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Abstract

Nitrogenases are found in some microorganisms, and these enzymes convert atmospheric N2 to 

ammonia, thereby providing essential nitrogen atoms for higher organisms. Some nitrogenases 

reduce atmospheric N2 at the FeMoco, a sulfur-rich iron-molybdenum cluster1–5. The iron centers 

that are coordinated to sulfur and carbon atoms in FeMoco have been proposed as the substrate 

binding sites, based on kinetic and spectroscopic studies5,6. Studies on the enzyme indicate that 

iron atom Fe6 and possibly also adjacent belt iron sites are involved.5–8 In the resting state, the 

central Fe sites (including Fe6) have identical environments consisting of three sulfides and a 

carbide. Addition of electrons to the resting state causes the FeMoco to react with N2, but the 

geometry and bonding environment of N2-bound species remain unknown5. In this manuscript, we 

describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an 

Fe-S bond and binds N2. The product is the first synthetic Fe–N2 complex in which iron has bonds 

to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results 

demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the 

FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

N2 binding to FeMoco is believed to take place at an iron center with three sulfur ligands 

following Fe-C bond elongation or dissociation (I to II, Fig. 1A)9–15. These sites could 

accommodate N2 binding by breaking an Fe-S or an Fe-C bond, but data on the enzyme do 

not yet distinguish between these possibilities. The likely enzymatic intermediates, iron-N2 

species supported either solely by sulfur, or by sulfur and carbon ligands, are unprecedented 

in isolated coordination complexes. Here, we focus on an alternative hypothesis where one 

of the Fe-S bonds at the active site is broken upon reduction/protonation to expose the N2 
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binding site (I to III, Fig. 1A)16,17. N2 would thus bind at a pseudotetrahedral S,S,C-bound 

iron site. The feasibility of Fe-S bond cleavage in FeMoco is experimentally supported by 

the loss of this S atom in the structure of CO-inhibited nitrogenase7, and by the observation 

of Fe-S cleavage upon protonation in smaller FeS clusters18,19. Other N2 binding hypotheses 

include side-on binding, bridging, and endo coordination where N2 is positioned close to 

three additional iron atoms and opposite to a sulfur atom (IV, Fig. 1A)5,11,17.

Iron-N2 complexes supported solely by sulfur, or by sulfur and carbon supporting ligands, 

are likely N2-bound species in the nitrogenase catalytic cycle, but they are experimentally 

unprecedented. Though chemists have prepared complex iron-sulfur clusters inspired by the 

multimetallic structure of FeMoco, N2 does not bind to any known synthetic iron-sulfur 

cluster20. A number of well-defined iron complexes with B, N, and P supporting ligands are 

known to activate N2, and Peters has established P- and C-based systems capable of 

performing catalytic reduction of N2 to ammonia14,15,21–24. A few iron-N2 complexes have 

thioether/thiolate donors on the same iron center, and each is additionally supported by P- or 

N- donors25–27. To the best of our knowledge, there are no examples of terminal N2 

complexes of any metal having immediate ligand environments similar to those in II-IV, 

which hinders scientists’ ability to predict the behavior of the FeMoco.

For this work, we designed bis(thiolate) ligand L2−, which offers only sulfur and carbon 

based coordination sites (indicated by yellow and grey spheres in Fig. 1B). Our approach 

was guided by the proposed binding mode III in Fig. 1A, which requires the presence of two 

coordinating sulfur atoms. These are provided by two chelating arylthiolate donors with 

bulky 2,4,6-triisopropylphenyl groups shielding the S sites. A central aromatic ring connects 

the two arylthiolate arms and additionally provides potential carbon based attachment 

sites28. Although carbide is electronically different than the arene ring in L2−, each could 

provide flexible bonding for stabilization of various intermediates during ammonia 

production14,15.

Iron(II) ions were installed in the ligand framework by treating LH2 with iron(II) 

bis(bis(trimethylsilyl)amide) in tetrahydrofuran (THF), which yielded the bright yellow, 

high spin iron(II) complex LFe(THF)2 (1, Fig. 2A). Its crystal structure reveals that it is 

four-coordinate, and that all Fe-C distances are at least 2.59 Å (Fig. 2B). Reduction of 1 to 

iron(I) with potassium graphite (KC8) results in the formation of brown-yellow 2, with close 

Fe-C distances (2.04 – 2.12 Å) indicating η6-binding of the central arene ring (Fig. 2A, 2C). 

Comparison of the molecular structures of 1 and 2 reveals that rotation of the arylthiolate 

arms enables the central aryl ring to move closer to the iron atom. Compound 2 has a 

rhombic EPR (electron paramagnetic resonance) spectrum with g = [2.180, 2.020, 1.989] 

and a solution magnetic moment of 2.1 μB, which indicate a low-spin (S = 1/2) iron(I) 

center.

Encouraged by the ability of the ligand to stabilize low-valent iron sites, we further reduced 

the iron site to the iron(0) oxidation state. Reduction of a brown-yellow solution of 2 with 

one equivalent of KC8 under one atmosphere of N2 at −70 °C resulted in an immediate color 

change to deep red. After addition of 18-crown-6 to sequester potassium cations, dark red-

brown crystals of 3 grew at −40 °C. X-ray diffraction analysis shows that 3 is [LFeN2]
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[K(18-crown-6)(THF)2]2 (Fig. 2A and 3A). In 3, N2 is bound as a terminal ligand at a 

pseudotetrahedral iron(0) site, which is further bound to two S atoms and the arene of the 

supporting ligand. The closest Fe-C distance in 3 is 2.04 Å, and there is a second carbon 

atom within bonding distance (Fe-C = 2.24 Å), indicating asymmetric η2 coordination of the 

arene. The potassium cations do not bind to the N2 ligand.

The new N2 complex 3 provides a structural model of the pseudotetrahedral S,S,C supported 

N2 binding mode III proposed for FeMoco (Fig. 1A). It is compared to the experimental 

structures of resting state FeMoco and CO-inhibited FeMoco in Fig. 3B2,7. In the fourth 

coordination site that has labile S and CO ligands in nitrogenase structures7, 3 contains an 

N2 ligand. The Fe-S bond distances in 3 (2.32–2.35 Å) are somewhat longer than the Fe-S 

bonds in resting state FeMoco (2.25–2.27 Å), due to either the lesser negative charge of the 

thiolate or the greater steric hindrance. Remarkably, the Fe-C distance in 3 at 2.04 Å is very 

close to the Fe6-carbide distance of 2.01 Å in FeMoco structures. Overall, the relatively 

simple ligand L2− is capable of arranging appropriate atoms around iron and imparting a 

geometry that resembles the likely active iron site in FeMoco structures. However, the 

electronic structure of the iron(0) complex 3 may be different than the iron site in the N2-

binding form of the FeMoco (for which the structure and iron oxidation state are unknown).

Next, we designed a compound (5) intended to test the idea that Fe-S bond dissociation 

could provide a coordination site for N2 binding (I to III in Fig. 1A). The bis(thiolate) 

complex 1 reacted with thiolate 4 to give the iron tris(thiolate) complex 5 (Fig. 2A). This 

orange high-spin iron(II) complex contains three S ligands, like Fe6 in the FeMoco resting 

state (I in Fig. 1). The interaction of iron with the central arene ring is weak, with the closest 

Fe-C distance at 2.48 Å (Fig. 2D). Thus we view this site as three-coordinate and 

unsaturated, which is supported by the reversible binding of one THF molecule at low 

temperature (Fig. 2E and Supplementary Information show the X-ray crystal structure of 

5·THF and temperature-dependent UV-vis spectra).

The tris(thiolate) iron(II) site in 5/5·THF was reduced to the iron(0) oxidation level with just 

over two equivalents of KC8, under conditions otherwise equivalent to those used for 

reduction of the iron(I) bis(thiolate) complex 2 (Fig. 2A). This yielded the same N2 complex 

3 described above, and 1.0 equiv. of free thiolate was produced. Reduction thus causes an 

Fe-S bond to break concomitant with N2 binding, as in the proposed pathway for N2 binding 

to FeMoco in Fig. 1A (I to III). We note that tris(thiolate) 5 contains all the nearby atoms to 

support alternative binding modes II and IV in Fig. 1A, but Fe-S dissociation takes place 

instead.

We return to describe the further characterization of 3, which gives insight into potential 

properties of N2 after binding at FeMoco. Though complex 3 is very thermally sensitive, it 

was possible to isolate pure samples of 3 in >80% yield from reduction of 5 at low 

temperature and washing the crystals with cold butane at −70 °C. Analysis of these crystals 

by Mössbauer spectroscopy confirms the presence of a single iron species. Infrared 

spectroscopy (IR) analysis of single crystals of 3 revealed a strong N-N stretching band at 

1880 cm−1. These frequencies are the lowest observed for any Fe-N2 complex with a 

terminal N2 ligand23, which shows that the thiolates are powerful electron donors that enable 
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substantial backbonding into the N2 π* orbitals. The N2 ligand in 3 exchanges with 

free 15N2 (giving an 15N-15N stretching band at 1813 cm−1) at −70 °C in the solid state. 

Samples of 3 kept at room temperature for a few hours lack the N2 stretching vibration, 

further demonstrating the lability of N2. The lability suggests that the Fe-N2 interaction, 

though strong as judged by IR spectroscopy, may be compensated with tighter binding to the 

arene ring.

Compound 3 has a high spin (S = 1) electronic configuration, as determined by SQUID 

(superconducting quantum interference device) magnetometry on a crystalline sample. This 

experimental observation was confirmed with density functional theory calculations on a 

truncated model of 3. Optimization with S = 1 gave a model close to the experimental 

geometry, but optimization with S = 0 gave significantly different bond lengths and angles, 

and a Gibbs free energy (ΔG°) that was higher by 37 kJ/mol (see Supplementary 

Information). High spin iron(0) dinitrogen complexes are rare, and have been seen mainly in 

cases where high symmetry makes the frontier orbitals nearly degenerate29,30. To our 

knowledge, 3 is the first high spin iron complex that contains both S and N2 ligands25,26, 

and shows that high-spin iron (as expected in the weak-field sulfur-dominated environment 

of iron atoms in the FeMoco) can activate N2 substantially.

The preparation of an iron-N2 complex with a sulfur-rich environment provides structural 

and spectroscopic precedents for FeMoco-N2 binding, and also gives insight into the 

nitrogenase mechanism. Reduction of complex 5 breaks an Fe-S bond as in the hypothetical 

conversion of I to III in the FeMoco (Fig. 1), and binds N2 in a form where the N-N bond is 

greatly weakened. In this way, the results support the idea that the sulfur-rich iron site in the 

FeMoco is particularly well-suited for N2 activation, and that Fe-S bonds can be easily 

broken upon reduction to allow binding of N2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. N2 binding to iron in sulfur and carbon rich environments
a, Schematic representations of FeMoco and three potential N2 binding modes. Potentially 

protonated sulfur ligands are not specified. b, Ligand design for a synthetic sulfur-carbon 

site.
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Figure 2. N2 binding at an iron-sulfur-carbon site through Fe-S bond cleavage
a, Reactions of synthetic iron-sulfur sites leading to N2-binding. The bottom pathway shows 

Fe-S cleavage with N2 binding. Ar = 2,4,6-triisopropylphenyl. b–e, Molecular structures of 

the synthetic mononuclear iron-sulfur sites presented here. Hydrogen atoms and Ar groups 

are omitted for clarity.
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Figure 3. Iron-N2 complex supported by sulfur and carbon ligands
a, Two views of the molecular structure of the anionic part of 3. Hydrogen atoms and Ar 

groups are omitted. b, Comparison of geometric parameters with CO-inhibited FeMoco7 and 

resting state FeMoco2. All distances are reported in Ångstrøms.
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