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Traditional natural products discovery using a combination of live/
dead screening followed by iterative bioassay-guided fractionation
affords no information about compound structure or mode of
action until late in the discovery process. This leads to high rates
of rediscovery and low probabilities of finding compounds with
unique biological and/or chemical properties. By integrating image-
based phenotypic screening in HeLa cells with high-resolution untar-
geted metabolomics analysis, we have developed a new platform,
termed Compound Activity Mapping, that is capable of directly pre-
dicting the identities and modes of action of bioactive constituents
for any complex natural product extract library. This new tool can
be used to rapidly identify novel bioactive constituents and provide
predictions of compound modes of action directly from primary
screening data. This approach inverts the natural products discovery
process from the existing ‟grind and find” model to a targeted,
hypothesis-driven discovery model where the chemical features
and biological function of bioactive metabolites are known early
in the screening workflow, and lead compounds can be rationally
selected based on biological and/or chemical novelty. We demon-
strate the utility of the Compound Activity Mapping platform by
combining 10,977 mass spectral features and 58,032 biological mea-
surements from a library of 234 natural products extracts and in-
tegrating these two datasets to identify 13 clusters of fractions
containing 11 known compound families and four new compounds.
Using Compound Activity Mapping we discovered the quinocinno-
linomycins, a new family of natural products with a unique carbon
skeleton that cause endoplasmic reticulum stress.
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Notwithstanding the historical importance of natural products
in drug discovery (1) the field continues to face a number of

challenges that affect the relevance of natural products research
in modern biomedical science (2). Among these are the increasing
rates of rediscovery of known classes of natural products (3–6)
and the high rates of attrition of bioactive natural products in
secondary assays due to limited information about compound
modes of action in primary whole-cell assays (7). Although phar-
maceutical companies recognize that natural products are an
important component of drug discovery programs because of the
different pharmacologies of natural products and synthetic
compounds (8), there is a reluctance to return to “grind and find”
discovery methods (9). Therefore, there is a strong need for tech-
nologies that address these issues and provide new strategies for the
prioritization of lead compounds with unique structural and/or bi-
ological properties (10).
Natural product drug discovery is challenging in any assay system

because extract libraries are typically complex mixtures of small
molecules in varying titers, making it difficult to distinguish bi-
ological outcomes (11). This is compounded by issues of additive
effects of multiple bioactive compounds and the presence of nui-
sance compounds that cause false positives in assay systems (12).
To address these issues, our laboratory has recently developed

several image-based screening platforms that are optimized for
natural product discovery (13–16). The cytological profiling plat-
form optimized by Schulze and coworkers characterizes the bi-
ological activities of extracts using untargeted phenotypic profiling.
These phenotypic profiles are compared with natural products
extracts and a training set of compounds with known modes of
action to characterize the bioactivity landscape of the screening
library (17, 18). This cytological profiling tool forms the basis of
the biological characterization component of the Compound Ac-
tivity Mapping platform, as described below.
In the area of chemical characterization of natural product li-

braries, untargeted metabolomics is gaining attention as a method
for evaluating chemical constitution (3, 19–22). Modern “genes-to-
molecules” and untargeted metabolomics approaches taking
advantage of principal component analysis and MS2 spectral
comparisons have also been developed to quickly dereplicate
complex extracts and distinguish noise and nuisance compounds
from new molecules (23–27). Unfortunately, although these tech-
niques are well suited to the discovery of new chemical scaffolds,
they are unable to describe the function or biological activities of
the compounds they identify. Therefore, there is still a need for
new approaches to systematically identify novel bioactive scaffolds
from complex mixtures.
To overcome some of these outstanding challenges we have

developed the Compound Activity Mapping platform to inte-
grate phenotypic screening information from the cytological
profiling assay with untargeted metabolomics data from the ex-
tract library (Fig. 1). By correlating individual mass signals with
specific phenotypes from the high-content cell-based screen (Fig. 2),
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Compound Activity Mapping allows the prediction of the identities
and modes of action of biologically active molecules directly from
complex mixtures, providing a mechanism for rational lead selec-
tion based on desirable biological and/or chemical properties. To
evaluate this platform for natural products discovery we examined a
234-member extract library, from which we derived 58,032 biolog-
ical measurements (Fig. 1C) and 10,977 mass spectral features (Fig.
1A). By integrating and visualizing these data we created a Com-
pound Activity Map for this library composed of 13 clusters con-
taining 16 compounds from 11 compound classes (Fig. 3). This
integrated data network enabled the discovery of four new com-
pounds, quinocinnolinomycins A–D (1–4, Fig. 4), which are the first
examples to our knowledge of microbial natural products contain-
ing the unusual cinnoline core (Fig. 5). Clustering the cytological
profiles of the quinocinnolinomycins with those of the Enzo library
training set suggests that these compounds induce endoplasmic
reticulum (ER) stress and the protein unfolding response.

Experimental Procedures
Library Preparation. Cell culture, extraction, library preparation, and crude ex-
tract fractionation were performed as described by Schulze et al. (15). Briefly,
bacterial strains were isolated from marine sediment collected by hand using
SCUBA from coastal areas of Panama at depths of 5–30 m. Bacterial isolates were
grown under standard fermentation conditions (16), extracted with 1:1 methanol/
dichloromethane, and fractionated on a reverse-phase C18 column with an
eleutropic series of water and methanol [20, 40, 60, 80, and 100% (vol/vol)
methanol in water, and an ethyl acetate wash]. These extracts were concentrated
to dryness in vacuo and resuspended in 1 mL of DMSO. DMSO stock solutions
were diluted 1:5 in DMSO for cytological profiling and 1:25,000 in 50% (vol/vol)
methanol/water into Corning V bottom 96-well plates for metabolomic analysis.

Chemical Profiling. Ultra performance liquid chromatography TOF-MS experi-
ments were performed using an Agilent 1260 binary pump in low dwell volume
mode, an Agilent column oven heated to 45 °C, and an Agilent 6230 time-of-
flight mass spectrometer with a Jetstream ESI source. From the 1:25,000 fold
dilution of the DMSO extract,1 μL of sample, dissolved in 50% (vol/vol) meth-
anol/water, was injected onto a 1.8-μm particle size, 50 × 2.3 mm i.d., ZORBAX
RRHT C18 column. Each samplewas subjected to awater-acetonitrile gradient from
10 to 90% (vol/vol) acetonitrile over 4 min with a 1.5 min hold at 90% (vol/vol)
acetonitrile before a 3 min reequilibration. The flow rate was maintained at
0.8 mL/min. Formic acid (200 μL of acid per liter of solvent) was added to both
the water and the acetonitrile. Water (1 mL of water per liter) was added to the
acetonitrile. Mass spectrometry acquisitions and peak selection were per-
formed using standard instrument settings for small molecules (SI Appendix).

MS Data Alignment. Comparison of selected peaks between injections of the
same sample were performed using high-resolution mass (parts per million),
retention time, and an isotope pattern matching method adapted from
Pluskal et al. (28). After initial data acquisition, processing, and CEF file (peak
list) output, peaks from MeOH media blanks were removed from the extract

peak lists using 20 ppm, 0.4 min, and 0.5 isotopic score difference windows.
Detector ringing was removed by eliminating all peaks within 0.4 min and
1 mass unit of the most abundant peak in saturated data. We developed a
decision tree to align m/z retention time (rt) pairs between extended dy-
namic range (2-GHz) and high-resolution (4-GHz) detector modes to select
the most accurate data between 2- and 4-GHz modes from both positive and
negative ESI experiments (SI Appendix, Fig. S2). The blank, media, and sat-
uration filtered peaks were aligned between 4-GHz and 2-GHz modes with
7 or 20 ppm, 0.4 min, 0.5 isotopic score difference windows. Each aligned
peak was assigned a tag that indicated whether or not the peak was present
and not saturated or present and saturated in both 4-GHz and 2-GHz modes
(SI Appendix, Fig. S2). To ensure the highest accuracy data were stored, m/z
values that were not saturated from the 4-GHz data were selected prefer-
entially, with 2-GHz data being substituted in instances where the 4-GHz
data were saturated. We stored the postvalidated peak list in a SQLite da-
tabase for rapid indexing during incorporation with biological data.

Basketing. To compare and align peaks from different extracts in the database,
we performed 2D binning based on m/z and rt values using the same cutoffs of
7 ppm and 0.4min. These baskets, referred to asm/z features, include them/z, rt,
and mass intensity data, as well as a list of each extract from which peaks in the
basket were detected. For eachm/z feature, this extract set was used to generate
the integrated biological profiling metrics activity score and cluster score.

Cytological Profile Screening and Image Analysis. Methods for cell culture and
staining were used as previously reported (15, 18). HeLa cells were plated into
two clear-bottom 384-well plates at a target density of 2,500 cells per well. The
plates were incubated for 24 h under 5% CO2 at 37 °C, 150 nL of extract was
pinned into the culture plates, and the plates were incubated for 19 h under
5% CO2 at 37 °C. The plates were then fixed and stained with either cell cycle or
cytoskeletal stain sets, which report on the number of cells in S-phase or mitosis
and amount and distribution of tubulin and actin, respectively (15, 18). Both
stain sets contained a nuclear stain (Hoechst), which was used to count the
number of cells and segment the image. The plates were imaged with a 10×
objective lens acquiring four images per well. For each extract, 248 different
parameters were measured from the images of each plate. Together these
values report on a diverse range of size and shape features including, for ex-
ample, those representing the total area and shape of the nuclei or the number
of mitotic cells. Comparing extract-treated wells with DMSO-treated wells and
reduction of these cell-by-cell metrics to population values for each well using
our in-house data management pipeline afforded a 248-parameter fingerprint
for each extract displaying the positive (yellow) or negative (blue) perturbations
for each attribute with values between −1 and 1 (Fig. 2).

Death Dilutions. Before submitting each screening plate for image analysis,
the raw imaging data were used to count the number of cells in each well. In
some instances treatment with extracts resulted in significant cell death,
precluding the determination of accurate cytological profiles. The extracts
that caused a reduction in cell count outside of three SDs of control wells
were submitted for serial dilution and rescreened. For extracts that elicited
a response with acceptable cell counts, the journaled cytological profiles
were used for data integration and clustering. For the extracts that caused a

Fig. 1. Overview of Compound Activity Mapping. (A) Representation of the chemical space in the tested extract library. The network displays extracts (light
blue) connected by edges to allm/z features (red) observed from the metabolomics analysis, illustrating the chemical complexity of even small natural product
libraries. (B) Histograms of activity and cluster scores for all m/z features with cutoffs indicated as red lines (for full-size histograms see SI Appendix, Fig. S5).
(C) Compound Activity Map, with the network displaying only them/z features predicted to be associated with consistent bioactivity, and their connectivity to
extracts within the library. (D) Expansion of the staurosporine cluster (dotted box in C) with extract numbers and relevant m/z features labeled.
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three-SD reduction in the number of cells, the cytological profile of the first
dilution with a cell count within three SDs of the mean control cell count was
used for clustering and integration.

Integrating Untargeted Metabolomics Data and Cytological Profiling Data. To
integrate the cytological profiling and metabolomics datasets, each m/z
feature stored in the database is ascribed a synthetic fingerprint, an activity
score, and a cluster score, which together predict the biological activity of
each feature. A visual representation of the calculations performed on an
example compound is displayed in Fig. 2.

Synthetic Fingerprints. The synthetic fingerprint of anm/z feature is the average
of each cytological attribute value for the set extracts in which the m/z feature
is detected. This calculated or “synthetic fingerprint” represents the predicted
cytological profile for each m/z feature in the sample set (Fig. 2B).

E= f1,2, . . . , j− 1, jg

F =
�
f1, f2, . . . , fj−1, fj

�

fk = fa1, a2, . . . ,an−1, ang

SyntheticFingerprintðm=z  featureÞ= fa1, a2, . . . , an−1, ang [1]

Eq. 1 is the calculation of the synthetic fingerprint. For the set of extracts E in
which the m/z feature was detected, extracts 1 to j, F is the set of each ex-
tract’s cytological profile, fingerprints f1 to fj, where each fingerprint, fk,
contains attributes a1 to an. The synthetic fingerprint is the set containing
the average of each attribute of the fingerprints in F.

Activity Score. From a cytological profile fk or a synthetic fingerprint, the
activity score is defined as the sum of the square each attribute. This singular
value can be used to assess whether or not each m/z feature is predicted to
perturb cell development above baseline values.

ActivityScoreðfk   or   featureÞ=
Xn

i=1

a2i [2]

Eq. 2, the activity score for a fingerprint, is the sum of the square of each
attribute.

Cluster Score. The cluster score of anm/z feature is the average of the cube of
the Pearson correlations between all combinations of two different cyto-
logical profile fingerprints in set F. The Pearson correlation values are cubed
to reduce the emphasis of low values caused by the presence of one or more
extracts containing a given m/z feature at a concentration high enough to
be detected by the mass spectrometer, but too low to cause a significant
impact on cell development. This single value is used to assess whether or
not each m/z feature is correlated with a specific phenotype within the bi-
ological dataset.

ClusterScoreðfeatureÞ=
Pj

p=1

Pj
q=1Pearson

�
fp, fq

�3 − j

j2 − j
[3]

Using Eq. 3, the cluster score is calculated as the average of the cube the
Pearson correlations of all combinations of two fingerprints in F where j is the
number of extracts. The number of extracts j is subtracted from the numerator
and denominator to remove Pearson correlations between fi and fi.

Network Visualization. We use NetworkX in Python to create and edit networks
and Gephi to visualize and analyze networked data. In general, blue nodes rep-
resent extracts and are connected to red nodes representing the m/z features
detected in those extracts (Fig. 1D). Using Gephi, we display the relative bio-
activities of each node by making the diameter of each node proportional to
extract activity score orm/z feature activity score. Distinct clusters (represented by
different colors in Fig. 3) are identified using network modularity with weighted
edges and a resolution of one. We use Gephi’s built-in Force Atlas 2 algorithm to
distribute nodes with default parameters except the following: approximate re-
pulsion of 0.2, scaling of 10, gravity of 2, and “prevent overlap.”

Results
Cytological Profiling. Preliminary screening generated cytological
profiles for all 234 extracts, of which 50 were serially diluted and
rescreened based on low cell count (Experimental Procedures).

After these samples were diluted, 57 of the 234 profiles had
activity scores greater than 10, with 13 discrete clusters with
Pearson correlations <0.875 (SI Appendix, Figs. S3 and S4).

Metabolomics. Features (n = 10,977) were stored into the mass
feature sequel database after media and blank subtraction. Of
these, 346 were eliminated because they appeared in greater
than 10% of extracts and 5,310 singletons were removed, affording
5,321 filtered features for network analysis. The removal of sin-
gletons must be considered carefully, because it eliminates these
features from further consideration as bioactive constituents. This
is a particular challenge for small extract sets, such as the one used
in this initial study, where the probability of metabolites being
observed only once is relatively high. The long-term objective of
our laboratory is to build a database containing profiles from
many thousands of extracts. This will reduce the number of in-
stances where singletons are encountered because of the in-
herent redundancy of the occurrence of individual compounds in
natural product extract libraries and permit the integration of
singleton features into the Compound Activity Mapping work-
flow. For this initial study, incorporation of singletons was im-
practical because of the large number of m/z features appearing
only once. However, because the 13 clusters derived from the
cytological profiling screen all contained multiple extracts, we
were able to exclude singleton features in this instance based on
the hypothesis that the bioactive constituents should be present
in more than one extract in each case. Examination of the final
network reveals validated bioactive compounds for all clusters,
supporting this assumption.

Data Integration. To integrate the biological and chemical data-
sets synthetic fingerprints, cluster scores, and activity scores were
generated for each m/z feature in the database. These results
were used to generate activity plots for each extract (for an ex-
ample activity plot, see Fig. 4A), displaying m/z features as points
on the graph, with the activity score on the y axis, the cluster
score on the x axis, and the color of each point corresponding to
the retention time of that m/z feature.
The activity and cluster score metrics were used to filter the m/z

feature database to select for features that were correlated with
strong and consistent phenotypes. Cutoffs were selected so that only

Fig. 2. Determination of synthetic fingerprints and cluster and activity scores.
(A) Table of Pearson correlations for the cytological profiles between all extracts
containing a specificm/z feature (m/z of 489.1896, rt of 1.59). In each cytological
profile, yellow stripes correspond to positive perturbations in the observed cy-
tological attribute and blue stripes correspond to negatively perturbed attrib-
utes. The cluster score is determined by calculating the average of the Pearson
correlation scores for all relevant extracts. (B) Calculated synthetic fingerprint
and activity score for feature (m/z of 489.1896, rt of 1.59). Synthetic fingerprints
are calculated as the averages of the values for each cytological attribute to give
a predicted cytological profile for each bioactivem/z feature in the screening set.
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m/z features with activity scores greater than 10 and cluster scores
greater than 0.10 were retained for subsequent network generation
(SI Appendix, Fig. S5). These cutoffs were selected to include allm/z
features with “nonnegative” scores for both values. This was ac-
complished by plotting a rank order of values for every m/z feature
for each metric (SI Appendix, Fig. S5 A and C) and selecting cutoffs
below the vertex of each curve to eliminate all features in the lower
pseudolinear region of each plot. These initial cutoff values were
then manually adjusted using the pan-specific kinase inhibitor
staurosporine as a positive control compound within the dataset
to obtain networks containing all relevant connections between
the m/z features for staurosporine and their associated extracts. For
reference, the average activity score in this study was 4.66 with an SD
of 5.53, and the average cluster score was 0.13 with an SD of 0.14.
After applying these filters 634 features remained that repre-

sented the m/z features predicted to be responsible for the
observed bioactivities. A network was then generated from these
634 features with extract nodes connected to their corresponding
m/z features by edges (unweighted). The size of the node is de-
fined by the activity score of the extract or half the activity score
of the m/z feature for easy visualization. Subclusters could then
be assigned using the modularity feature of Gephi based on
connectivities between extract and m/z feature nodes. From this
we were able to observe 13 unique clusters, each of which con-
tained mass spectral features for the natural products predicted
to be responsible for the bioactivity of the extracts.

Discussion
Compound Activity Mapping provides a new approach to the
characterization of natural product libraries that is complementary
to existing discovery methods. The main advantage of this approach
is that it provides a mechanism for the early prediction of the
identities and biological behaviors of bioactive compounds from
complex mixtures, permitting hypothesis-driven lead selection and a
streamlined discovery workflow. Data acquisition can be completed
in under 2 wk for each 384-well plate (including both metabolomics
analysis and cytological profiling), making this method suitable for
medium-throughput natural product discovery efforts.

Of the 234 extracts examined in this study, 57 had cytological
profiles with activity scores above 10. All of these extracts possessed
associated m/z features from the metabolomic analysis predicted to
be responsible for the observed activities, suggesting that Compound
Activity Mapping is suitable for the systematic characterization of
complex screening libraries. In general, these active clusters fall into
one of three classes: clusters where the activity is caused by a single
known natural product class, clusters where the activity is caused by
the presence of multiple classes of known bioactives, and clusters
where the activity is caused by bioactives that have no matches to
available databases of microbially-derived natural products.

Clusters Containing Single Bioactives. One example of a cluster
driven by the presence of a single known bioactive class is the
cluster containing extracts RLPA2008C, E, and F (Fig. 3, olive-
green cluster). It is clear from the network that the chemical con-
stitutions of RLPA2008C, E and F are distinct from the rest of the
library. Three of them/z features in this cluster were consistent with
the [M + H]+, [M-H]−, and [M+Na]+ adducts of a compound with
the molecular formula C62H86N12O16. Searching the AntiMarin
database (a comprehensive database of microbial and marine-
derived natural products) identified actinomycin D as a match
with the molecular formula (29). Clustering and visualizing the
synthetic fingerprints of these features with the cytological profiles
of the Enzo compound library using Cluster 3.0 and Java TreeView
(30, 31) strongly supported this result (SI Appendix, Fig. S7), with
extracts RLPA2008C, E and F also clustering closely with the
pure actinomycin D standard. The identification was confirmed

Fig. 4. The prioritization, isolation, and confirmation of the quinocinnoli-
nomycins A–D (1–4). (A) Bioactive m/z features plotted on a graph of activity
score vs. cluster score. The color of the dot corresponds to the retention time
of them/z feature with the color bar and scale below in minutes. (B) Isolated
cluster from Fig. 1C and Fig. 3 containing both the relevant extracts (blue)
and bioactive m/z features (red). (C) HPLC trace of extract RLPA-2003E and
the isolation of quinocinnolinomycins A–D (highlighted with blue boxes on
HPLC trace). (D) Cell images of pure compounds screened as a twofold di-
lution series for quinocinnolinomycins A and B in both stain sets compared
with images of vehicle (DMSO) wells. (E) Comparison of the synthetic and
actual cytological fingerprints of the pure compounds is presented below
the relevant images, demonstrating the relationship between experimental
and calculated cytological profiles for these two metabolites.

Fig. 3. Annotated Compound Activity Map. An expanded view of the Com-
pound Activity Map from Fig. 1C, with the extracts and m/z features separated
into subclusters and colored coded using the Gephi modularity function. Each
bioactive subcluster is composed of extracts containing a family of compounds
with a defined biological activity. The Compound Activity Map is annotated
with a representative molecule from each of the families of compounds that
have been independently confirmed by purification and chemical analysis.
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by coinjection with a commercial standard of actinomycin D,
which possessed the same m/z features and retention time as the
predicted hits from the extract.
A second example of clustering driven by the presence of

a single bioactive compound is the cluster containing extracts
RLPA1011E, RLPA1011F, RLPA2005E, and RLPA2005F (Fig.
3, cyan cluster). In this case the activity plot for RLPA1011F
reveals seven m/z features consistent with the single molecular
formula C28H26N4O3. Comparison of this formula to the Anti-
Marin database reveals a match to the pan-specific kinase in-
hibitor staurosporine. This assignment was confirmed by coinjection
with an authentic standard of staurosporine, which had a retention
time and high-resolution MS signals that matched those for the
bioactive components in these extracts.

Clusters Containing Multiple Bioactives. Although extracts 1011E
and F were correctly predicted to contain staurosporine, examina-
tion of the Compound Activity Map and activity plots for extracts
RLPA2005E and F revealed a second set of two m/z features pre-
dicted to contribute strongly to the observed biological activities
of these extracts. These new m/z features were consistent with
a compound with the molecular formula C51H64N12O12S2, which
corresponded to the DNA intercalator echinomycin. Presence of
this second bioactive metabolite was also confirmed by coinjection
with a standard.
Importantly, although these two situations (staurosporine only,

staurosporine and echinomycin) are connected in one “superclu-
ster” because they are related by the extracts in which they are
found, they resolve into individual subclusters based on the inter-
connectivities of the extract nodes and m/z features. This demon-
strates that this approach is able to resolve convoluted situations

involving mixtures of compounds with different biological mecha-
nisms of action and provide useful characterization of bioactive
metabolites even in situations in which mixtures of bioactives cause
phenotypic responses that are not closely related to either com-
pound individually. The synthetic fingerprints of the m/z features
corresponding to staurosporine cluster closely with the pure com-
pound from the Enzo library and are readily distinguishable from
those of the echinomycin (SI Appendix, Fig. S8).
A second example of clusters containing multiple bioactive me-

tabolites is provided by the cluster containing extracts RLPA2021C,
E, and F (Fig. 3, purple cluster). In this instance the cluster contains a
large number of candidatem/z features, many of which are consistent
with different members of two separate classes of natural products:
the fluorenone-containing fluostatins and the macrolide antibiotic
rosaramicins. This situation is significantly more complex than the
previous example, with multiple members of two separate bioactive
compound classes contributing to the overall phenotypes observed
for these extracts. Isolation and NMR evaluation of representative
members of these two compound classes (fluostatins C, D, and J and
rosaramicin) confirmed their initial assignments and permitted the
evaluation of each compound class as pure compounds in the cyto-
logical profiling assay. The fluostatins all clustered closely with kinase
inhibitors (32), whereas rosaramicins induced only a very weak
phenotype that is consistent with their previous annotation as anti-
biotics and not cytotoxic agents (SI Appendix, Figs. S6 and S7) (33).
Compound Activity Mapping was able to identify the fluostatins as
the correct bioactive constituent, but because the fluostatins and the
rosaramicins always appeared together, the macrolides were called as
a false positive. This limitation of the platform can be resolved by
analyzing larger libraries of extracts from similar organisms, which
will reduce the probability that two compounds are always coex-
pressed. Once each constituent appears individually in the dataset,
inactive compounds will display lower activity and cluster scores,
eventually excluding them from the network.

Discovery and Structure Determination of Quinocinnolinomycins A–D.
In addition to the annotation of known bioactive metabolites,
Compound Activity Mapping is well suited to the discovery of novel
compounds and the characterization of their biological attributes.
Within this set of extracts we observed a number of unique clusters
with high activity scores and no matches in the AntiMarin database.
One such cluster, containing extracts RLPA2003E and F, was pri-
oritized because it contained just five m/z features that were com-
mon to only those extracts (Fig. 4B). Examination of the activity plot
(Fig. 4A) highlighted one m/z feature with high activity and cluster
scores (m/z of 400.2590, rt of 3.50 min, activity score 13.12, cluster
score 0.57) that was prioritized for chemical analysis. Liquid chro-
matography–MS analysis of this extract revealed the presence of two
peaks with m/z features at 400.2590 amu and similar UV profiles, as
well as two additional peaks that possessed the same UV profiles but
had m/z values of 414.2756, suggestive of the presence of a family of
related compounds (Fig. 4C and SI Appendix, Fig. S11).
The molecular formulae C23H33N3O3 and C24H35N3O3 were de-

termined based on the strong consensus between the [M + H]+

and [M + Na]+ m/z features for each set of two constitutional
isomers. The earliest eluting compound with the molecular formula
C23H33N3O3 was solved by NMR analysis, using a combination
of 1H, 13C, gCOSY, gHSQC, gHMBC, and 1D-TOCSY spectra
(Fig. 5; for full structure determination description see SI Appendix).
The R stereochemistry of quinocinnolinomycin A was determined
using Mosher’s ester method (Fig. 5D), and this assignment ex-
tended to quinocinnolinomycins B–D based on their common bio-
synthetic origin (SI Appendix, Fig. S12).

Mechanism of Action of the Quinocinnolinomycins. Purified quino-
cinnolinomycins A–D were rescreened as twofold dilution series
(166.7 μM–2.5 nM) in the cytological profiling assay (SI Appendix,
Fig. S9). Clustering these cytological profiles with those of the Enzo

Fig. 5. Structure elucidation of quinocinnolinomycins A–D (1–4). (A) Structures
of quinocinnolinomycins A–D. (B) Key NMR correlations used in the structure
elucidation of quinocinnolinomycin A. COSY correlations are indicated by bold
lines. Heteronuclear multiple-bond correlations are indicated by curved arrows.
(C) ΔδSR values for the Mosher’s α-methoxy-α-trifluoromethylphenylacetic acid
(MTPA) ester analysis of the secondary alcohol in quinocinnolinomycin A (1) to
assign the absolute configuration at position C11.
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compound library training set revealed a distinct cluster containing
all four analogs over a range of concentrations between 0.3 and
83.3 μM along with the known compounds thapsigargin (calcium
ATPase inhibitor) (34), tunicamycin (N-linked protein glycosylation
inhibitor) (35), lycorine (ribosome inhibitor) (36), and brefeldin A
(ARF GTPase inhibitor) (37). Although the precise molecular
targets of these compounds differ, they are all mechanistically re-
lated because they affect the function of different components of
the ER and result in ER stress and the induction of the protein
unfolding response (38–40). Active concentrations of quinocinno-
linomycins A–D are present within this cluster with Pearson cor-
relations to the other training set compounds on the order 0.6–0.7,
indicating close matches between these cytological profiling fin-
gerprints; these data suggest that the quinocinnolinomycins have a
mode of action that causes ER stress. Moderate ER stress may be
mitigated by macroautophagy (autophagy) in mammalian cells and
can lead to cell death or survival depending on the context; this is an
active area of research for future cancer therapies (39–42). Further
studies to elucidate the precise molecular target of the quino-
cinnolinomycins will expand our understanding of the cellular
processes involved with ER stress, the unfolded protein response,
and autophagy with direct implications for human disease.

Conclusion
By predicting the identity and mode of action of all detectable
metabolites from complex extracts Compound Activity Mapping

aims to expedite the discovery process by changing the traditional
“blind” discovery model to a hypothesis-driven approach to novel
bioactive compound discovery. This approach reduces the time
required to go from a hit in an assay to a lead molecule by mini-
mizing iterative bioassay-guided fractionation and screening steps
and allows hypothesis-driven exploration of natural product li-
braries by providing a global view of compound diversity and ac-
tivity across any library. In this study, analysis of the 234-member
library revealed 13 unique clusters based on chemical and bi-
ological similarities. We were able to confirm the identities of 16
compounds from these clusters using a combination of analytical
approaches, providing a detailed molecular picture of the bio-
activity landscape for this extract library in this biological assay.
The discovery of quinocinnolinomycins A–D highlights the utility

of this platform for novel compound discovery and mode of action
characterization. The cluster containing extracts RLPA2003E and
F is distinct in the Compound Activity Map and contained m/z
features suggesting the presence of unique compounds correlated
with a strong and distinct phenotype. These data strongly suggested
that these mass features should be prioritized for structure eluci-
dation, leading to the discovery of this new structural class of
natural products with accurately predefined biological activities.
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