in PPP activity, glycine and folate synthesis and glutamine uptake 

to fuel nucleotide production.

Nucleotide synthesis was recently linked to MYC-regulated protein synthesis for cell growth 

(Figure 3B). MYC has been shown to control protein synthesis through its involvement in 

ribosome biogenesis (detailed below), induction of eukaryotic translation initiation factors—

including eukaryotic translation initiation factor eIF4E, an early documented MYC target 

gene (66, 141)—and its direct promotion of mRNA cap methylation(61). In essence, MYC 

regulates both ribosomal biosynthesis and components of the cap-dependent translation to 

control machinery to stimulate mRNA capping and protein synthesis (60, 61, 64–66, 141–

145). Haploinsufficiency of the ribosomal protein-encoding Rpl24 gene was documented to 

diminish MYC-induced lymphomagenesis in Eμ-Myc transgenic mice, demonstrating the 

critical role of ribosome function and translation for MYC-induced tumorigenesis (146). A 

recent study found that Eμ-Myc mice with normalized translation rates dues to Rpl24 

haploinsufficiency show reduced nucleotide pools in B cells expressing oncogenic MYC. 

Profiling of protein levels of nucleotide synthesis enzymes found that PRPS2 was unique in 

that its protein levels were markedly diminished in Rpl24 haploinsufficient MYC-driven 

cells. Although Prps2 is a direct transcriptional target of MYC (137), its translation is 

intriguingly regulated by a pyrimidine-rich translational element (PRTE) in the 5′ 

untranslated region of the Prps2 mRNA, which makes it proportionately sensitive to 

increased translation rates driven by MYC downstream of eIF4E activation(147). As 

mentioned, PRPS2 catalyzes a critical step in purine synthesis by converting ribose-5-

phosphate to PRPP. Importantly, Prps2 knockdown is synthetically lethal in MYC-

overexpressing cells, such that loss of PRPS2 prolonged the survival of transgenic mice with 

MYC-induced lymphoma. These studies illustrate that MYC-overexpressing cells are 

dependent on balanced translation and nucleotide synthesis, which are coupled through the 

regulation of PRPS2 translation.

Lipid synthesis

Membrane genesis is essential for a growing cell, and, correspondingly, MYC plays a key 

role in stimulating fatty acid and cholesterol synthesis. In addition to stimulating TCA cycle 

genes responsible for producing citrate, which is a critical precursor of fatty acids and 

cholesterol, MYC also activates the expression of the enzymes ATP citrate lyase (ACLY), 

acetyl-CoA carboxylase alpha (ACACA), fatty acid synthase (FASN), and stearoyl-CoA 

desaturase (SCD), which are all involved in fatty acid synthesis from citrate (148–150). 

ACLY converts citrate to acetyl-CoA in the cytosol and ACACA generates malonyl-CoA 

from acetyl-CoA. FASN catalyzes fatty acid chain elongation from the malonyl scaffold, 

while SCD monosaturates long chain fatty acids, for example converting palmitate to oleate. 
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In addition, tracer studies document the role of MYC in driving labeled glucose carbons into 

fatty acids (149). Because glutamine can contribute to the TCA cycle, lipids also contain 

carbons derived from glutamine. As discussed above, the production of NADPH by the 

pentose phosphate, serine biosynthesis, and malic enzyme pathways is crucial to this 

reductive biosynthetic ability of MYC-driven cells.

Intriguingly, the ability of MYC to induce mitochondrial biogenesis (see below) and 

function appears to affect lipid metabolism indirectly. With loss of MYC function in 

knockout fibroblasts or in a neuroblastoma cell model, decreased mitochondrial production 

is associated with accumulation of lipid vacuoles, indicating that under unique 

circumstances MYC can stimulate fatty acid oxidation through increased mitochondrial 

biogenesis (150, 151), implying that MYC may play both anabolic and catabolic roles in 

lipid metabolism.

MYC, metabolism and organelle biogenesis

As a growth-promoting transcription factor, MYC stimulates metabolic pathways that 

support formation of new organelles, particularly ribosomes and mitochondria, which in turn 

is required for ATP generation and the production of many substrates for cell growth (152). 

The means by which a cell grows largely depends upon sufficient mitochondria, to produced 

building blocks and energy, and ribosomes to increase genomic output through translation.

Ribosomes

MYC is a unique transcription factor that stimulates transcription driven by all three RNA 

polymerases (I, II, and III) to produce components of the ribosome: rRNA, ribosomal 

proteins, and small 5S rRNAs (153, 154). MYC’s global ability to amplify gene expression 

allows MYC to relieve transcriptionally paused genes involved in ribosome biogenesis (142, 

155). This role of MYC in the production of ribosomes is highlighted in Drosophila, as a 

hypomorphic dMyc allele causes the diminutive mutant fly phenotype (156–158). The small 

body and cell size associated with the diminutive fly phenocopies flies that belong to the 

large complementation group of small flies termed Minutes (159). Minutes are largely 

comprised of flies that have hypomorphic ribosomal protein genes. Thus, dMyc is linked to 

ribosome biogenesis through this group of Minute flies.

The links between MYC and ribosomes established in flies are further underscored by the 

enrichment of canonical MYC E-boxes in the promoters of ribosome biogenesis genes, 

conserved not only in flies but also down to the unicellular eukaryote, Nemostella (160). The 

connection between MYC and ribosome biogenesis is also recapitulated in mammals. Early 

studies of the P493-6 inducible-MYC human B lymphoma model cell line demonstrated that 

MYC could increase cell size independent of cell proliferation (161). MYC was shown by 

various studies of P493-6 cells to directly induce genes involved in ribosome biogenesis. In 

addition, acute adenoviral-mediated ectopic expression of MYC in mouse liver resulted in 

significant hepatocellular hypertrophy within a matter of days associated with highly 

elevated expression of ribosomal protein genes (162). MYC’s role in ribosome biogenesis is 

further illustrated by a cell-type-independent MYC target gene signature and the association 

of heightened ribosomal biogenesis in connection with MYC expression in human prostate 
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cancer (163, 164). These studies collectively illustrate the ability of MYC to stimulate 

ribosome biogenesis, which is now corroborated by genome-wide studies of MYC target 

genes (48, 50, 53, 54). Intriguingly, haploinsufficiency of Myc prolongs mouse lifespan and 

is associated with a decrease in ribosome biogenesis (165). As treatment of mice with 

rapamycin, which inhibits mTORC1, or metformin, which inhibits mitochondrial Complex I 

activity can also increase lifespan, this study links lowered metabolic demands with 

longevity and further highlights the role of ribosomes in mediating phenotypic effects of 

MYC (166–168).

Mitochondria

Mitochondria are essential organelles not only because respiration and oxidative 

phosphorylation produce ATP, but also because they serve as vital hubs for a number of 

biosynthetic pathways including nucleotide, fatty acid, cholesterol, amino acid, and heme 

synthesis (169, 170). Iron is required for mitochondrial function and a key MYC responsive 

gene is the transferrin receptor, TFRC, which imports iron essential for cell growth (171). 

Further, mitochondria are important to support transcription, since mitochondrial mass 

directly influences an overall rate of transcription in a cell (126, 171–174). Thus, as a cell 

grows, the number of mitochondria must also increase. While factors that control 

mitochondrial biogenesis for homeostasis have been well-established, the means by which 

mitochondrial biogenesis occurs in response to cell growth has only more recently been 

proposed (169). Unlike resting cells, which maintain mitochondrial homeostasis through 

peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and 

peroxisome proliferator-activated receptors (PPARs), proliferating cells appear to be under 

the control of MYC, which coordinately activates the expression of PGC1β and the 

mitochondrial DNA polymerase gamma, as well as many components of the mitochondria, 

for mitochondrial growth or biogenesis (98, 113, 116, 126, 149, 173, 175, 176). Importantly, 

key components of the mitochondrial machinery that are induced by MYC seem to be vital 

because knocking down or inhibiting these elements is synthetically lethal in MYC-

overexpressing cells (177, 178). In this regard, anti-retroviral agents for treatment of HIV, 

which can inhibit mitochondrial DNA polymerase gamma, may have activity against MYC-

driven tumors (179).

MYC controls many components of intermediary metabolic pathways that are confined to 

the mitochondrion, thereby affecting mitochondrial function. Enzymes in these pathways 

include glutaminase (GLS), which converts glutamine to glutamate for use in the TCA 

cycle. IMPDH2 and DHODH are MYC targets that produce mitochondrial enzymes 

involved in purine and pyrimidine synthesis (see above). Components of the mitochondrial 

folate pathways, such as SHMT2 and MTHFD2, are MYC targets along with the vast 

majority of the TCA cycle enzymes that reside in the mitochondrion. In addition, MYC may 

also control mitochondrial dynamics, altering the rates of mitochondrial fusion and fission 

that also influence mitochondrial function (180). Correspondingly, loss of Myc function 

through Cre recombinase treatment of T cells with floxed allele of Myc or in knockout 

fibroblasts was associated with severely deficient mitochondrial mass and morphology 

(173). A key function of MYC, therefore, is the coordination of cell and mitochondrial 

growth, which is potentially exploitable for therapy.
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Other organelles

Much less is understood about how MYC influences the generation or maintenance of other 

organelles, but it appears that MYC does not increase the genesis of all organelles. In 

particular, it appears that MYC suppresses lysosomal biogenesis and autophagy in several 

experimental systems. MYC can antagonize MIZ-1 functions, which include the 

maintenance of autophagic flux, a process requiring functional lysosomes (181). Further, 

genes that are involved in lysosome biogenesis, such as that encoding the transcription 

factor TFEB, which stimulates lysosome biogenesis, appear suppressed in the MYC-

expressing P493-6 cell line (182). The curbing of the activities of organelles that are not 

critical for cell growth, such as lysosomes, underscores the coordinating activity of MYC in 

stimulating growth. The role of MYC in the Golgi apparatus or nuclear formation is not well 

understood.

MYC, metabolism, and cell cycle progression

As organelle biogenesis proceeds to support growth, nucleotide pools accumulate in 

preparation for entry into S phase and DNA synthesis. MYC, however, does not only 

indirectly regulate the cell cycle through metabolism, it also directly triggers cell cycle 

progression, particularly during the G1 restriction point, by activating genes such as cyclin 

D and cyclin-dependent kinase 4 (CDK4) (183–186). In addition, MYC activates the 

expression of E2F transcription factors, creating a feed-forward loop that promotes 

progression into S phase (187). MYC and E2F together activate key DNA replication genes, 

such as the family of minichromosome maintenance complex (MCM) genes, to initiate and 

sustain DNA replication (140, 188). The induction of the microRNA cluster, miR-17-92, by 

MYC attenuates E2F1 function as cells enter S phase, seemingly to adjust the rate of DNA 

replication. Elimination of the miR-17-92 loop results in DNA replication stress following 

serum-induced MYC expression and cell proliferation (189, 190). In addition, MYC may 

have roles in initiation of DNA replication independent of its transcriptional activities, as it 

has been noted to localize to early sites of DNA replication and bind numerous components 

of the pre-replicative complex (191). The coupling of G1 to S-phase entry involves 

glycolysis and glutaminolysis in synchronized HeLa cells, which are known to have high 

MYC expression (192–194). Progression in the G1 phase toward S phase requires glycolysis 

and the activity of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which 

is inactivated by the anaphase-promoting complex/cyclosome-Cdh1 (APC/C-Cdh1). Beyond 

the restriction point, committed HeLa cells appear dependent on glutaminase (GLS), which 

was also shown to be inactivated by APC/C-Cdh1 as cells progress from S to G2/M phase 

(193). We surmise then that accumulation of nucleotides and entry into S phase are coupled 

to ensure that DNA replication occurs with the highest fidelity, since nucleotide pool 

imbalance can result in undesirable mutations (195).

Oncogenic MYC-mediated metabolic rewiring and cancer therapy

The very first notable success in targeting metabolism for cancer therapy involves the use of 

anti-folates by Sidney Farber to effectively treat childhood acute lymphocytic leukemia 

(ALL) with aminopterin in 1948 (196). Farber, knowing that folates stimulated bone marrow 

and leukemic cell growth, sought anti-folates and pioneered clinical studies that first failed 
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with pteroylglutamic conjugates of folate—because these were in fact folate agonists rather 

than antagonists. The emergence of the antagonist, aminopterin, from the laboratory, 

however, transformed the treatment of childhood ALL with significant numbers of 

temporary clinical remissions in the initial 16 children who were treated. One of the 

children, Einar Gustafson who remained in remission and was the initial ‘Jimmy’ that 

inspired the extant fundraising Jimmy Fund, in fact, had the MYC-driven malignancy, 

Burkitt’s lymphoma (196). Aminopterin inhibits dihydrofolate reductase (DHFR), and it is 

now replaced by methotrexate and more potent derivatives that are still mainstays in the 

cancer therapeutic armamentarium. As discussed above, the production of single carbon 

folate compounds requires the production of serine from glucose through a series of 

enzymes whose genes are directly regulated by MYC (122–124). Moreover, the sensitivity 

of human cancer cell lines to methotrexate has been linked to the MYC target gene signature 

and specifically to genes that are involved in folate metabolism (123).

As previously discussed, endogenous and ectopic MYC share many common targets that are 

involved in metabolism. The key question, then, is whether oncogenic MYC rewires 

metabolism distinctly from endogenous MYC. As noted early, endogenous normal MYC 

expression is upregulated only when growth factor signaling is activated and nutrients are 

available. Either growth factor withdrawal or nutrient insufficiency can inhibit endogenous 

MYC expression. These feedback loops, however, are ineffective to control MYC 

expression when it is deregulated, for example, by chromosomal translocation or gene 

amplification. In instances where the feedback loops are broken, deregulated MYC enforces 

a constitutive cellular growth program independent of nutrient availability, particularly when 

accompanied by loss of checkpoints such as TP53. While MYC driven metabolism in 

normal cells can be turned off by lack of either growth factors or nutrients, cancer cells that 

are unable to turn off MYC, are addicted to nutrients such as glucose and glutamine (Figure 

5A–D). While the metabolic programs are generally similar in cells expressing low levels of 

MYC and high levels of MYC (197)(Figure 5E), the addiction of constitutive MYC 

activated cancer cells to metabolism creates therapeutic vulnerabilities.

With this framework in mind, it is surmised that loss of specific enzymatic activities would 

be synthetically lethal to MYC-overexpressing cells. Indeed, a screen using human 

fibroblasts overexpressing MYC revealed that loss of glucose metabolism genes (ALDOA 

and PDK1), nucleotide metabolism genes (CTPS), or transporters (SLC1A4 and SLC25A6) 

were synthetically lethal (198, 199). A recent limited screen for synthetic lethality aimed at 

the extended MYC transcription factor network revealed that MONDOA (178), a partner of 

MLX, is required for MYC-overexpressing cells. MLX binds the MXD proteins, which in 

turn interact with the MYC partner MAX, thus extending the MYC network (1). Because 

MONDOA had been linked to regulation of glucose metabolism, investigators performed a 

synthetic lethal screen directed at MONDOA and MYC target genes involved in metabolism 

(178). This revealed that individual losses of genes encoding glutamine/glutamate 

transporters (SLC1A5 and SLC3A2), purine metabolism enzymes (PFAS and CAD), 

cystathionine-beta-synthase (CBS), a mitochondrial transcription factor (TFAM), a 

glycolysis enzyme (ENO3), and lipogenesis enzymes (FASN and SCD) were synthetically 

lethal for MYC-overexpressing cells (178). These studies collectively indicate that MYC-
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overexpressing cells are metabolically addicted; hence, small molecule inhibitors of specific 

enzymes could be potentially applicable in cancer therapy.

Because MYC drives both glycolysis and glutaminolysis in vitro and in various in vivo 

models, targeting glycolytic and glutaminolytic enzymes has been of significant research 

interest. Knockout of hexokinase 2 (Hk2) in genetically engineered mice significantly blunts 

tumorigenesis in vivo, suggesting that HK2 is an attractive therapeutic target (200). Genetic 

inhibition of LDHA using siRNA, for example, diminishes tumor growth in several models 

of tumorigenesis including one driven by MYC (201–203). Genetic knockout of Ldha also 

diminishes tumorigenesis in transgenic models of cancers (204, 205). A tool compound that 

inhibits LDHA was documented to inhibit a MYC-driven lymphoma xenograft (206). 

Because other oncogenes could also cause glycolytic addiction, inhibition of LDH or LDHA 

could have a broad-based application across many cancers. To this end, there have been 

many attempts to generate new LDH inhibitors (207–211).

Pharmacological inhibition of glutaminase (GLS) has also been documented to curb tumor 

progression of an inducible MYC-driven human lymphoma xenograft model in a cell-

autonomous fashion (212, 213). Further, loss of one copy of murine Gls decreases MYC-

induced liver tumorigenesis, and a tool-compound inhibitor of GLS prolongs survival of 

these mice(214). These studies provided the foundation for the development of a drug-

candidate glutaminase inhibitor that is now undergoing Phase I clinical studies in humans 

(215). Likewise, inhibition of the lactate exporter MCT1 can significantly inhibit MYC-

mediated lymphomagenesis, and MCT1 inhibitors are likewise in clinical trials (132). 

NAMPT, an enzyme involved in NAD+ synthesis and a target of MYC, could also be 

another significant clinical target considering that the NAMPT inhibitor FK866 can 

profoundly inhibit MYC-induced lymphomagenesis and proliferation of lymphoma cell lines 

driven by other oncogenes (206). Additional inhibitors of NAMPT are being developed and 

some have already been studied clinically (216). Thus, it appears that MYC and potentially 

other oncogene-driven cancers are dependent on metabolic enzymes that could be explored 

and exploited for cancer therapy. In this regard, PIK3CA-, BRAF-, and RAS-driven cancers 

are dependent on MYC, such that resistance mechanisms to targeted inhibitors may result 

from MYC amplification or re-wiring of cellular metabolism (217–219). Given the extent to 

which cancer cells rewire metabolism, it stands to reason that combination therapy would be 

the most promising metabolic inhibition strategy in the clinic. For example, combination 

strategies, such as PI3K and MYC inhibition for breast cancer, BRAF and mitochondrial 

Complex I inhibition (phenformin) for melanoma, BRAF and pyruvate dehydrogenase 

inhibition for melanoma, mTOR and glutaminase inhibition for glioblastoma, and HSP90 

and glutaminase inhibition for mTOR activated cancer, appear to have profound preclinical 

impact on tumorigenesis (220–223). This exciting area of cancer metabolism research has 

generated deeper and richer understanding of the relationships between oncogenic drivers 

and metabolism that will guide the field toward successful clinical applications of basic 

discoveries.
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Conclusion and future outlook

MYC has been an enigmatic oncogene in that it seems to affect all cellular processes, most 

prominently cell metabolism and ribosome biogenesis. At the molecular level, this enigma 

could be resolved by considering evidence that suggests MYC is a general modulator of 

gene expression with its targets dictated by binding-site sequence affinity and chromatin 

accessibility and its directionality and magnitude of impact determined by the transcriptional 

potential of gene loci that are co-regulated by other transcription factors. All cells, including 

stem cells, are metabolically active and basally express metabolic genes whose chromatin is 

open. Thus, quiescent stem cells in the proliferative compartments of tissues are poised to 

proliferate upon stimulation by growth factors that trigger MYC expression. Upon such 

MYC activation, metabolic genes, which are already expressed, are further amplified to 

support the bioenergetic needs of the growing cell in its exit from the stem cell pool and 

differentiation down a cell lineage. Normal MYC is restrained in this role not only by 

growth factor presence but also nutrient availability. Oncogenic MYC, on the other hand, 

not only drives metabolic genes already regulated by endogenous MYC, but—owing to its 

deregulated expression—appears to invade enhancer sequences that further amplify gene 

expression in a non-linear fashion. This skewed gene-expression amplification leads to non-

stoichiometric expression of biochemical pathways, activation of the unfolded protein 

response (UPR) pathway, and dependence on MONDOA, which all render MYC-

overexpressing cells susceptible to synthetic lethality when specific metabolic pathways are 

inhibited. Here, basic science research in cancer metabolism has led to a number of new 

insights and identification of therapeutic opportunities, which hopefully will prove to 

advance the treatment of cancer patients. The field now looks to a future of new drugs 

targeting metabolism, which in combination with other drugs and modalities hold the 

promise of being impactful in the clinic.
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Statement of Significance

MYC’s expression and activity are tightly regulated in normal cells by multiple 

mechanisms, including a dependence upon growth factor stimulation and replete nutrient 

status. In cancer, genetic deregulation of MYC expression and loss of checkpoint 

components, such as TP53, permit MYC to drive malignant transformation. However, 

because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic 

lethal interactions between MYC overexpression and specific enzyme inhibitors provide 

novel cancer therapeutic opportunities.
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Figure 1. Schematic illustration of growth factor-dependent and growth factor-independent 
MYC activity
A) In non-cancerous cells, growth signals and adequate nutrients are required for MYC 

activity. Multiple levels of feedback loops and checkpoints further control MYC activity. B) 

In cancerous cells, in contrast, checkpoint loss, gene amplification, chromosomal 

translocation, abnormal enhancer activation, or one or more other deregulated signaling 

events lead to growth factor-independent MYC metabolic activities and subsequent 

unconstrained cellular growth and proliferation.
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Figure 2. 
MYC regulation in non-cancerous and cancerous cells. A) In non-cancerous cells MYC 

expression is activated by growth factors through activation of enhancers. MYC protein, 

whose translation is enhanced by activated mTOR, dimerizes with MAX to form a 

heterodimer that activates transcription of genes containing high affinity E-boxes. Upon 

nutrient shortage or hypoxia, MYC translation, protein stability and MYC/MAX 

dimerization inhibited. Over-activation of MYC activates the ARF and p53 checkpoints 

resulting in cell death or arrest, while ARF can inhibit MYC function. Downstream of AKT, 

FOXO3a proteins counteract MYC activation. B) In cancer cells, constitutive activation of 

growth factor and mTOR signaling, loss of checkpoints, engagement of atypical enhancers, 

or amplification or translocation of MYC can increase levels of MYC to supraphysiologic 

levels independently of growth factors, causing MYC/MAX binding to lower affinity 

binding sites and enhancers in addition to high affinity sites. Loss of ARF or p53 

checkpoints allows uncontrolled cell growth.
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Figure 3. 
MYC enhances transcription and translation. A) The MYC/MAX dimer binds to E-boxes or 

lower affinity degenerate sequences to recruit histone acetylases or promote polymerase 

phosphorylation, thus release polymerase from pausing to amplify transcription. B) Acting 

on Pol I, Pol II and Pol III, MYC controls translation through upregulation of transcription 

of ribosomal subunits, tRNA, and nucleotide synthesis genes. MYC also stimulates 

translation by upregulating eukaryotic translation initiation factor 4E (eIF4E) and 

stimulating enzymes that control RNA processing and capping. MYC upregulation and 

downregulation of microRNAs also regulates the translation of microRNA targets.
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Figure 4. 
Myc-regulated metabolic pathways in cancer. Glucose is taken up by glucose transporters 

(GLUT) and phosphorylated by hexokinase (HK) to form glucose-6-phosphate (glucose-6-

P). Glucose-6-P can then either enter glycolysis or the pentose phosphate pathway, which 

supports nucleotide synthesis by yielding two NADPH reducing equivalents and one ribose 

per molecule of glucose. The serine biosynthesis pathway branches off glycolysis, producing 

serine and glycine that likewise support nucleotide synthesis. Serine 

hydroxymethyltransferase 2 (SHMT2) converts serine to glycine which, in a series of 

coupled reactions, can be used to create nucleotide and epigenetic methyl donor 5,10-CH2-

tetrahydrofolate and mitochondrial NADPH for redox control. Lactate dehydrogenase 

(LDHA) can regenerate NAD+ by converting glycolysis-derived pyruvate to lactate, which 

is then exported out of the cell by monocarboxylate transporters (MCT1-4). Alternatively, 

pyruvate can enter the TCA cycle in a pyruvate dehydrogenase (PDH)-dependent conversion 

to acetyl-CoA. TCA cycle citrate can be exported to the cytoplasm where it is converted to 

acetyl-CoA by ATP citrate lyase (ACLY). Cytoplasmic acetyl-CoA can then be channeled 

into lipogenesis. In addition to glucose, glutamine is an important fuel source in cancers. 

Glutamine is transported across the membrane by the glutamine transporter (SLC1A5/

ASCT2) and converted to glutamate by glutaminase (GLS or GLS2). Glutamate can then be 

converted to the TCA cycle intermediate α-ketoglutarate (αKG) by glutamate 

dehydrogenase (GLUD) or aminotransferases.
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Figure 5. 
The effect of nutrient and growth factor availability on MYC driven metabolism. A) During 

cellular differentiation, loss of growth factor stimulation can turn off MYC- driven 

metabolism even in the presence of nutrients. B) In T cells, receptor stimulation and growth 

factors can drive MYC signaling, but withdraw of receptor stimulation and checkpoints turn 

off MYC-driven metabolism even in the presence of nutrients. C) In normal proliferating 

cells, MYC-driven metabolism is activated in the presence of both nutrients and growth 

factors, but individual exposure to nutrients or growth factors is not sufficient to activate 

MYC-driven metabolism. D) In cancer, MYC deregulation and loss of checkpoints leaves 

cells unable to turn off MYC-driven metabolism independent of growth factors and nutrient 

availability. The inability to turn off MYC-driven metabolism creates therapeutic 

vulnerabilities to metabolic inhibitors. E) Comparison of glucose and glutamine metabolism 

of cells expressing intermediate levels of MYC and oncogenic levels of MYC shows 

oncogenic levels of MYC cause small increase (1.2 fold) in lactate production and a large 

increase (4 fold) in TCA cycle flux (197).
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