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Abstract

MicroRNAs (miRNAs) constitute a large family of small non-coding RNAs encoded by the 

genomes of most organisms. They regulate gene expression through post-transcriptional 

mechanisms to attenuate protein output in various genetic networks. The discovery of miRNAs 

has transformed our understanding of gene regulation and sparked intense efforts intended to 

harness their potential as diagnostic markers and therapeutic tools. Over the last decade a flurry of 

studies have shed light on placental miRNAs but have also raised many questions regarding the 

scope of their biological action. Moreover, the recognition that miRNAs of placental origin are 

continually released in the maternal circulation throughout pregnancy suggested that circulating 

miRNAs might serve as biomarkers for placental function during pregnancy. While this generated 

much enthusiasm, recently recognized challenges have delayed the application of miRNA-based 

biomarkers and therapeutics in clinical practice. In this review, we summarize key findings in the 

field and discuss current knowledge related to miRNAs in the context of placental biology.

Keywords

Placenta; trophoblast; miRNAs; exosomes

1. Introduction

The recent finding of pervasive transcription across the genomes of all kingdoms of life 

challenges some long-held ideas regarding the genome and its regulation. A consequence of 

this widespread transcription is the production of numerous RNA transcripts with relatively 

unknown functions. A large fraction of these transcribed RNAs are not translated into 
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proteins but exhibit regulatory functions that are increasingly recognized as critical factors 

in development and homeostasis. A major class of these non-coding RNAs, and one of the 

best studied, is the family of small regulatory RNAs called microRNAs (miRNAs). miRNAs 

were originally described in the nematode Caenorhabditis elegans and were later found in 

the genomes of protists, plants, animals, and viruses, with the notable exception of bacteria. 

MiRNAs are single-strand RNA molecules of 20 to 24 nucleotides (nt) that usually repress 

gene expression by guiding an RNA-induced silencing complex (RISC) containing Ago 

proteins to a target RNA, which they bind through imperfect base-pairing. Gene expression 

is then attenuated to a variable degree by inhibition of the mRNA translation and transcript 

destabilization, resulting in reduced protein synthesis. Interestingly, while most miRNAs 

exert a modest effect on individual targets,1,2 perturbations in miRNA expression levels can 

have marked biological consequences. Indeed, a growing list of miRNAs have been 

implicated in the pathogenesis of human diseases, including but not limited to cancer, 

cardiovascular pathology, liver and kidney diseases, and psychiatric disorders.3–7 Tissue 

expression of these miRNAs is commonly quantified using PCR, northern blot, microarrays 

and RNA sequencing.

To date, the biological database miRBase, which was developed by the Griffiths-Jones lab at 

the Faculty of Life Sciences, University of Manchester,8 contains more than 2500 entries for 

human miRNAs, although that number might be an overestimation as some of the species 

represent computer-based predictions without experimental validation.9,10 Different cell 

types express common and unique miRNA species, and miRNA expression patterns are 

influenced by developmental and pathological states. The human placenta expresses a 

distinct miRNA repertoire, characterized by the fact that a large proportion of miRNAs are 

derived from the two largest clusters of miRNAs in humans, the chromosome 14 miRNA 

cluster (C14MC) and the chromosome 19 miRNA cluster (C19MC).11 Although the 

functions of placental miRNAs are largely unknown, recent research has begun to shed light 

on their role in placental biology, as detailed below. Likewise, the finding that placental 

miRNAs are released into the maternal circulation has raised the exciting prospect of using 

miRNA expression profiles as non-invasive markers of placental dysfunction. In this review, 

we briefly describe how miRNAs are produced and summarize recent developments in our 

understanding of the biological action of miRNAs in the human placenta.

2. The discovery of miRNAs

MicroRNAs were discovered in the nematode Caenorhabditis elegans by the groups of 

Victor Ambros and Gary Ruvkun while studying a pair of developmental genes. One of 

these genes, lin-14, controls stage-specific cell lineages during larval development, and was 

known to be itself regulated by lin-4 gene. Ln-4 does not encode a protein product but 

instead gives rise to a small RNA transcript of 22 nt with complementarity to 3’-untranslated 

regions of the lin-14 mRNA.12 These 3’-untranslated regions contain short conserved 

elements complementary to parts of the lin-4 transcript.13 These pioneering studies 

suggested that small antisense RNAs could bind and inhibit specific mRNAs that contain 

complementary sequences to the small RNA. A second small regulatory RNA called let-7 

has been known for years, yet was identified as an antisense RNA only in 2000.14 The 

discovery of many regulatory, 22-nt RNAs led to the term microRNA (miRNA).15 With the 
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expanded list of miRNA species came the need for better nomenclature.16 Currently, each 

miRNA is assigned the prefix “miR”, followed by a number that represents the order of 

naming. MiRNAs are commonly preceded by three letters that denote the organism (e.g. 

“hsa-miR-121 is the human miR-121 and mmu-miR-121 is the mouse version). Additional 

information on the miRNA naming system as well as miRNA sequences can be found in 

miRNA database such as miRBase.8

3. MiRNA biogenesis

MiRNAs are encoded in the genome and are typically transcribed as long primary miRNA 

(pri-miRNA) by RNA polymerase II17 before undergoing a multi-step process leading to 

mature miRNAs (Fig. 1). The pri-miRNA contains partially self-complementary regions that 

fold back and form hairpin structure, which harbors the mature miRNA sequence. In the 

nucleus, the hairpin structure (65–80 nt long) is released from the pri-miRNA by 

endonucleolytic cleavage executed by the Microprocessor, a protein complex consisting of 

an RNase III endonuclease (Drosha), guided by the RNA-binding protein DGCR8.18–20 The 

stem-loop precursor (pre-miRNA) is then actively transported across the nuclear membrane 

by the RanGTPase-dependent Exportin-5, where it is further cleaved by the cytoplasmic 

form of the RNase III endonuclease Dicer in partnership with the RNA-binding protein 

TPBP.21–24 Cleavage of the pre-miRNA releases a small RNA duplex of 20–24 nt that is 

loaded on an effector protein complex containing Argonaute proteins and referred to as the 

RISC.25–27

At this stage, the double-stranded RNA is unwound, and the strand with the lowest internal 

stability at the 5’ end (the guide strand) is retained to form the mature RISC complex, while 

the other strand (the passenger strand) is discarded.28,29 While this canonical pathway 

produces most mammalian miRNAs, alternative routes were recently described. For 

example, mirtrons are derived from introns of mRNA coding genes after processing by the 

spliceosome complex and, therefore, bypass the need of Drosha.30–35 Other small RNA 

species, including tRNAs and snoRNAs, can also give rise to miRNAs33,36,37 although their 

function as genuine miRNAs remains unclear.9,10 Most non-canonical miRNAs are 

relatively infrequent in mammals, with the exception of miR-451, an abundant miRNA that 

is produced without involving Dicer and only depends on the slicer activity of Ago2 for its 

processing.38–40 Lastly, we emphasize that multiple auxiliary proteins may contribute to 

miRNA processing at different stages, as described in recent reviews.35,41–43

4. The biological functions of miRNAs

MicroRNAs are involved in virtually every cellular process, modulating regulatory 

pathways that control development, differentiation, and organ function in health and disease. 

For example, the liver-specific miR-122 participates in the regulation of many genes 

associated with cholesterol and lipid metabolism, and is also a target of the hepatitis C virus 

(HCV), which uses it for its own replication (review in5). Several miRNAs species, such as 

miR-1 and miR-133 family, are expressed in the heart where they regulate heart 

development and cardiovascular diseases.44,45
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While research in this area continues to progress, the physiological targets of most miRNAs 

and the mechanisms underlying their action remain largely unknown. Because target 

recognition involves base-pairing between the miRNA and the targeted mRNA, target 

prediction algorithms have been designed to identify interacting pairs. However, while in 

plants there is often a near perfect complementarity between the miRNA and its targets, the 

complementarity in animals is incomplete, usually reduced to a stretch of six nucleotides at 

the 5’-end of the miRNA (called the seed).46 Reflecting this limited level of miRNA-mRNA 

complementarity, target-prediction algorithms now incorporate additional parameters, such 

as thermodynamic stability, evolutionary conservation, and binding site structural 

accessibility (review in47). Despite increasing sophistication, these search algorithms remain 

plagued by a high rate of false positive predictions (~60%).1,2,48–50 Therefore, algorithmic 

predictions are commonly used in combination with direct biochemical methods, based on 

the crosslinked immunoprecipitation of Ago2 complexes, to isolate miRNAs bound to target 

mRNAs.51–54

Other experimental methods rely on genomic screens, in which a specific miRNA is either 

deleted or overexpressed under the assumption that the corresponding target genes will be 

identified as they are de-repressed or silenced. With the recent development of genome 

editing, it has become possible to introduce specific mutations in miRNA binding sites and 

validate the functional interaction of miRNA-mRNA in a physiologic context and without 

the need to create gene knockouts or the overexpression of factors that are prone to non-

specific effects.55

The complexity of miRNA-based gene regulation is furthered by the promiscuous 

interaction of most miRNAs with mRNA targets, where each miRNA has the potential to 

interact with and regulate a multitude of target mRNAs. It is estimated that a large fraction 

of the genome is regulated by miRNAs.50,56–59 Notably, miRNA-mediated repression is 

rather modest, commonly with a less-than-twofold change in target protein levels.1,2 

Notwithstanding, global depletion of miRNAs, achieved by disrupting a factor such as 

Dicer,60 or Ago2,61 now known to be involved in the processing of other types of RNAs, 

results in lethality in mammalian models. To date, many gain- and loss-of-function studies 

designed to identify the biological functions of miRNA species have been conducted in 

animal models such as Caenorhabditis elegans or in mice. Interestingly, many of these 

experiments show that, despite their high regulatory potential, deletion of a miRNA gene 

often fails to produce any obvious defect.62–64 This is likely explained, at least in part, by 

the high level of redundancy among miRNAs, reflecting gene duplication that resulted in 

homologous families of miRNAs (review in65).

5. MiRNAs and the placenta

The human placenta is a rapidly evolving organ that harbors a rich and diverse 

transcriptome. It is estimated that 66% of all human proteins are expressed in the placenta.66 

Not surprisingly, the human placenta also expresses numerous types of miRNA species, 

with a fraction of these species being specific to trophoblasts.67,68 Early genetic inactivation 

experiments in the mouse, which centered on genetic inactivation of genes coding critical 

miRNA biosynthetic enzymes, such as Dicer60 or Ago2,69,70 failed to shed light on miRNA 

Mouillet et al. Page 4

Am J Obstet Gynecol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function in the placenta due to early post-implantation embryonic lethality. Others have used 

more targeted murine gene knockout experiments to elucidate miRNA function in the 

placenta. In a study that centered on the role of the abundant embryonic H19 transcript, it 

was reported that miR-675 is expressed from the H19 transcript exclusively in the 

placenta.71 Interestingly, the levels of miR-675 increased toward the second half of 

gestation, which corresponds to the reduced pace of placental growth. Consistent with this 

association, miR-675 exhibits anti-proliferative activities, likely by silencing of the insulin-

like growth factor 1 receptor (Igf1r), and a targeted deletion of miR-675 causes placental 

overgrowth.71

Abundant expression of a specific miRNA does not imply functional significance. For 

example, the large miR-379/miR-410 cluster (also called C14MC in humans) can be deleted 

without obvious placental consequences, even though these mutant mice display a partially 

penetrant neonatal lethality.72 The miR-379/miR-410–C14MC cluster is highly expressed in 

the placenta73 and produces up to 77 mature miRNAs in the mouse (63 in humans) and, 

thus, carries a large regulatory potential. To date, the function of the human C19MC 

miRNAs in the placenta remains unknown.

MiRNAs from the miR-17~92 cluster are among of the best-studied miRNAs and have been 

shown to play a role in development and during tumorigenesis.74 Members of the 

miR-17~92 cluster regulate the differentiation of primary human trophoblasts by targeting 

pivotal placental proteins such as the CYP19A1 (aromatase) and the transcription factor 

GCM1.75 Curiously, targeted deletion of this family of miRNAs in the mouse does not seem 

to cause placental abnormalities.76 Other trophoblast-regulatory miRNA candidates were 

identified using computational methods and were subsequently validated in cell lines. For 

example, miR-378a-5p and miR-376c enhance trophoblast proliferation and invasion 

through targeting the Nodal signaling pathway.77,78 In contrast, miR-155 inhibits 

trophoblast invasion by targeting CYR61 and cyclin D1, thus potentially contributing to the 

development of preeclampsia.79,80 Other miRNA species, such as miR-210 and 

miR-125b-1–3p, have been implicated in the inhibition of trophoblast proliferation and 

invasion and thereby contribute to placental disorders.81–84 Other miRNA species have been 

associated with placental physiology and pathology, and were reviewed elsewhere (see85). 

However, their role in placental function has not been firmly established.

One of the most intriguing families of trophoblast-specific miRNAs is the C19MC. This 

cluster contains 46 intronic miRNA genes that are scattered over 100 kb of genomic DNA 

and produce 58 mature miRNA species that are expressed almost exclusively in the 

placenta. Unlike other miRNAs cited earlier, the C19MC miRNAs are primate-specific with 

no orthologous regions in the mouse genome. The genomic structure of C19MC is also 

unique, as intronic C19MC miRNA sequences are flanked by numerous Alu sequences and 

short exons with highly repetitive DNA elements, representing non-coding RNAs of 

unknown function (Fig. 2).86 A number of recent observations implicate C19MC miRNAs 

in the regulation of cell proliferation, invasion, and differentiation. For example, C19MC 

miRNAs are found in human embryonic stem cells, where they contribute to the control of 

stemness, and their expression declines rapidly upon differentiation.87–89
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Although fine spatial mapping of C19MC miRNA expression in different trophoblast 

subpopulations is not yet available, laser-capture microdissection experiments suggest that 

C19MC expression is reduced in extravillous trophoblasts compared to villous 

trophoblasts.90 Furthermore, forced expression of the C19MC miRNAs attenuates the 

migration of human extravillous trophoblasts in vitro.90 Surprisingly, expression of the 

C19MC miRNAs “off context” produces the opposite effect and suggests an oncogenic 

potential. Indeed, reactivation of the C19MC locus has been observed in several types of 

malignancies.91–97

Perhaps the most unexpected finding is related to the role of C19MC miRNAs in viral 

resistance. Primary human trophoblasts, which express high levels of C19MC miRNAs,98 

are resistant to infection by a diverse and unrelated panel of DNA and RNA viruses. This 

viral resistance can be transferred to non-placental cells upon transfection with a BAC 

plasmid expressing the C19MC miRNAs99. Mechanistically, the process involves 

autophagy, as C19MC miRNAs stimulate autophagy in non-placental cells, and genomic or 

pharmacologic inhibition of autophagy attenuates the antiviral response.99,100 Together, 

these findings attest to the complex, context-dependent action of C19MC miRNAs in the 

placenta, and highlight the need for additional mechanistic studies designed to elucidate the 

function and regulation of C19MC miRNAs in the human placenta.

6. Extracellular miRNAs

Although transcribed miRNAs accumulate in the nuclear and cytoplasmic compartments 

within cells, recent data clearly highlight their release to the extracellular space, including 

plasma and other extracellular fluids.101 In the context of pregnancy, Chim et al. detected 

placental miRNAs in the plasma of pregnant women, with a rapid decline in the plasma 

levels of these species following delivery.102 Differences in plasma expression profiles have 

been attributed to physiological or pathological conditions, including cancer.103–108

Circulating miRNAs of placental origin are thought to derive primarily from the trophoblast 

layer, which lines the human placental villi. Extracellular trophoblastic miRNAs are present 

in at least two forms: vesicular miRNAs or non-vesicular, protein-bound miRNAs. These 

miRNA-binding proteins include Ago2, high-density lipoproteins, and nucleophosmin 

1.109–112 Vesicular miRNAs are shielded from degradation by circulating RNase by the lipid 

bilayer, which enhances their stability in the plasma. Three major forms of extracellular 

vesicles commonly found in the blood are classified by their size and include exosomes (40–

150 nm), microvesicles (0.1–1 µm) and apoptotic blebs (1–5 µm) (Fig. 3).

The mechanisms of miRNA loading, sorting, and vesicle-based trafficking are poorly 

understood. Key players in this process include the endosomal sorting complex required for 

transport (ESCRT)113 and several other associated proteins, such as programmed cell death 

6 interacting protein (PDCD6IP; also known as ALIX)114 and tumor susceptibility gene 101 

protein (TSG101).115 Moreover, while vesicular miRNA can affect target cells,116–119 the 

number of miRNA molecules packaged within exosomes and other vesicles, the tissue 

targets of circulating miRNA-containing vesicles, and their uptake mechanisms by recipient 

cells are largely unknown.120
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Lastly, the recent discovery of an interaction between exosomal miRNAs and pattern 

recognition receptors from the family of toll-like receptors within target cell endosomes 

suggests a novel pathway for recognition and amplification of miRNA signals.121,122

7. The clinical implications of placental miRNA

The discovery of an altered miRNA landscape in human diseases, along with technological 

advances in miRNA measurement and delivery, fueled the search for novel miRNA-based 

diagnostic and therapeutic tools. To date, a number of miRNAs have been identified as 

important mediators of cardiac fibrosis, and technologies are currently being evaluated to 

either boost or inhibit miRNA function as a way to attenuate cardiac disease (review in123). 

Another example is miR-122, a liver-enriched miRNA that shows great promise as a 

biomarker of liver injury and also as a potential therapeutic agent in cases of hepatitis C 

viral infection.124 In the field of pregnancy, our knowledge of placental miRNAs and their 

biological function is currently rudimentary, and clinical applications await additional 

research. The discovery of the rich representation of placental miRNAs in the circulation of 

pregnant women102 stimulated attempts to identify, non-invasively, miRNA biomarkers for 

placental dysfunction and related clinical syndromes. Women with preeclampsia, for 

example, exhibit altered expression levels of several miRNAs in the placenta and plasma, 

with miR-210 exhibiting a relatively consistent up-regulation.81,83,125–132 MiR-210 is 

typically induced by HIF-1α, an important regulator of cellular hypoxic response in different 

contexts.133–135 Elevated levels of placental miR-210 may contribute to the pathogenesis of 

preeclampsia by inhibiting trophoblast invasion,82 stimulating mitochondrial respiration 

targeting,127,136,137 or over-stimulating the immune system by inhibition of the STAT6/

Interleukin-4 Pathway.138 Several potential molecular targets of miR-210 in the context of 

preeclampsia include ephrin-A3 and homeobox-A981 and potassium channel modulatory 

factor 1 (KCMF1).83 In addition to miR-210, differential expression of C19MC miRNA 

members has been reported,131,139,140 including increased expression of C19MC miRNA 

members in extravillous trophoblasts from women with preeclampsia. Notably, 

preeclampsia is associated with reduced invasion of extravillous trophoblasts in vitro,141 and 

this observation is consistent with the recent finding of reduced migration of human 

extravillous trophoblast cell line by over-expression of C19MC miRNAs.90 Aberrant 

C19MC miRNA expression patterns have also been observed in placentas from pregnancies 

complicated by fetal growth restriction (FGR).142–144 Other studies characterized changes in 

the miRNA landscape in association with placental disorders and related diseases, such as 

fetal growth restriction, preterm birth, and the like. Unfortunately, many of the findings are 

inconsistent and lack validation. Additional information can be found in recent 

reviews.129,145,146

Despite intense effort by many research groups, the promise of using circulating miRNAs as 

biomarkers has not yet been realized; studies were not designed to determine miRNA use as 

diagnostic tests and, in most cases, miRNA changes are not validated even when similar 

research designs are deployed. This conundrum is also observed in other fields, with serious 

inconsistencies between profiles of circulating miRNAs in breast cancer.147 One of the 

reasons for the inconsistency is that the vast majority of circulating miRNA is derived from 

blood components and endothelial cells, while tissue-specific miRNAs contribute a small 
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fraction of all detected miRNA molecules.148 Other factors include a lack of methodological 

standardization, including sample processing, profiling technologies, and bioinformatics 

analysis.149–153 Extensive integration of multiple datasets comprising miRNA profiles 

combined with profiles of other relevant molecules, such as lncRNAs, might increase assay 

specificity and lead to the development of clinically useful tests. Another promising 

direction might be the isolation and characterization of sub-populations of miRNA-

containing extracellular vesicles.153 The repertoire and the exact classification of these 

vesicles are still imperfect, yet their use as in vivo biopsies of their tissue of origin may offer 

a unique view into the transcriptional landscape during disease. The knowledge of tissue-

specific protein surface markers may be used to capture sub-populations of circulating 

extracellular vesicles and profile their RNA cargo.

The presence of placental miRNA in the maternal circulation suggests that these miRNAs 

may participate in feto-placental-maternal communication, influencing local and distant 

target tissues. Initial recent reports suggested that miRNAs were packaged within plasma 

vesicles, which communicate among cells.116 Similarly, tumor miRNAs, packaged within 

diverse vesicle types, are believed to influence metastasis, angiogenesis and the tumor 

environment (review in 154). The notion that trophoblast-derived exosomes that contain 

C19MC miRNAs may confer viral resistance to recipient cells is consistent with these 

observations.99 A different group recently showed the transfer of miR-517a from 

trophoblasts to maternal NK cells, and subsequent inhibition of the target mRNA 

PRKG1.155 However, the mechanisms underlying these observations remain unclear, and 

the small number of miRNA molecules that are packaged within vesicles120 may suggest a 

more complex mechanism of miRNA-mediated intercellular communication.

8. Conclusions and perspectives

The discovery of miRNAs and their widespread influence on gene expression has advanced 

our understanding of gene regulatory networks and brought new insight into the molecular 

mechanisms that control development and homeostasis. In the field of placental biology and 

perinatal medicine, work remains to be done in defining the placental miRNA landscape and 

in characterizing miRNA function and regulation. Currently, at least 500 different miRNAs 

species are known to be expressed in placental trophoblasts,85 yet the biological significance 

of most miRNAs is currently unknown. While limited by relevant in vivo experimental 

models of humans, a better understanding of the biology of placental miRNAs is likely to 

elucidate some of the key molecular circuits that control placental development and function 

in health and disease. The evaluation of miRNA species in maternal plasma extracellular 

vesicles as biomarkers of placental health is particularly germane to the field of perinatal 

biology and obstetrics and is likely to provide greatly needed means to dynamically assess 

placental health in real time. At the present time, and despite intense efforts, miRNA 

biomarkers for placental conditions remain unknown. Several technical and conceptual 

challenges must be addressed before the promise of miRNAs in diagnostics and therapeutics 

during pregnancy can be realized.
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Glossary

Argonaute A family of proteins characterized by a specific structural 

organization and a critical role in the silencing process by miRNAs. 

Argonaute 2 (Ago2), for example, is a part of the RNA-induced 

silencing complex (RISC) and is responsible for the cleavage of the 

target mRNA.

Canonical 
pathway

The prototypical pathway of a biological process. Non-canonical 

refers to pathways that deviate from the canonical pathway or 

represent a less frequent or less known alternative.

Dicer An RNA-specific enzyme that cleaves a pre-miRNA (and other 

types of double-stranded RNAs) into 21–24-nucleotide long double 

stranded RNAs with a 2-base overhang at the 3’ end.

Drosha A nuclear RNA-specific enzyme that processes newly transcribed 

primary miRNA to produce a ~70 base pairs transcript with a 

hairpin shape, called pre-miRNA.

Endonucleolytic 
cleavage

The enzymatic cleavage of nucleic acid molecules through the 

hydrolysis of internal covalent bonds between nucleotides.

Exosomes Small vesicles (50 −150 nm) that are released into the extracellular 

environment when endosomal multivesicular bodies fuse with the 

plasma membrane.

Exportin 5 A nuclear envelope protein that mediates the nuclear export of pre-

miRNAs to the cytoplasm. This process is assisted by the protein 

cofactor Ran-GTP (see below).

Microprocessor A protein complex consisting of a catalytic core made of the Drosha 

nuclease and the RNA-binding protein DGCR8 (DiGeorge 

syndrome critical region 8).

Mirtrons A subpopulation of miRNAs that are located in the introns of genes 

and produced by an alternative synthesis pathway, independent of 

the Drosha enzymatic complex.

Ran GTPase A member of the family of GTPase enzymes that is involved in 

many nucleo-cytoplasmic transport pathways by regulating the 

interactions of protein carriers with their cargo.

RNA polymerase II (RNA pol II or RNAP II): An enzyme that orchestrates the 

transcription of DNA into RNA or miRNA molecules.

Mouillet et al. Page 9

Am J Obstet Gynecol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RNase III An RNA-specific endonuclease that cleaves double-stranded RNA 

molecules. Drosha and Dicer are members of this family.

Stem-loop A secondary structure in DNA or RNA molecules that occurs when 

a strand folds and form intramolecular base pairing with another 

section of the same strand, creating a U-shape structure.

Spliceosome A large ribonucleoprotein complex involved in the removal of 

introns from unprocessed mRNAs in eukaryotic cells.

TRBP A double strand RNA binding protein that is an essential interacting 

partner of Dicer in the biogenesis of miRNAs.
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Figure 1. The biogenesis of miRNAs
In the canonical pathway, miRNA precursors transcribed from exonic, intronic, or intergenic 

sequences are recognized by the RNA-binding protein DGCR8 and cleaved by the RNase III 

Drosha. This cleavage generates a 55- to 70-nt pre-miRNA hairpin that is exported to the 

cytoplasm, where it undergoes a second cleavage by the RNase III enzyme Dicer that 

removes the terminal loop. The miRNA duplex is then loaded into the RISC complex 

containing Ago2 in mammals. Some miRNAs derive from mirtron loci, which produce short 

intronic hairpins that are excised by the splicing machinery. Mirtron intermediates are then 
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linearized by the lariat-debranching enzyme and exported to the cytoplasm where they are 

further processed by Dicer. Some mirtrons are produced with extended 5’ or 3’ end regions 

(“tailed mirtrons”) and trimmed before their export and cleavage by Dicer. In the case of 

miR-451, processing of the primary transcript by Drosha releases an unusually short hairpin 

that cannot be cleaved. Instead, it is directly loaded onto the RISC complex and cleaved by 

Ago2 to release a 30-nt-long precursor that is likely processed and trimmed by Poly(A)-

specific ribonuclease (PARN) to produce mature miR-451.
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Figure 2. The genomic organization of the C19MC miRNA cluster
The figure depicts the genomic region of the C19MC cluster, with the middle section 

showing the position of the miRNA genes. At the bottom, an enlargement of the 5′ end of 

the region details the structural organization of the cluster elements. The light blue chevrons 

represent Alu elements in an antisense orientation relative to the miRNA genes, while the 

dark blue chevrons correspond to sense Alu sequences. The seven first-expressed exons are 

represented by green rectangles numbered 1–7. The figure was modified from Bortoloin-

Cavaille.86
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Figure 3. A schematic of extracellular miRNAs derived from human trophoblasts
MiRNAs can be released from the trophoblast layer in different forms: microvesicle-

enveloped form; apoptotic body–enveloped form; nano-sized, exosome-encapsulated form; 

and RNA-binding, protein-bound form. Exosomes are formed by budding in intraluminal 

vesicles to form multivesicular bodies (MVB). Some MVBs will fuse with the plasma 

membrane and release their intraluminal vesicles or exosomes into the extracellular space. In 

contrast, microvesicles are produced directly by budding and the detachment of membrane 

vesicles from the plasma membrane. Apoptotic bodies (blebs) derive from cells undergoing 

apoptotic fragmentation and the formation of membrane-enclosed vesicles also called 

apoptosomes. The figure was modified from Ouyang.156
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