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Abstract

Growth-restricted fetuses with absent or reversed end-diastolic velocities in the umbilical artery 

are at substantially increased risk for adverse perinatal and long-term outcome, even in 

comparison to growth-restricted fetuses with preserved end-diastolic velocities. Translational 

studies show that this Doppler velocimetry correlates with fetoplacental blood flow, with absent or 

reversed end-diastolic velocities signifying abnormally elevated resistance within the placental 

vasculature. The fetoplacental vasculature is unique in that it is not subject to autonomic 

regulation, unlike other vascular beds. Instead, humoral mediators, many of which are synthesized 

by local endothelial cells, regulate placental vascular resistance. Existing data demonstrate that in 

growth-restricted pregnancies complicated by absent or reversed umbilical artery end-diastolic 

velocities, an imbalance in production of these vasoactive substances occurs, favoring 

vasoconstriction. Morphologically, placentas from these pregnancies also demonstrate impaired 

angiogenesis, whereby vessels within the terminal villi are sparsely branched, abnormally thin, 

and elongated. This structural deviation from normal placental angiogenesis restricts blood flow 

and further contributes to elevated fetoplacental vascular resistance. Although considerable work 

has been done in the field of fetoplacental vascular development and function, much remains 

unknown about the mechanisms underlying impaired development and function of the human 

fetoplacental vasculature, especially in the context of severe FGR with absent or reversed 

umbilical artery end-diastolic velocities. Fetoplacental endothelial cells are key regulators of 

angiogenesis and vasomotor tone. A thorough understanding of their role in placental vascular 

biology carries the significant potential of discovering clinically relevant and innovative 

approaches to prevention and treatment of fetal growth restriction with compromised umbilical 

artery end-diastolic velocities.
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Introduction

Fetal growth restriction (FGR) confers substantial risk for adverse perinatal outcomes, 

including stillbirth, neonatal death, and complications related to prematurity. Beyond the 

perinatal period, children who were growth-restricted in utero remain at higher risk for 

neurocognitive delay, and they are more likely to develop obesity, metabolic syndrome, and 

cardiovascular disease later in life.1–6 While current obstetric management paradigms may 

be able to time delivery in order to avert stillbirth in this population, long-term outcomes 

remain unchanged.7–9

Although abnormalities in the maternal circulation can certainly contribute to the 

pathophysiology of FGR, the fetoplacental vasculature also plays a critical role in normal 

development, as studies clearly indicate that growth-restricted fetuses with absent or 

reversed end-diastolic umbilical artery velocities (AEDV/REDV) suffer even worse 

outcomes than fetuses with FGR and preserved end-diastolic velocities.5,10–16 As current 

clinical interventions have not been shown to improve outcome in FGR fetuses with AEDV/

REDV, a thorough understanding of the fetoplacental vasculature, including its unique 

development and functional regulation, has the potential to open up new avenues of 

prevention and/or treatment.

Umbilical artery Doppler assessment in FGR

Both the Society for Maternal-Fetal Medicine and the American Congress of Obstetricians 

and Gynecologists endorse umbilical artery Doppler assessment in high-risk pregnancies 

with suspected FGR.17,18 This recommendation is based upon a body of fundamental 

translational and clinical studies.

In an early, key ovine study, embolizing the fetoplacental cotyledons along the umbilical 

arteries resulted in higher placental vascular resistance as measured by radioactive 

microsphere count.19 This, in turn, led directly to decreased umbilical artery end-diastolic 

velocities and higher peak systolic/diastolic (S/D) ratios.19 Both these findings confirmed 

that velocity waveforms within the umbilical artery reflect placental vascular resistance.

Fetoplacental vascular resistance, as assessed by the umbilical S/D ratio as one example, 

normally decreases as gestation progresses.20–22 In growth-restricted fetuses, however, 

umbilical artery end-diastolic velocities were frequently lower than expected for gestational 

age.21,23,24 The elevated resistance represented by these low velocities correlated with 

placental structural and histopathologic abnormalities, as well as with adverse pregnancy 

outcomes.25–29

Subsequently, umbilical artery Doppler velocimetry underwent rigorous clinical testing. In 

general, the majority of these trials demonstrated a lack of benefit in the low-risk obstetric 
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population.31–35 In contrast, when limited to women at risk for a potentially compromised 

fetus (i.e. “high-risk”), most trials found that umbilical artery Doppler testing offered some 

degree of value, with outcomes ranging from fewer emergency deliveries to less death and 

serious neonatal morbidities.36–40 A key meta-analysis, as well as a recent Cochrane review, 

concluded that using umbilical artery Doppler in high-risk pregnancies reduced the risk of 

perinatal death by 29 to 38 percent, without increasing interventions like iatrogenic preterm 

delivery.30,41 These findings solidified the role of umbilical artery Doppler ultrasonography 

in high-risk pregnancies. Despite the reduction in risk of perinatal death with use of 

umbilical artery Doppler velocimetry, however, existing studies demonstrate that overall 

survival and long-term outcomes are unchanged.7–9 Thus, an in-depth understanding of the 

fetoplacental vasculature is needed if preventions and treatments mitigating this end-stage 

process are to be found.

The fetoplacental vasculature in FGR

Maternal hypoperfusion of the placenta is a common cause of FGR.42,43 However, the 

fetoplacental vasculature is also an important component of placental perfusion and hence 

vital to fetal growth. This is demonstrated by a cohort of 34 growth-restricted fetuses; while 

all demonstrated abnormally low umbilical artery diastolic flow velocities, 21 of these 

pregnancies were found to have normal uterine artery Dopplers.44 Thus, fetal growth 

abnormalities and abnormal umbilical artery Doppler velocimetry can occur even in the 

presence of normal maternal uteroplacental blood flow..44

Common placental pathologic findings in FGR include a small placenta, avascular terminal 

villi, fibrinoid necrosis, and multiple villous infarcts.45–47 However, additional pathologic 

features often then diverge, depending upon whether umbilical artery end-diastolic velocity 

is absent/reversed or preserved. Placentas from pregnancies complicated by FGR with 

AEDV/REDV are significantly more likely to have marginal cord insertions when compared 

to those from growth-restricted pregnancies with preserved diastolic velocities, even those 

with elevated S/D ratios.48 The stem villous vessels from placentas complicated by FGR 

with AEDV/REDV demonstrate luminal obliteration and concentric intimal and medial wall 

thickening, and the percentage of abnormal vessels directly correlate with fetoplacental 

vascular resistance.27,49

FGR placentas also differ at the microvascular level depending on whether end-diastolic 

velocities are present or absent. For example, those with preserved end-diastolic velocities 

have normal or more highly branched capillary beds.26,50 In contrast, branches of mature 

intermediate villi are largely absent in FGR placentas with AEDV/REDV, and terminal 

capillaries appear thin and elongated.27,51–53 This decrease in peripheral villous vasculature 

contributes to elevated fetoplacental vascular resistance.27,52

Fetoplacental endothelium

Understanding the mechanisms that underlie these placental pathologic findings lies, at least 

in part, in the fetoplacental endothelium. Throughout the body, the endothelium plays a key 

role in vascular physiology by regulating vasomotor tone, balancing pro- and anticoagulant 

activity, tempering inflammatory mediators, modulating cellular and nutrient trafficking, 
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and driving angiogenesis.54 Endothelial cells are also subject to their local environment, 

leading to tissue-specific phenotypes. This heterogeneity is a key feature of the 

endothelium.55–59

The endothelium in the human placenta reaches approximately 550 km in length and 

occupies 15 square meters at term gestation.60 Despite being found in continuity and within 

the same organ, the endothelium in the umbilical cord and in the placental vasculature can 

exhibit significant phenotypic diversity. Within the umbilical cord alone, endothelium from 

the human umbilical artery differs from that within the umbilical vein. For example, after 

culturing separately isolated endothelial cells from the umbilical vein and umbilical artery 

and further subjecting them to shear stress, the expression of endothelin-1, a vasoconstrictor, 

is significantly lower in human umbilical vein endothelial cells than in umbilical artery 

endothelial cells.61 This may be one contributing mechanism that allows the umbilical vein 

to maintain proper patency in its setting of high flow.61

Estrogen receptors are expressed in a wide variety of tissue including endothelial cells and 

vascular smooth muscle cells.62,63 With respect to vascular physiology, estrogen receptors 

regulate expression of multiple vasodilator and vasoconstrictor proteins, and whether a 

vessel constricts or dilates in response to estrogen appears to be dependent on estrogen 

receptor profile and tissue specificity.62–68 Expression of genes related to estrogen biology 

can also vary within the fetoplacental endothelium. For example, estrogen receptor-β is 

expressed in higher quantities in human umbilical artery endothelial cells than human 

umbilical vein endothelial cells, as is 17 beta-hydroxysteroid dehydrogenase type 2, a gene 

that encodes an enzyme that converts estradiol into its less biologically active form 

estrone.69,70 Although the physiologic implications of these specific findings on normal 
placental vascular biology remain incompletely understood, estrogen receptor-β expression 

is higher within fetoplacental endothelium from FGR placentas with AEDV/REDV 

compared to gestational age-matched, appropriately grown control subjects.71 This higher 

estrogen receptor-β expression results in up-regulation of cyclooxygenase-2 (COX-2) 

expression and activity and down-regulation of vasodilator gene expression. These changes 

in gene expression of key enzymes shift the vascular prostanoid profile derived from 

endothelial cells toward production of vasoconstrictive mediators.71,72

Within chorionic plate and stem villous vessels, microarray data also demonstrate 

differences in gene expression between arterial and venous endothelial cells. Compared to 

placental arterial endothelial cells, placental venous endothelial cells more strongly express 

genes associated with transport activity and lipid metabolism, suggesting that venous 

endothelial cells may have a phenotype that allows for enhanced nutrient transport to the 

fetus.74 In contrast, most of the genes in placental arterial endothelial cells are associated 

with signal transduction and other molecular pathways including vascular endothelial 

growth factor A (VEGF) signaling.74 VEGF stimulates angiogenesis and stabilizes newly 

formed vessels.75–78 Thus, the fact that placental arterial endothelial cells express more 

genes related to VEGF signaling than placental venous ones do suggests that placental 

arterial endothelial cells play a more important role in forming the fetoplacental vasculature.
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Epigenetic regulation also plays a role in placental endothelial cell diversity. For example, 

genome-wide methylation studies have found that venous endothelial cells in the chorionic 

plate demonstrated higher degrees of hypomethylation than arterial endothelial cells in the 

same location..79 For example, increased promoter methylation was found within the 

proximal promoter region of the endothelial nitric oxide synthase gene in placental arterial 

endothelial cells compared to venous endothelial cells, resulting in higher nitric oxide 

synthase expression by placental venous endothelial cells.79,80 While the implications of 

these findings are not yet clear, it is possible that higher nitric oxide within the placental 

venous circulation contributes to maintenance of proper blood flow to the fetus. 

Interestingly, umbilical arterial endothelial cells from FGR pregnancies demonstrate 

decreased methylation at these same promoter sites compared to umbilical arterial 

endothelial cells from normal pregnancies, suggesting that stable alterations in gene 

expression potential that arise during development may affect fetoplacental vascular 

function.80

Further demonstrating the heterogeneity of endothelial cells within the placenta, placental 

microvascular endothelial cells differ from macrovascular umbilical vein endothelial cells. 

Functionally, placental microvascular endothelial cells secrete more prostanoids including 6- 

keto prostaglandin F1α (stable metabolite of the vasodilator prostacyclin) and thromboxane 

B2 (stable metabolite of the vasoconstrictor thromboxane A2) than do umbilical vein 

endothelial cells.59 Placental microvascular endothelial cells also proliferate in greater 

quantities than umbilical vein endothelial cells in response to VEGF.59 Thus, some 

investigators have suggested that human umbilical vein endothelial cells, the most 

commonly used endothelial cell type for experiments, may not always be the best model to 

study the biology of placental endothelial cells.59,81 Instead, endothelial cells isolated from a 

particular part of the placenta (e.g. arterial vs. venous and macrovascular vs. microvascular) 

that is most applicable to the specific area of study might serve as a better model of 

investigation.

Fetoplacental endothelial cells and mediation of vascular function

In most vascular beds, small arterioles contribute to most of the vascular resistance via 

autonomic and humoral influences.54,82 However, placental chorionic plate and stem villous 

vessels, which are similar in size to these arterioles, uniquely lack innervation.83 Instead, 

their vasomotor tone is solely controlled by locally produced vasoactive mediators, most of 

which are endothelially-derived.84,85 These placental vessels also respond differently to 

humoral factors than vessels in other vascular beds. For example, the placental vasculature is 

the only vascular bed that has been reported to constrict rather than dilate in response to 

prostaglandin E2.86 It also demonstrates blunted responses to other vascular mediators 

including acetylcholine, bradykinin, and angiotensin II.87–89

Fetoplacental endothelial cells are essential for vasoactive mediator responses such as nitric 

oxide-dependent vasodilatation and endothelin-1-mediated vasoconstriction within stem 

villous vessels, substantiating an endothelial role in control of fetoplacental vascular 

function.83,90 In a study comparing concentrations of vasoactive mediators in cordocentesis 

specimens between gestational age-matched, appropriately grown fetuses and FGR fetuses 
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(with 60 percent of these fetuses with AEDV/REDV and the other 40 percent with an 

umbilical artery S/D ratio of > 95th percentile for gestational age), investigators found that 

endothelin-1 concentrations were significantly higher, while 6-keto prostaglandin F1α levels 

were lower in the FGR population in comparison to the controls.91 This suggests that 

circulating levels of vasoconstrictors are increased and vasodilators are decreased in FGR 

fetuses. Similarly, others have also confirmed that 6-keto prostaglandin F1α is synthesized 

in lower quantities within the umbilical artery in the setting of FGR.86,92,93 The exact 

mechanisms that underlie these changes in endothelial cell-derived vasoactive mediators 

have not been fully elucidated. Existing literature, however, has demonstrated that in 

addition to changes in endothelial estrogen receptor-β leading to alterations in vascular 

prostanoid production as previously described, fetal COX-2 gene polymorphisms that 

correlate to decreased COX-2 gene expression were associated with more placental 

malperfusion and FGR.94

The role that nitric oxide regulation plays in FGR remains uncertain. Suggesting decreased 

nitric-oxide-mediated vasodilation, the umbilical artery of FGR pregnancies has been found 

to exhibit less nitric oxide synthase protein expression than controls in an ovine model; 95 

similarly, transport of L-arginine, the precursor to nitric oxide, is down-regulated in human 

umbilical vein endothelial cells of pregnancies complicated by FGR.96 In contrast, other 

studies have found that nitric oxide synthesis in FGR pregnancies is unaffected or actually 

upregulated, perhaps representing compensation for the vascular derangements of 

FGR.97–100 T

In addition to humoral mediators, potassium (K+) channel expression is a major component 

of endothelial interaction with smooth muscle.101 Although the specifics of all the various 

K+ channels are beyond the scope of this review, K+ channels generally have the ability to 

form pores and to influence cell membrane potential, thereby helping regulate vascular 

smooth muscle tone. Fetoplacental endothelial cells express functional K+ channels, which 

play a role in controlling placental vascular resistance.102 For example, blocking K+ 

channels within chorionic plate arteries and veins of FGR pregnancies increases basal 

tone.103

Angiogenesis of the fetoplacental vasculature

In addition to endothelial cell-mediated regulation of vasomotor tone, the anatomic 

configuration of the villous vasculature is also critical to fetoplacental blood flow. 

Vasculogenesis, the de novo formation of blood vessels, normally occurs within the human 

placenta by approximately 6 weeks gestation, resulting in formation of tertiary villi (Figure 

1; I).104 As pregnancy progresses, these tertiary villi continue to differentiate and expand 

into immature intermediate villi and stem villi (Figure 1; II–IV). Concomitantly, there is a 

gradual increase in angiogenesis, whereby new blood vessels form from pre-existing 

vessels.105–107 However, the rate of angiogenesis significantly accelerates starting at around 

25 weeks gestation, leading to exponential increases in the total length of the villous 

vascular tree, continuing until 40 weeks gestation (Figure 1; V).60,108 This sustained 

angiogenesis of the fetoplacental vasculature is a key reason for the normal, progressive 

increase in umbilical artery end-diastolic velocities that occurs as gestation advances.

SU Page 6

Am J Obstet Gynecol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As mentioned previously, villous capillary density is either normal or even increased in FGR 

placentas with preserved end-diastolic velocities, even if the S/D ratio is greater than the 

95th percentile for gestational age.51–53 In contrast, pregnancies complicated by FGR with 

AEDV/REDV have sparsely branched and abnormally thin capillaries, leading to fewer 

capillary loops.51–53,109,110 This decreased branching results in lower volume density, which 

in turn provides a structural basis for elevated fetoplacental vascular resistance.111

The mechanisms underlying this impaired angiogenesis in human fetoplacental vasculature 

remain incompletely elucidated, but endothelial cells are essential in the process of 

angiogenesis. They initiate the process by increasing vascular permeability and degradation 

of the endothelial cell basement membrane.112 Endothelial cells then proliferate and 

migrate, contact each other, form lumen, and finally, recruit pericytes and other cell types to 

stabilize the newly formed vessel.112,113

Various endothelial cell-derived angiogenic and anti-angiogenic factors are important for 

this process to occur. These include VEGF, soluble fms-like tyrosine kinase-1 (sFLT1), 

placental growth factor (PlGF), and fibroblast growth factor 2 (FGF2). While derangements 

in maternal serum levels of these factors have been implicated in disorders of placentation 

such as FGR, there is growing evidence that they also play a role in development of the 

fetoplacental vasculature.114–122 Compared to controls, endothelial cells isolated from 

placentas of pregnancies complicated by FGR with AEDV/REDV show evidence of 

impaired angiogenesis, as manifested by deficient tube formation (i.e. formation of 

capillary-like structures in vitro).123 One mechanism that contributes to this deficient 

angiogenic potential in endothelial cells derived from FGR with AEDV/REDV is abnormal 

regulation of VEGF expression.123 Imbalances between these angiogenic and 

antioangiogenic factors have also been found within fetal blood. For example, umbilical 

vein sFLT1 and FGF2 levels are increased in FGR pregnancies, while PlGF concentrations 

are decreased.124 Additionally, there was a positive correlation between umbilical vein 

sFLT1 and umbilical artery pulsatility index in FGR fetuses, while PlGF was negatively 

correlated.118 In contrast, these factors within the umbilical vein had no correlation to 

uterine artery pulsatility index, suggesting that the balance between angiogenic and 

antiangiogenic factors within the fetal circulation may play a direct role in fetoplacental 

angiogenesis.118

Conclusion

Normal intrauterine growth is dependent upon not just the maternal environment, but also 

the fetal component of placental perfusion. Impaired fetoplacental blood flow clinically 

manifests as absent or reversed end-diastolic velocities in the umbilical artery; in the setting 

of FGR, this Doppler finding portends a significantly elevated risk for adverse pregnancy 

outcome.

Translational studies have demonstrated clear correlation between Doppler velocimetry and 

fetoplacental perfusion, with absent or reversed end-diastolic velocities denoting abnormally 

elevated resistance within the placental vascular tree. The physiology of this flow 

impediment is twofold, comprised of both functional and structural etiologies.
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The fetoplacental vasculature is unique in its lack of innervation, singular in being 

independent from the autonomic regulation to which other vascular beds are subject. 

Instead, existing data suggest that resistance within this system is regulated largely by 

humoral mediators from local endothelial cells. In pregnancies complicated by FGR with 

AEDV/REDV, an imbalance in these mediators yields a humoral milieu favoring 

vasoconstriction. Inhibited and impaired angiogenesis further contribute to placental 

vascular resistance in this population, creating structural changes that restrict blood flow.

Significant work has been done in the field of fetoplacental vascular formation and function. 

However, in the current absence of effective clinical management strategies for cases of 

FGR with AEDV/REDV, continued investigation into the physiological, cellular, molecular, 

and epigenetic regulation of the fetoplacental vasculature and endothelium are needed. This 

knowledge is essential if either preventive or therapeutic approaches that will truly improve 

perinatal and long-term outcomes are to be discovered.
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Figure 1. Fetoplacental villous development throughout pregnancy
(I) In post-menstrual (p.m.) weeks 5–6, fetal capillary segments are formed by 

vasculogenesis within mesenchymal villi (mv). (II) These fuse to form a simple capillary 

bed in weeks 7–8. (III) Between 9–25 weeks, this capillary bed expands by angiogenesis as 

mesenchymal villi develop into immature intermediate villi (iiv). (IV) Immature 

intermediate villi become transformed into stem villi (sv), while peripheral mesenchymal 

villi are transformed into mature intermediate villi (miv) between weeks 15–32. 

Concomitantly, centrally located capillaries develop into stem villous vessels, and the 

peripheral vasculature elongates. (V) In the last half of pregnancy, there is continued 

angiogenesis as terminal villi (tv) develop, resulting in the villous morphology demonstrated 

in Vb. In placentas from FGR pregnancies with preserved end-diastolic velocities, villi 

either resemble that illustrated in Vb or Vc, whereas FGR pregnancies complicated by 

AEDV/REDV have villi similar to that depicted in Va. (Blue: Endothelial tubes; Brown: 
Vascular smooth muscle cells; Green: Collagen fibers). From: Benirschke K, Burton GJ, 

Baergen RN. Architecture of normal villous trees. In: Pathology of the human placenta. 
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