
Breeding signatures of rice improvement revealed by a
genomic variation map from a large
germplasm collection
Weibo Xie (谢为博)1, Gongwei Wang (王功伟)1, Meng Yuan, Wen Yao, Kai Lyu, Hu Zhao, Meng Yang, Pingbo Li,
Xing Zhang, Jing Yuan, Quanxiu Wang, Fang Liu, Huaxia Dong, Lejing Zhang, Xinglei Li, Xiangzhou Meng, Wan Zhang,
Lizhong Xiong, Yuqing He, Shiping Wang, Sibin Yu, Caiguo Xu, Jie Luo, Xianghua Li, Jinghua Xiao,
Xingming Lian (练兴明)2, and Qifa Zhang (张启发)2

National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan
430070, China

Contributed by Qifa Zhang, August 11, 2015 (sent for review July 2, 2015; reviewed by Roberto Tuberosa and Yunbi Xu)

Intensive rice breeding over the past 50 y has dramatically increased
productivity especially in the indica subspecies, but our knowledge
of the genomic changes associated with such improvement has
been limited. In this study, we analyzed low-coverage sequencing
data of 1,479 rice accessions from 73 countries, including landraces
and modern cultivars. We identified twomajor subpopulations, ind-
ica I (IndI) and indica II (IndII), in the indica subspecies, which corre-
sponded to the two putative heterotic groups resulting from
independent breeding efforts. We detected 200 regions spanning
7.8% of the rice genome that had been differentially selected be-
tween IndI and IndII, and thus referred to as breeding signatures.
These regions included large numbers of known functional genes
and loci associated with important agronomic traits revealed by
genome-wide association studies. Grain yield was positively corre-
lated with the number of breeding signatures in a variety, suggest-
ing that the number of breeding signatures in a line may be useful
for predicting agronomic potential and the selected loci may pro-
vide targets for rice improvement.
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Rice (Oryza sativa L.) is one of the most important cereal crops
in the world. There have been landmark achievements in rice

improvement over the past 50 y, especially in the indica sub-
species. A major breakthrough resulted from the independent
development of a series of semidwarf varieties in China and by
the International Rice Research Institute (IRRI) in the 1950s
and 1960s, leading to the “green revolution” in rice. Since then,
semidwarfness has been a basic characteristic for almost all
modern varieties. Based on semidwarf varieties, improvement
for other traits, such as abiotic stress resistance, broad-spectrum
resistances to biotic stresses, and better grain quality, has also
been achieved. Another major breakthrough stemmed from the
exploitation of hybrid vigor in China (1), resulting in the large-
scale adoption of hybrid rice since the 1970s. Jointly, these
breakthroughs have greatly increased rice productivity in the past
several decades globally.
Genomic studies in recent years have identified a large number of

loci that were under selection during rice domestication (2). How-
ever, there has been very limited study to identify loci or genomic
regions that have been under selection due to breeding. Next-gen-
eration sequencing technologies have enabled sequencing of a large
number of rice accessions at relatively low cost, providing opportu-
nities to inspect the genomic regions selected in the history of crop
improvement. Meanwhile, genome-wide association studies (GWAS)
have provided an effective approach to analyze the genetic archi-
tecture of complex traits and allow identification of candidate genes
for further improvement of agronomically important traits (3, 4).
In this study, we analyzed low-coverage sequencing data of

1,479 rice accessions, which revealed a large number of differ-

entially selected regions associated with breeding efforts between
two major subpopulations in indica. These selected regions are
associated with agronomic performance of rice varieties and
harbor many classes of known important genes. The results may
have significant implications for rice improvement.

Results
Sequencing of Diverse Rice Varieties. Data from two sets of Asian
cultivated rice (O. sativa L.) germplasm consisting of 1,483 acces-
sions, including both landraces and improved varieties from 73
countries, were analyzed in this study. The first set of 533 acces-
sions was selected by us to represent both the genetic diversity in
this species and their usefulness in rice improvement (Dataset S1).
The sequence data were released in a previous study (5). The
second set was the 950 accessions (Dataset S2) sequenced by
Huang et al. (4) that were downloaded from the European Bio-
informatics Institute (EBI) European Nucleotide Archive.
The details of SNP identification and imputation were de-

scribed previously (5). Briefly, sequence reads were aligned to
the rice reference genome [Nipponbare; Michigan State Uni-
versity (MSU), version 6.1]. After initial filtering, a total of
6,551,358 high-quality SNPs with the minor allele of each SNP
shared by at least five accessions were identified. Three of the
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533 accessions in the first set had excessive heterozygosity, and
one had a low mapping rate; these accessions were excluded
from further analysis. Sequences for the remaining 1,479 acces-
sions were imputed using a linkage disequilibrium–k-nearest
neighbor algorithm. After imputation, SNPs with missing data
rates less than 20% of all of the accessions were selected,
resulting in a total of 6,428,770 SNPs, with the overall missing
data rate being about 0.38% (47.1% before imputation). We
compared the imputed genotypes against relevant high-quality
genome sequences in the database as well as our array-based
genotypes, which showed that the accuracy of the imputed geno-
types was >99% (SI Appendix, SI Result 1 and Table S1). SNPs and
imputed genotypes can be queried on our website RiceVarMap
(ricevarmap.ncpgr.cn) (6).

Genetic Structure and Diversity of the Rice Varieties. The population
structure of the 1,479 accessions was inferred using ADMIXTURE
(7) (Methods). At K = 6, six distinct groups emerged (Fig. 1A):
two indica groups referred to as indica I (IndI) and indica II
(IndII), two japonica groups belonging to temperate japonica
and tropical japonica, the Aus rice, and an intermediate group.
The details of classification, values of subpopulation components,
genome-wide distributions of sequence diversity, and patterns
of linkage disequilibrium are given in SI Appendix, SI Result
2 and Datasets S1 and S2 and are displayed in SI Appendix,
Figs. S1–S3.
We subsequently focused our analysis on the 809 indica ac-

cessions, including 295 accessions sequenced by us and 514 from
Huang et al. (4). It was found that 92.6% (353 of 381) of the
accessions in the IndI group had germplasm of South China
origin. Of the 386 Chinese indica landraces included in the study
by Huang et al. (3), 71.0% (274 of 386) belonged to IndI and only
nine belonged to IndII. Meanwhile, 95.1% (77 of 81) of the ac-
cessions from the IRRI were placed in the IndII group (Fig. 1B),
and many accessions from Southeast Asia and some elite varie-
ties bred in China were also placed in the IndII group. According
to the pedigree information, almost all of the IndII accessions
from Southeast Asia and China had parentage of IRRI varieties.
In particular, many IndII accessions were restorer lines of widely
used commercial three-line hybrids with wild-abortive cytoplasm
(8). Another 212 indica accessions were classed as indica in-
termediate, 76.9% (163 of 212) of which were from China.
Because semidwarfness is the most obvious characteristic of

modern cultivars, we used a cutoff plant height of 125 cm,
measured in Wuhan, China in 2011, to classify the 294 indica
accessions that were field-tested in this study (SI Appendix, Fig.
S4). We observed that 95.2% (99 of 104) of the phenotyped IndII
accessions were semidwarf, suggesting that this subpopulation
mostly resulted from modern breeding programs. In contrast,

only 36.7% (36 of 98) of the phenotyped IndI accessions were
semidwarf. We divided IndI into two subgroups, IndI-land
(landrace) and IndI-mod (cultivar), by placing the 36 semidwarf
accessions in the IndI-mod group (Fig. 1C). The 36 IndI-mod
accessions contained eight maintainer lines of commercial three-
line hybrids, whereas the IndII group had many widely used re-
storer lines. These observations suggest that IndI-mod and IndII
are consistent with the hypothetical two heterotic groups in the
germplasms of indica rice: short-statured varieties of South
China origin and medium-height lines of Southeast Asia origin,
respectively (9).
We further explored the relevance between individual acces-

sions and the allele frequency spectrum of IndI-mod and IndII
groups, which may provide insights into the formations of IndI-
mod and IndII groups. We inferred the “founder genotype (ge-
nome)” for each of the groups based on the assumption that the
major allele of each SNP is more likely the allele of a hypo-
thetical founder variety and the “founder genome” would be a
combination of the major alleles of the SNPs across the genome.
We then calculated the similarity between each indica accession
and the inferred founder genomes of IndI-mod and IndII, re-
spectively (SI Appendix, Figs. S5 and S6). In total, 3,217,614
SNPs with a minor allele frequency (MAF) of ≥0.05 in IndI,
IndII, or all indica accessions were selected in this analysis. We
found that the accession having the highest identity (93.9%;
Z-score = 3.08, P = 0.002) with the inferred founder genome in the
IndI-mod group was Aijiaonante, the first semidwarf variety in
China released in 1956, which provided early semidwarf germ-
plasm in China (10). The accession most similar to the inferred
founder genome in the IndII group was IR 8 (89.4%; Z-score =
3.57, P = 0.0004), the first semidwarf variety released by the
IRRI in 1966. Because the frequency of the major allele at each
SNP was different, we also used a weighted scoring method in
the analysis and obtained similar results (SI Appendix, SI Result
3). These results were consistent with the breeding history in rice
that a lot of varieties were derived from a few widely cultivated
elite varieties released in the early period of the green revolution
(11), and the intensive use of limited breeding pools may have
contributed to the recent emergence of IndI-mod and IndII.
We divided the rice genome into 10-kb segments and esti-

mated the nucleotide diversity (π) in each segment based on the
above population classification (SI Appendix, Fig. S2). The se-
quence diversities (π) of IndI and IndII were similar (0.0013 and
0.0016), indicating that modern breeding processes had not al-
tered the overall genetic diversity significantly, which was similar
to the situation in maize and wheat (12, 13). However, we ob-
served that IndII had a far shorter linkage disequilibrium decay
distance (78 kb) than IndI (142 kb) (SI Appendix, Fig. S3), in-
dicating more recombination in IndII likely due to the efforts of

Fig. 1. Genetic structure of the 1,479 rice accessions and substructure of indI and indII. (A) Neighbor-joining tree of 1,479 accessions constructed from the
matching distance of 188,637 evenly distributed and randomly selected SNPs. The six different subpopulations, indica I (IndI), indica II (IndII), Aus, temperate
japonica (TeJ), tropical japonica (TrJ), and an intermediate group (VI), are shown in different colors, and the numbers of accessions in each subpopulation are
marked. [The tree reprinted from ref. 6, Copyright (2015), with permission from Oxford University Press.] (B and C) Neighbor-joining trees of accessions in IndI
and IndII subpopulations. The gold circles indicate accessions developed by the IRRI. (B) IndI and IndII are colored red and green, respectively. (C) Distribution
of the semidwarf trait in indica. A plant height of 125 cm in the 2011 rice-growing season inWuhan, China was used as a threshold of semidwarfness, and accessions
shorter than 125 cm were considered as modern varieties and are drawn in green. The dashed green line indicates a group of semidwarf varieties in IndI.
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intensive modern breeding. The details of nucleotide diversity
and linkage disequilibrium in different subpopulations are de-
scribed in SI Appendix, SI Result 2.

Differential Selection in the Two indica Groups. To assess the extent
of genetic differentiation between IndI and IndII, we used a
cross-population likelihood method (XP-CLR) (14) to identify
genomic regions differentially selected between the two groups
(Fig. 2). Regions with the strongest 10th percentile of XP-CLR
selection signals were considered. After filtering out regions
around the centromeres or without SNPs with extreme differ-
ential allele frequency (Methods), 122 regions were identified as
the most affected by selection in IndI in contrast to IndII
(denoted as IndI-IndII) and 100 regions were identified from the
reciprocal comparison (IndII-IndI). The selected regions of IndI-
IndII and IndII-IndI contained 2,125 and 2,098 non–transposable
element (TE)-related genes, respectively (Datasets S3 and S4),
of which 70.9% also had strong positive selection evidence
measured by the fixation index (FST), with highly differentiated
alleles or long haplotype blocks (Methods). The selected regions
of IndI-IndII had a mean size of 138 kb, covering ∼4.3% of the
rice genome, whereas those selected regions of IndII-IndI cov-
ered 4.0% of the rice genome with a mean size of 157 kb.
Moreover, 48.4% and 42.0% of the selected regions of IndI-IndII
and IndII-IndI, respectively, contained no more than 10 genes;
14 selected regions each contained more than 50 genes; and the
largest region encompassed 141 genes. Twenty selected regions
of IndI-IndII overlapped with 16 selected regions of the IndII-
IndI, containing 321 genes, which is greater than expected by
chance [Fisher’s exact test (FET), odds ratio (OR) = 3.82; P =
8.1 × 10−74]. These results suggested that although different
target genes were selected in different subpopulations, some of
the targets were common to the different subpopulations.
Overall selection in the two groups involved 200 regions that
covered 7.8% of the rice genome. We compared the 200 selected
regions with rice domestication-related regions and 58 quanti-
tative trait loci (QTLs) for domestication traits identified in a
previous study (2). The results showed that 21% of the selected
regions overlapped with domestication-related regions and 11
QTLs for domestication traits matched the selected regions
(Dataset S5), which included QTLs for seed- and panicle-related
traits, indicating that a subset of domestication loci might have

undergone additional selection for continued improvement of
important agronomic traits.

Genes Under Selection. Genes with a high XP-CLR score were
regarded as candidate targets of selection, naturally and/or
artificially, in the process of breeding and production (Datasets
S3 and S4). We now present a few examples to show the actions
and effects of selection. As expected, the locus of the well-known
green revolution gene semi-dwarf1 (sd-1) was identified in the
analysis. However, in contrast to the expectation that sd-1 was
selected during modern breeding, we detected the sd-1 locus as
being selected in IndI when using IndII (the semidwarf germ-
plasms) as the reference population. We inspected haplotypes in
the region and found that the frequency of a haplotype from a
group of tall landraces was elevated in IndI with preferential
geographic distribution, which was not observed in IndII (SI
Appendix, Fig. S7E). However, another group of tall landraces in
IndI showed similar haplotypes to IndII, agreeing with the report
that the semidwarf genotype in indica mainly resulted from a
deletion, which was not detected in the SNP analysis (15). The
nucleotide diversities of both IndII and the selected haplotype of
IndI around sd-1 were reduced dramatically (SI Appendix, Fig. S7 I–
J). A previous study showed that the SD1 locus was also under
selection during japonica rice domestication (16). These results
suggested that this locus or the nearby region was independently
under selection in different subpopulations.
Bacterial blight (BB) disease caused by Xanthomonus oryzea

pv. oryzea (Xoo) is one of the most devastating diseases in rice
production globally. Breeding for BB resistance has been one
of the most important breeding objectives since the 1960s. A
number of BB resistance genes (Xa3/Xa26, Xa4, Xa4b, Xa6, and
Xa9) have been identified in the end of the long arm of chro-
mosome 11, of which Xa4 is probably the most widely used BB
resistance gene in rice breeding (17). A number of receptor-like
kinase genes were found in this region that are arranged in
tandem along the chromosome, and most of them showed strong
selection signals in IndII (Fig. 3A). A receptor-like kinase near
the cloned Xa3/Xa26 gene (18) had the highest XP-CLR score in
the region. The not yet cloned Xa4 gene was also located within
this region (18). In addition, the tandem receptor-like kinase
genes may provide robust resistance to BB disease (19). We
carried out GWAS for lesion length using a Xoo strain, PXO341
(Fig. 3B and SI Appendix, Fig. S8). The most significant lead
SNP, sf1127718069 [linear mixed model (LMM): P = 1.9 × 10−16],
was found within this region lying close to a receptor-like ki-
nase gene (LOC_Os11g46980). This lead SNP had two alleles,
G and T. The allele T was associated with higher resistance and
existed almost exclusively in IndII (an allele frequency of 0.55
in IndII, whereas an allele frequency of only 0.01 in IndI),
suggesting differential selection of this locus between the two
indica groups.
Cytoplasmic male sterility and nuclear fertility restorer (Rf)

systems have facilitated the utilization of heterosis in rice.
Consistent with the fact that most of restorer lines were in IndII,
genomic regions near Rf1 (SI Appendix, Fig. S9) were strongly
selected in IndII. This region contained a cluster of the penta-
tricopeptide repeat (PPR) gene family, including Rf1a/Rf5 and
Rf1b, which were capable of restoring the pollen fertility dis-
turbed by different male sterile cytoplasms (20). Because PPR
genes perform important functions in posttranscriptional pro-
cesses (21), this region may also provide other roles for plant
performance. Interestingly, another fertility restoration-related
gene, GRP162, was also strongly selected in IndII (20).
Increasing grain yield by optimizing yield component traits and

plant architecture has been a major strategy for improving pro-
ductivity in rice breeding. We observed that Gn1a (OsCKX2),
encoding a cytokinin oxidase/dehydrogenase that regulates grain
number by degrading bioactive cytokinin in inflorescence meristems

Fig. 2. Differential selection between subpopulations revealed by whole-
genome screening of selection between IndI and IndII subpopulations using
XP-CLR. IndII as the reference population and IndI as the object population
(A) and IndI as the reference population and IndII as the object population
(B) are shown. The XP-CLR scores from a genome-wide scan are plotted
against the positions on the 12 chromosomes. The y-axis scores are limited to
200 to facilitate the display. Strong selection signals around SD1, Rf1, Xa4,
and Xa26 are denoted.
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(22), was strongly selected in IndI. LARGER PANICLE (LP), a
gene that encodes a Kelch repeat-containing F-box protein (23),
was also found to be significantly selected in IndI. In connection
with the previous report that two allelic lp mutants showed an
increased panicle size with more grains, it was suggested that LP
might also be a very important target for improvement in rice
breeding. One of the characteristics of modern cultivars is erect
leaves. We found that OsBRI1, a gene-encoding a brassinoste-
roid receptor regulating plant height and leaf angle (24), was
selected in both IndI and IndII. In addition, several genes encoding
gibberellin 2-beta-dioxygenase (GA2ox3, GA2ox5, and GA2ox8);
a GRAS family transcription factor gene, SLR1; a GA-stimulated
transcript-related gene, OsGASR2; three glucosyltransferases
genes; and several auxin-related genes (OsYUCCA1, COW1/YUCCA,
and some carriers and responsive genes) were under strong se-
lection. Referring to the similar results observed in maize pop-
ulation genomic studies (25), these results suggested very important
roles of plant hormones during rice breeding.
Increased application of fertilizers, particularly nitrogen, en-

abled by the semidwarfness, is a key factor for the success of
the green revolution. Both ammonium and nitrate are available
forms of nitrogen for rice plants, and which one is the pre-
dominant form is dependent on soil conditions and fertilizer
types (26). We observed that many genes involved in nitrogen
assimilation were selected in either IndI or IndII (Fig. 4).
OsAMT1;1, a gene encoding high-affinity ammonium transporter
(27), was significantly selected in IndI, whereas three genes,
OsNRT2.3, OsNAR2.2, and OsNiR1, either belonging to a high-
affinity nitrate transporter family or encoding very important
partner proteins or enzymes for nitrate uptake (26) were under
strong selection in IndII. The two different selection patterns in

nitrogen uptake by IndI and IndII may result from their different
growth and cultivation conditions. In addition, we found that
OsGS1;2 and OsGS1;3, which convert glutamate to glutamine,
were significantly selected in IndII. We also observed many key
genes involved in phosphate and potassium assimilation, such as
OsSPX1, LOC_Os02g39750 (an inorganic phosphate transporter
gene), OsPHO1;1, OsPHO1;2, OsK1.1, OsK2.1, OsK2.2, OsK4.1,
OsK4.2, and OsHAK12, were under selection in IndI or IndII
(Dataset S6).
In addition, we observed that genes reported to influence

rice flowering time (heading date), such as OsLFL1, OsCOL4,
OsMADS51, OsCRY2, PHYB, PHYA, and other five-CCT
[CONSTANS (CO), CO-like, TOC1] domain family proteins,
were in selected regions (Datasets S3 and S4), which is concordant
with the fact that flowering time is an important trait in rice
breeding. We also observed that small RNA loci and their targets
might be selected during breeding (Datasets S3 and S4). We in-
vestigated further whether genes belonging to specific gene ontology
categories were more likely to be selected, and the results showed
that genes involved in hormone metabolic pathways were among the
most significantly enriched listed in selected regions, suggesting their
important roles during rice breeding (Dataset S7). More detailed
information can be found in SI Appendix, SI Result 4 and SI Result 5.

Associations Between Grain Yield and Selected Haplotypes. Yield
improvement is the main objective in most crop breeding pro-
grams. Thus, a selected region resulting from the breeding pro-
cess would be related to grain yield in one way or another. We
obtained grain yield data of the 295 indica accessions from three
field experiments in different years and locations (Methods and
Dataset S8). We subtracted the mean value for each field ex-
periment to normalize the data and then averaged the normalized

Fig. 3. Differential selection on chromosome 11 illustrated with the XP-CLR
and GWAS results near the Xa4 and Xa26 regions (from 26.0 to 28.5 Mb on
chromosome 11). (A) XP-CLR result by using IndI as the reference population
and IndII as the object population. (B) Associations using the LMM on lesion
length of a Xoo strain, PXO341. The blue point denotes the lead SNP
sf1127718069 (P = 1.9 × 10−16). The colors of the other points represent the
amounts of linkage disequilibrium for the lead SNP. Each arrow represents a
receptor protein kinase gene. The vertical dashed line indicates the position
of Xa26. Although Xa4 has not been cloned, a study has reported that it is
tightly linked to Xa26 (18).

Fig. 4. Selected candidate genes involved in nitrogen assimilation. (A) Ni-
trogen assimilation pathway. The gene OsAMT1;1 strongly selected in IndI is
indicated in red, and genes significantly selected in IndII (OsNRT2.3,
OsNAR2.2, OsNiR1, OsGS1;2, and OsGS1;3) are indicated in blue. (B–G) XP-
CLR values near the selected candidates. The candidates are indicated by the
green arrows. Detailed information on selected candidates participating in
nitrogen assimilation, phosphorus uptake and translocation, and potassium
transporters can be found in Dataset S6.
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data when multiple observations were available to obtain the
normalized average grain yield. We carried out GWAS for the
normalized average grain yield using both simple linear re-
gression (LR) and the LMM (Fig. 5A and SI Appendix, Fig. S10).
Seven loci were identified by the LMM using a significant
threshold of 8.74 × 10−8 suggested by a previous study (5) on the
same association panel. However, none of the seven loci was
located within the selected regions, and all of them were isolated
points, which were not in strong linkage disequilibrium with
other SNPs in the local genomic regions (SI Appendix, Fig. S10).
After checking the sequencing coverage of these loci, we found
that six of them were located in copy number variation regions
(SI Appendix, Fig. S11), suggesting possible false-positive results
due to imputation errors. For LR, the most significant locus with
a clear peak-like signal (sf0423098190) was located in a selected
region (region ID 55 selected in IndII), and three of the 10 most
significant loci or six of the 20 most significant loci were located
in selected regions (SI Appendix, Figs. S12 and S13).
Grain yield is a complex trait composed of tillers per plant,

grain number per panicle, and grain weight, each of which is
controlled by many loci. Accordingly, there are numerous small-
effect loci for grain yield, and most of them probably cannot
exceed the significance threshold. We thus turned to analyze the
genomic control factor λGC, which is defined as the ratio of the
median of association test distribution to the expected value and
is used to indicate the inflation of P values in GWAS due to
population stratification. Higher values of λGC represent more
significant (low P value) loci than expected (28). When using the

LR method, we obtained a λGC of 3.30. However, when only the
selected regions were considered, the λGC increased to 5.58. We
randomly sampled 10,000 sets of genomic regions, each with the
width and number the same as for the selected regions, and
observed that none of the λGC values was greater than 5 (SI
Appendix, Fig. S14). We also did the same analyses using the
LMM method, which showed that the λGC values of the LMM of
the whole genome and the selected regions were 0.93 and 1.15,
respectively. Only 0.61% of 10,000 random samples gave a
greater λGC value than the selected regions. These results in-
dicated that the selected regions were enriched for loci for grain
yield, although some loci did not reach the genome-wide significant
threshold.
We further inspected the selected haplotypes in each acces-

sion. There were 2,161,733 SNPs polymorphic in indica (with a
MAF greater than 0.05 in indica, IndI, or IndII) but nearly fixed
in japonica (with a major allele frequency greater than 0.98 in
japonica). We regarded the most frequent allele in japonica as
the ancestral allele of each SNP and the other allele as the de-
rived allele. Among them, ∼20.6% (446,593 SNPs, denoted as
SNP set A) showed an allele frequency difference greater than
0.3 between IndI and IndII, of which 16.7% (74,724 SNPs,
denoted as SNP set B) were located in the selected regions (7.8%
of the rice genome) detected from the above analysis, suggesting
that the selected regions were enriched for highly differentiated
alleles between the two subpopulations (FET, OR = 3.63, P < 2.2 ×
10−16; SI Appendix, Fig. S15). The derived allele of a set B SNP
was regarded as selected. The number of derived alleles in set B

Fig. 5. Correlation between yield and selected regions. (A) Genome-wide P values from association analysis of the normalized average yield of three field
experiments using the simple LR model. SNPs located in the selected regions are shown in red. (B) Bean plot illustrating the distribution of BLUP breeding
values of rice grain yield across accessions with different numbers of selected haplotypes (designated numDR, divided into groups by 20%, 40%, 60%, and
80% quantiles). Solid black bars denote the average for each group. (C) Bee swarm plot presenting the distribution of the difference of mean yield between
Zhenshan 97 (ZS) and MH Minghui 63 (MH) genotypes marked as ΔYield (ZS-MH) from the RIL population across chromosome bins selected in ZS or MH. (Left)
For the 96 bins only selected in MH, 27 bins show positive values of ΔYield (ZS-MH), whereas 69 bins show negative values. (Right) In the 75 bins only selected
in ZS, 51 bins show positive values of ΔYield (ZS-MH), whereas only 24 bins show negative values. (D) Bee swarm plot presenting the distribution of ΔYield (ZS-
MH) from the immortalized F2 population across chromosome bins selected in ZS or MH.
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SNPs per accession varied from 20,510 (27.4%) to 38,517
(51.5%). We grouped the derived alleles for the SNPs of each
selected region to form a haplotype and calculated the number
of selected regions with derived haplotypes in each accession
[Methods, designated as the number of selected regions with
derived haplotype in an accession (numDR)]. There are 65
(32.5%) to 134 (67%) of the 200 merged selected regions in a
single accession with derived haplotypes (SI Appendix, Fig. S16).
We next calculated the Spearman’s rank correlation co-

efficients of yield with the number of SNPs with derived alleles
within selected regions and numDR. For the 295 indica acces-
sions we sequenced and phenotyped in field experiments, we
found that the number of SNPs with derived alleles within the
selected regions in an accession was significantly correlated with
yield in all field experiments (Table 1), especially when calcu-
lated using the normalized average yield (ρ = 0.34, P = 1.6 × 10−9;
SI Appendix, Fig. S17). In contrast, there was very little corre-
lation between yield and the number of SNPs with derived alleles
outside the selected regions (Table 1). We also observed a higher
correlation (ρ = 0.38, P = 2.7 × 10−11) between numDR and the
normalized average yield (SI Appendix, Fig. S17). More in-
triguingly, we found that the breeding values of accessions for
yield obtained by ridge regression best linear unbiased prediction
(BLUP) had a much higher correlation coefficient with numDR
(ρ = 0.58, P = 6.8 × 10−28; Fig. 5B and SI Appendix, Fig. S17).
Considering that the correlation of yield data was only 0.17 (P =
0.0032) between 2011 and 2012 in Wuhan and only 0.14 (P =
0.021) between 2012 in Lingshui and 2012 in Wuhan (Dataset
S8), the high correlation between yield and the accumulation of
derived haplotypes suggests that numDR could make an index to
evaluate the potential of germplasms at the DNA sequence level.
To obtain supporting evidence for the above-observed corre-

lation between the selected haplotypes and grain yield, we ex-
amined such correlation in a recombinant inbred line (RIL)
population constructed based on two indica varieties: Zhenshan
97, a member of IndI, and Minghui 63, belonging to IndII. The
population had published phenotype data (29, 30) and was
genotyped by resequencing (31, 32), which generated an ultra-
high-density linkage map consisting of 1,619 chromosome bins.
There were 84 and 102 regions with derived haplotypes, and thus
considered to be selected in Zhenshan 97 (accession C145) and
Minghui 63 (accession C147), respectively, based on XP-CLR
analysis (Dataset S8). These selected regions were projected to
156 and 177 bins in the two varieties, respectively, of which 75
bins were only in Zhenshan 97 and 96 bins were only in Minghui
63. The number of bins with the selected genotypes was signifi-
cantly correlated with grain yield in the RIL population (ρ = 0.30,
P = 1.0 × 10−5, SI Appendix, Fig. S18 and Table S2); lines with more
selected bins generally had a higher yield, and the selected genotype
in a bin was more likely associated with a higher yield (Fig. 5C).

We also observed similar results from an immortalized F2 pop-
ulation created by intercrossing the RILs (Fig. 5D and SI Ap-
pendix, Fig. S18 and Table S2).

Associations Between Other Traits and Selected Haplotypes. We
obtained additional data for morphological and metabolic traits
from the 295 indica accessions we sequenced to evaluate a pos-
sible association with numDR.
A total of 840 metabolites were measured in our resequencing

panel using the leaves of rice plants at the five-leaf stage (5). We
calculated Spearman’s rank correlation coefficients between the
metabolic traits and numDR. The 840 correlation coefficients
showed an approximately normal distribution, with a mean value
of 0.036 (SI Appendix, Fig. S19), and all were lower than the
correlation coefficient between normalized average yield and
numDR, suggesting that the metabolic traits as a class were not
under selection during the rice breeding process. This distribu-
tion is in contrast to the high correlation between grain yield and
numDR (ρ = 0.38, transformed to Z-score = 2.96, P = 3.1 × 10−3),
further supporting that the selected regions contributed to yield
improvement in breeding.
Using the recently developed high-throughput rice phenotyp-

ing facility for pot-grown plants (33), we obtained measurements
for a range of morphological traits from the resequencing panel
used in this study, including two newly defined traits, plant
compactness and grain-projected area, that could not be scored
by conventional means. A higher score of compactness indicates
more compaction of the plant, and the grain-projected area is
the pixel number of a 2D projected image of a grain. Although
the normalized grain yield was not correlated with either of the
two traits, plant compactness at the late booting stage was pos-
itively correlated with numDR (ρ = 0.27, P = 2.6 × 10−5), but
grain-projected area was not (SI Appendix, Table S3). The results
suggested that plant compactness is a useful trait for rice
breeding and the association between numDR and a trait may
reflect that the trait has some useful features in rice breeding
that have been unrecognized.

Discussion
Resequencing of a large number of rice varieties provided op-
portunities to inspect the genetic and genomic changes reflecting
the history of breeding, which we may consider as breeding sig-
natures. In this study, we revealed various breeding signatures
reflecting the complex genetic and genomic architecture from
rice improvement, including the clear differentiation of two va-
rietal groups in indica; identification of two most likely founder
cultivars, Aijiaonante and IR8, in IndI-mod and IndII; and
multiple targets of selection in IndI and IndII. Similar to a report
on historical genomics in maize (12), our study suggests that the
differentiation of IndI and IndII might be caused by geographic

Table 1. Correlations between yield and selected regions

Yield N RSNP-A PSNP-A RSNP-B PSNP-B RSNP-C PSNP-C RRegion PRegion

Wuhan, 2011 289 0.085 0.15 0.26 5.5 × 10−6 −0.020 0.74 0.26 9.1 × 10−6

Wuhan, 2012 295 0.21 2.0 × 10−4 0.20 7.3 × 10−4 0.17 4.1 × 10−3 0.26 5.0 × 10−6

Lingshui, 2012 283 0.19 1.6 × 10−3 0.24 6.0 × 10−5 0.13 3.1 × 10−2 0.24 4.2 × 10−5

Normalized average 295 0.23 5.1 × 10−5 0.34 1.3 × 10−9 0.12 3.4 × 10−2 0.38 2.7 × 10−11

BLUP breeding value 295 0.32 1.9 × 10−8 0.53 5.6 × 10−23 0.15 1.1 × 10−2 0.58 6.8 × 10−28

To obtain the normalized average for the yield data of three field experiments, we subtracted the mean value for each field
experiment and averaged when multiple observations were available. BLUP breeding values for yield were obtained using ridge
regression BLUP (49) from yield data of three field experiments. RSNP-A and PSNP-A were calculated based on 446,593 SNPs with an
allele frequency difference (ΔDAF) greater than 0.3 between IndI and IndII; RSNP-B and PSNP-B were calculated based on 74,724 SNPs
of SNP-A located in selected regions; RSNP-C and PSNP-C were calculated based on 312,497 SNPs of SNP-A departed from 100 kb of
selected regions; and RRegion and PRegion were calculated using the number of selected regions in each accession containing
derived haplotypes. N, number of phenotyped accessions; P, P value of Spearman’s rank correlation test; R, Spearman’s rank
correlation coefficient.
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adaptation and accumulation of divergent selections in distinct
breeding pools. However, the founder cultivars could be identi-
fied with high likelihood in our study, which is quite different
from the report in maize (12). Furthermore, our study identified
a number of candidate target selection regions in indica, which
harbor thousands of uncharacterized genes with various putative
biological functions, as well as those canonical genes associated
with flowering time, plant architecture, disease resistance, nu-
trient assimilation, and yield components. The different target
selection regions in IndI and IndII might reflect their adaption to
local agricultural practices, such as breeders’ preference, local
climates and ecological systems, and farming conditions. When
comparing the selected regions with previously reported rice
domestication regions and QTLs for domestication traits (2), we
found that both domestication regions and our selected regions
overlap with QTL intervals associated with yield-related traits,
whereas QTLs for traits specific to domestication only match
domestication regions. For example, the domestication regions
encompass all five QTLs identified responsible for stigma exsertion
and one QTL for seed shattering, but none of them resides in the
selected regions identified here. These results suggest both
similar and differential selection preference in rice domestica-
tion and subsequent breeding. The uncharacterized novel genes
in the target selection regions would provide important entry
points for future studies.
Our results may also have significant implications for pre-

dicting rice yield potential and hybrid performance to facilitate
genomic selection. We found that higher yield and breeding
values of yield are correlated with the accumulation of selected
haplotypes in our resequencing panel, as well as in the RIL and
immortalized F2 populations constructed based on Zhenshan 97
and Minghui 63, the parents of Shanyou 63. Shanyou 63 was the
most widely cultivated hybrid in the late 1980s and 1990s in
China. Although Zhenshan 97 and Minghui 63 had only mod-
erate numbers of selected regions (84 and 102 regions, re-
spectively; Dataset S8), the number of selected regions that the
hybrid aggregates (139 regions) is greater than all of the RILs
and varieties included in this study. Combining the genetic
structure of indica accessions and XP-CLR results, we propose
that the superior performance of the hybrid rice may have
resulted from independent improvement of the two rice sub-
groups. Studies on the differentially selected target genes may
shed light on the population genomic basis for hybrid vigor of
rice and other species. Two parents with a higher number of
different selected haplotypes may be more likely to have higher
hybrid vigor. One may also expect that introgressing more se-
lected haplotypes into an extant variety could improve its per-
formance. Various genotyping platforms (34, 35) may be used to
facilitate the application of these strategies.
Usually, one can identify beneficial haplotypes from GWAS

based on genotype and phenotype data. However, for some
complex traits showing strong interaction with environments, for
example, adaptability, it is hard even to measure. There may be
many such complex and important agronomic traits that have not
yet been characterized. Our study demonstrates that identifica-
tion of selected regions may provide an efficient way to find
beneficial haplotypes without the need for extensive phenotyp-
ing. The number of selected haplotypes may serve as an indicator
for evaluating the breeding potential of varieties to guide more
efficient selection. A variety accumulating a whole complement
of selected haplotypes might be an “ideotype” at the genomic
level, which may be of both high-yielding and good adaptation to
broad environmental conditions. However, considering the likely
complexity of epistatic interactions between the selected loci and
also the large numbers of genes in the selected regions (36, 37),
the results obtained here should be regarded as the first step for
revealing and possible utilization of selection signatures in breeding.

The next step would be developing efficient statistical methods
for genomic prediction (38).
Finally, it should be mentioned that the reference genome

used here was from the japonica variety Nipponbare, which lacks
all of the indica-specific genes and genome fragments. This
factor may be limiting for the scope of the findings of this study.

Methods
Plant Materials and Sequencing Data. The first set of 533 accessions was col-
lected and sequenced by us as described previously (5). This set included 192
accessions from a core/minicore collection of O. sativa L. in China (39), 132
parental lines used in the International Rice Molecular Breeding Program
(40), 148 accessions from a minicore subset of the US Department of Agri-
culture rice gene bank (41), 15 accessions used for SNP discovery in the
OryzaSNP project (42), and 46 additional accessions from the Rice Germ-
plasm Center at the IRRI. Information about the accessions, including names,
countries of origin, geographical locations, and subpopulation classification,
is listed in Dataset S1. The raw Illumina sequencing data could be down-
loaded from National Center for Biotechnology Information Sequence Read
Archive under accession number PRJNA171289, which consisted of 6.7 billion
90-bp paired-end reads (more than 1 Gb for each accession).

Sequences of 950 accessions generated by Huang et al. (4) were down-
loaded from the EBI European Nucleotide Archive with accession numbers
ERP000106 and ERP000729, which consisted of 4.6 billion 73-bp paired-end
reads. The assembly release version 6.1 of genomic pseudomolecules of
japonica cv. Nipponbare downloaded from the rice annotation database of
MSU (rice.plantbiology.msu.edu/) was used as the reference genome.

Genetic Structure Analysis of the Population. The model-based estimation of
ancestry for the population was carried out using ADMIXTURE with default
parameters (7) utilizing 188,637 evenly distributed SNPs. In SNP selection, we
divided the genome into ∼3.8-kb regions; at most, two SNPs with a MAF
≥0.01 were randomly chosen for each region. The parameter of the number
of ancient clusters K was set from two to seven to obtain different in-
ferences. The inferred ancestry for each accession at K = 6 is given in Dataset
S1. Each accession was classified based on its maximum subpopulation
component. Accessions with the maximum subpopulation component value
differing from the secondary value by less than 0.4 were classified as in-
termediate. The neighbor-joining tree was constructed using R package ape
based on the simple matching distance of each pair of accessions calculated
using the same random SNP set (43).

Screening of Differentially Selected Regions. Whole-genome screening of
selection was performed using XP-CLR, a method based on modeling the
likelihood of multilocus allele frequency differentiation between two pop-
ulations (14), following a previous study (25), with modifications. Genetic
distances between SNPs were interpolated according to their physical dis-
tances in an ultra-high-density genetic map from a previous study (32). The
program XP-CLR was run with parameters “-w1 0.0005 100 100 1 -p1 0.7” for
each chromosome. After obtaining XP-CLR results, each chromosome was
divided into 10-kb segments (approximates the average gene density of the
rice genome) (44). An XP-CLR score was calculated for each 100 bp, and the
average XP-CLR score was obtained for each 10-kb segment. Adjacent seg-
ments with an average of XP-CLR scores greater than the 80th percentile of
the genome-wide average XP-CLR were then grouped as putatively selected
regions. Putatively selected regions separated by no more than one low-
score segment were merged. Each region was then given a score using the
maximum of region-wise XP-CLR. Regions in the highest 10th percentile of
these scores were considered as differentially selected regions. Regions less
than 30 kb were filtered out because it is unlikely that such short regions
could have been sorted out in such inbreeding populations, given the short
history of modern breeding. Regions around the centromeres were also
filtered out as suggested by a previous study (25). Eventually, regions with at
least 10 SNPs with an allele frequency difference greater than 0.3 between
IndI and IndIIwere considered as selected. For a segment with the annotated
gene coordinates and an extension of flanking of 10 kb on each side, the
selection signal for each gene was also quantified by four additional criteria:
(i) the proportion of SNPs in the segment with Weir and Cockerham’s FST
greater than the 90th percentile of all SNPs; (ii) the proportion of SNPs in the
segment with an allele frequency difference between IndI and IndII greater
than 0.3; (iii) the maximum absolute Rsb statistic value comparing IndI and
IndII, which is an extended haplotype homozygosity-based test implemented
in the R package rehh (45); and (iv) the permutation-based P value of
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XP-CLR. In general, genes with the top 20th percentile value were regarded
as supported by these criteria.

Comparing Selected Regions and Domestication Features. The rice domesti-
cation regions and QTLs for domestication traits were extracted from sup-
plementary tables 9–12 of ref. 2. The genomic coordinates were transformed
to MSU v6.1 by BLAST using border sequences with manual checks. To ex-
amine the overlap between QTLs for domestication traits and our selected
regions, a 200-kb region flanking the peak position of a QTL (100-kb region
on each side) was defined as the QTL region.

Inferring Derived Allele and Haplotype. For SNPs with a MAF greater than 0.05
in indica, IndI, or IndII, and with a major allele frequency greater than 0.98 in
japonica, we regarded the major allele in japonica as the ancestral allele and
the other allele as the derived allele of each SNP. Among SNPs with de-
termined derived alleles, only those SNPs showing an allele frequency dif-
ference greater than 0.3 between IndI and IndII were used to infer derived
haplotypes. For each selected region, we identified the putatively advan-
tageous haplotypes as those haplotypes carrying the most number of de-
rived alleles and we regarded an accession as being one with a derived
haplotype in this region only if this accession carried at least 10 SNPs with
derived alleles and the number of SNPs with derived alleles was greater than
half of the maximum number of SNPs with derived alleles in the 295 phe-
notyped indica accessions.

Phenotyping and Data Sources of Phenotype Data. Field trials of yield-related
traits were conducted in three environments. The rice seeds were sown in the
Experimental Station of Huazhong Agricultural University, Wuhan, China in
mid-May of 2011 and 2012 and, additionally, in the Experimental Station of
Lingshui County of Hainan Island in mid-November of 2011. Seedlings about
25 d old were transplanted to the fields. The field planting followed a
randomized complete block design with two replications. Each plot consisted
of three rows with 10 plants each. The planting density was 16.5 cm between
plants in a row, and the rows were 26 cm apart. Field management, including
irrigation, fertilizer application, and pest control, followed essentially the
normal agricultural practice. To prevent loss from overripening, each ac-
cession was harvested individually at its maturity. Five plants in the middle
from the middle row of each accession were scored for the yield traits. Yield
per plant was measured as the weight of all filled grains of the plant.

An additional field test was carried out inWuhan in the summer of 2012 to
evaluate BB resistance, in which the plants were inoculated with Philippine
Xoo strain PXO341 (race 10) at the adult stage using the leaf-clipping
method (18). Disease was scored by measuring the lesion length (centime-
ters) at 2 wk after inoculation.

To analyze associations between the grain yield and the selected haplo-
types using an RIL population and an immortalized F2 population, the yield

data were obtained from Xing et al. (29) and Hua et al. (30), and the ge-
notype data were from Xie et al. (32).

To analyze associations between additional agronomic traits and meta-
bolic traits and the selected haplotypes, metabolomics data were obtained
from Chen et al. (5) and phenotype data of plant compactness and grain-
projected area were obtained from Yang et al. (33).

Genome-Wide Association Analysis. A total of 2,767,191 SNPs with a MAF
≥0.05 in all indica accessions evenly distributed in the genome were used to
carry out GWAS. We performed GWAS using the LMM and the simple LR
model provided by the FaST-LMM program (46). To control spurious asso-
ciations, population structure was modeled as a random effect in the LMM
using the K matrix. The SNP set used to analyze population structure was
used to calculate K. The K coefficients were defined as the proportion of
identical genotype for 188,165 SNPs (the same as those SNPs used to conduct
genetic structure analysis) for each pair of individuals. The genome-wide
significance threshold of the GWAS (8.74 × 10−8) was determined using
Bonferroni correction based on the estimated effective number of in-
dependent SNPs in indica (47).

To examine the significance of overlap between the selected regions and
the effective loci of GWAS for grain yield, a function called random.intervals
in the R Bioconductor seqbias package (48) was used to generate random
genomic intervals with the width and the number the same as in the
selected regions.

Correlation Analysis. Spearman’s rank correlation coefficient and the P value
were calculated using the asymptotic t approximation by Fisher’s Z-trans-
form implemented in the R function cor.test in the stats package.

Ridge Regression BLUP.We obtained breeding values u of a specific trait with
ridge regression BLUP using the function mixed.solve in the rrBLUP package
(49) by fitting the following LMM:

Y =Xβ+ Zu+ e,

where Y contains all observed yield data (length of 3n, where n is the sample
size); X is a design matrix (3n × 3) for replicate effects; and Z is a design
matrix (3n × n) for the breeding values u (length n). The covariance matrix
(n × n) for u is the kinship matrix K used in GWAS.
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