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Abstract 

Ribosome-inactivating proteins (RIPs) belong to a family of enzymes that attack eukaryotic ribosomes and potently 
inhibit cellular protein synthesis. RIPs possess several biomedical properties, including anti-viral and anti-tumor activi-
ties. Multiple RIPs are known to inhibit tumor cell proliferation through inducing apoptosis in a variety of cancers, 
such as breast cancer, leukemia/lymphoma, and hepatoma. This review focuses on the anti-tumor activities of RIPs 
and their apoptotic effects through three closely related pathways: mitochondrial, death receptor, and endoplasmic 
reticulum pathways.
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Introduction
Ribosome-inactivating proteins (RIPs) are a family of 
enzymes that inhibit the eukaryotic ribosome via N-gly-
cosidase activity, by which they cleave a specific adenine 
residue from the 28S RNA within the 60S ribosomal 
subunit, therefore inhibiting protein synthesis [1, 2]. In 
addition to their effect on ribosomal RNA (rRNA), some 
RIPs display a variety of anti-microbial activities in vitro, 
including anti-fungal, anti-bacterial, and broad-spectrum 
anti-viral properties against both human and animal 
pathogens.

Ribosome-inactivating proteins were initially dis-
covered in the castor oil plant Ricinus communis, from 
which ricin was isolated. RIPs are widely distributed 
among higher plants, and a few have been found in sev-
eral fungi and bacteria. Plant RIPs are classified into 
three main categories based on their physical proper-
ties. Type I RIPs are single-chain proteins of approxi-
mately 30  kDa with N-glycosidase activity, including 
trichosanthin (TCS) and cucurmosin [3]. Type II RIPs, 
such as ricin and abrin, comprise two different domains: 
a 30-kDa enzymatic A-chain (similar to type I RIPs) 
linked to a slightly larger B-chain with lectin proper-
ties and specificity for sugars possessing galactose-like 

structures [3]. Thus far, type III RIPs, also considered 
atypical type I RIPs, have only been described in maize 
and barley, and the function of their extra domains 
remains unknown [4]. Therefore, the division of RIPs 
into types I and II RIP is now favored.

Over the past decade, RIPs appeared to be a great 
research interest due to their potential use in cancer ther-
apy. Some RIPs exhibit strong toxicity towards cancer 
cells and low toxicity towards normal cells; they impede 
or inhibit tumor growth mostly via apoptosis, but the 
exact mechanism remains poorly understood. The aim 
of this study was to summarize the anti-tumor activi-
ties of RIPs and their possible apoptotic mechanisms to 
hopefully provide new insights for cancer research and 
treatment.

Anti‑tumor activity
Effects of RIPs on breast cancer
The type I RIPs TCS, momordica anti-human immu-
nodeficiency virus (HIV) protein of 30  kDa (MAP30), 
gelonium anti-HIV protein of 31 kDa (GAP31), gelonin, 
marmorin, and α-momorcharin (α-MMC) have been 
shown to negatively affect the growth of breast tumor 
cells in  vitro and in  vivo [5–7]. TCS inhibits cell viabil-
ity, causes cell cycle arrest, and significantly reduces 
tumor volume and weight by inducing apoptosis 
through caspase-8 and caspase-9 in breast tumor cells 
[5]. MAP30, which shares 59% sequence similarity with 
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TCS, effectively inhibits human breast cancer MDA-
MB-231 cells through down-regulating the expression 
of human epidermal growth factor receptor-2 (HER2), 
similarly to GAP31 [6]. HER2 overexpression is observed 
in approximately 30% of all human breast cancers, and 
HER2-overexpressing tumor cells may be less sensitive to 
chemotherapy; in this case, the combination of MAP30 
and GAP31 could represent a therapeutic strategy [7]. 
HER2 and fibroblast growth factor-inducible 14-kDa pro-
tein (Fn14) are frequently co-expressed in human breast 
tumors, and HER2 directly induces increase in Fn14 
expression, therefore sensitizing tumor cells to an immu-
notoxin generated by fusing Fn14 antibodies to recom-
binant gelonin (designated hSGZ) [8]. Indeed, hSGZ 
can rapidly internalize and deliver recombinant gelonin 
(rGel) to the cytosol of tumor cells, where it enzymati-
cally blocks protein synthesis. Because Fn14 enhances 
breast cancer cell migration and invasion, a question 
of whether there is a way to damage tumor cells while 
reducing Fn14 expression was raised. We assume that 
MAP30 and hSGZ used together might achieve a bet-
ter outcome, and breast tumor cells can be sequentially 
treated with MAP30 and hSGZ; MAP30 would decrease 
HER2 expression and lead to reduced Fn14 expression, 
then hSGZ would target Fn14-positive cells and exert 
its function without increasing the invasive capacity of 
tumor cells. However, this hypothesis remains to be veri-
fied by appropriate experiments.

Many cell membrane receptors are expressed at low 
levels in normal cells but are highly expressed in tumor 
cells. Estrogen receptor α (ERα) is expressed in approxi-
mately 75% of breast cancer tissues at higher levels com-
pared with those in normal breast tissues (P = 0.001) [9]. 
In ERα-positive breast cancer cells, the ERα-mediated 
signaling pathway is involved in the inhibitory action of 
marmorin on proliferation; many drugs target ERα. Mar-
morin inhibits angiogenesis by lowering the viability of 
human umbilical vein endothelial cells in vitro; therefore, 
it was suggested that marmorin might starve tumors to 
death by reducing the amount of blood vessels in  vivo 
[10]. Marmorin also induces DNA damage and endoplas-
mic reticulum stress, resulting in the induction of apop-
tosis in mice bearing MDA-MB-231 tumor xenografts 
[10].

Ribosome-inactivating proteins have the potential 
to become innovative anti-tumor agents, but they also 
possess toxic adverse effects, including severe systemic 
anaphylaxis, immunogenicity, and toxicity. To reduce 
the undesirable effects and achieve better therapeutic 
efficacy, Deng et  al. [11] modified α-MMC with poly-
ethylene glycol (PEG) to explore the anti-tumor efficacy 
on breast carcinoma; they demonstrated that α-MMC 
PEGylation extends the half-life of α-MMC and mitigates 

non-specific toxicity. Indeed, α-MMC-PEG exhib-
ited improved anti-tumor efficacy with tolerable toxic 
reactions.

Effects of RIPs on leukemia and lymphoma
Trichosanthin significantly inhibits the proliferation of 
various leukemia and lymphoma cell lines [12]. Notably, 
TCS can damage leukemia and lymphoma cells through 
different mechanisms according to the cell type. TCS 
induces apoptosis in T-lymphocyte cell lines, but inhib-
its growth of B-lymphocyte cell lines via S-phase cell 
cycle arrest [12]. It has been suggested that cucurmosin is 
more potent than TCS in killing the chronic myelogenous 
leukemia K562 cells; both cucurmosin and TCS down-
regulate P210Bcr-Ab1 and inhibit tyrosine kinase, resulting 
in cell growth suppression [13]. Cucurmosin also inhibits 
proliferation and induces apoptosis in tumor cells; inter-
estingly, cucurmosin combined with trans-retinoic acid 
or arsenic trioxide was shown to synergistically increase 
these effects on the human acute promyelocytic leukemia 
NB4 cell line [14].

Articulatin-D, the first cytotoxic RIP with a B-chain 
lacking sugar-binding activity, has been shown to highly 
inhibit leukemia and lymphoma cells in  vitro; the high-
est toxicity was obtained with Jurkat cells, followed by 
Molt-4, U-937, HL-60, and Raji cells [15]. With its special 
physical properties, articulatin-D is a good candidate for 
the synthesis of immunotoxins capable of efficiently and 
specifically killing tumor cells.

Immunotoxins are emerging targeted agents composed 
of a toxin fragment and an antibody/cytokine. Saporin 
and rGel have been widely used to construct immuno-
toxins, which have been reported to be useful in can-
cer treatment by multiple studies [16–18]; several such 
molecules have been evaluated clinically [19, 20]. It is 
feasible to locate cancer cells through membrane pro-
teins CD22, CD7, CD19, and CD38, and corresponding 
antibody HB22.7, HB2, BU12, and OKT10 are used to 
construct immunotoxins. HB22.7-saporin was cytotoxic 
against a panel of non-Hodgkin’s lymphoma (NHL) cell 
lines and was shown to significantly prevent tumor devel-
opment in a xenograft model of NHL [21]. HB2-saporin, 
BU12-saporin, and OKT10-saporin were shown to be 
selectively cytotoxic toward human acute lymphoblastic 
leukemia in vitro and in vivo [22–24].

Luster et  al. [25] have reported that treatment with 
rGel-BLyS, rGel fused to a B-lymphocyte stimulator, rap-
idly reduced the tumor burden and markedly prolonged 
survival in xenograft mouse models of spread lymphoma 
or leukemia; in this setting, cell death was not induced 
by caspase activation but rather was partially medi-
ated by the ribotoxic stress response. Furthermore, the 
rGel-BLyS fusion toxin combined with the proteasome 
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inhibitor bortezomib restrained lymphoma growth and 
down-regulated nuclear factor kappa B (NF-κB) activ-
ity, which is critical for cellular proliferation and survival 
[26].

Effects of RIPs on hepatoma and other cancers
MAP30 was shown to display anti-tumor activity in cell 
cultures and mice. In HepG2 cells, for example, cell via-
bility was inhibited by MAP30 in time- and dose-depend-
ent manners, with S-phase arrest; moreover, apoptosis 
and necrosis induced by MAP30 resulted in tumor vol-
ume reduction in HepG2-bearing mice [27]. Cucurmo-
sin induced G0/G1 arrest and apoptosis in HepG2 cells; 
these effects also translated into potent anti-tumor activi-
ties in vivo [28]. Abrus agglutinin not only activates the 
caspase cascade but also suppresses Akt phosphorylation 
and NF-κB expression in HepG2 cells [29]. The effects of 
RIPs on other cancers are summarized in Table 1.

Cellular mechanism of RIPs
Entry mechanism
Ribosome-inactivating proteins must enter cells to inac-
tivate the eukaryotic ribosome via their RNA N-glycosi-
dase activity. First, type II RIPs bind to glycoproteins and/
or glycolipids on the cell membrane and enter the cell via 
endocytosis; then, RIPs undergo retrograde transport 
from the Golgi apparatus to the endoplasmic reticulum 
via an intracellular pathway [30]. The enzymatic moieties 
will not be released to cytosol and reach the ribosomes 
to exert their function until they exploit the endoplasmic 
reticulum-associated degradation pathway [3].

It is difficult for type I RIPs to enter cells because of 
their sugar-binding activity deficiency. They can enter 
cells to some extent, probably due to their interaction 
with phospholipids in the cell membrane; however, the 
exact entry mechanism remains unclear. To facilitate 
the entry of type I RIPs into cells, they can be linked to 
proper carriers such as monoclonal antibodies and other 
molecules. The resulting conjugates can be specifically 
toxic to target cells. Several immunotoxins have been 
well studied in experiment therapies against hematologic 
and solid tumors. The entry pathways of type I RIPs, type 
II RIPs, and immunotoxins are shown in Figure 1.

Induction of apoptosis in tumor cells
Caspases play an important role in apoptosis. They are clas-
sified into three types: initiator, executioner, and cytokine 
processor caspases. Great progress has been made in 
studying the three signaling pathways related to caspase 
activation, including mitochondrial, death receptor, and 
endoplasmic reticulum stress signaling pathways. The con-
nections among these pathways are shown in Figure 2 [31]. 

Apoptosis also occurs through apoptosis-inducing factor 
(AIF), which is caspase-independent [32].

Mitochondria‑mediated apoptosis
Recent studies have indicated that apoptosis-inducing 
substances can lead to excessive reactive oxygen species 
production, intracellular Ca2+ imbalance, and a series 
of pathologic changes, resulting in mitochondrial mem-
brane potential and permeability changes. Then, the 
pro-apoptotic factors cytochrome c, AIF, second mito-
chondria-derived activator of caspases (Smac), and apop-
totic protease-activating factor 1 (Apaf-1) are released 
from the mitochondria to participate in the process of 
apoptosis.

Mitochondrial membrane potential depolarization 
and caspase-9 activation were detected in MCF-7 cells 
and to a lesser extent in MDA-MB-231 cells after mar-
morin treatment [10]. Li et  al. [33] reported the loss of 
mitochondrial membrane potential (the point of no 
return in apoptotic cascades) in HL-60 cells after apop-
tosis was induced by TCS. In addition, Orrenius et  al. 
[34] noted that cytochrome c release is dominated by the 
Bcl-2 family of proteins. Furthermore, simultaneous Bax 
up-regulation, Bcl-2 down-regulation, and poly(ADP-
ribose) polymerase (PARP) cleavage were noted in Abrus 
agglutinin-treated HepG2 cells, caspase-3/7 activity lev-
els failed to increase after Bax knockout, and Bcl-2-over-
expressing hepatocellular carcinoma cells were found to 
be ricin-resistant [29].

Several pumps, such as the Na+–K+ pump and the 
Ca2+ pump, maintain concentration gradients of vari-
ous ions to achieve appropriate membrane potential. 
Alterations in the mitochondrial membrane potential 
after the induction of apoptosis lead to changes in mem-
brane permeability. The results mentioned above suggest 
that changes in mitochondrial membrane permeability 
could cause apoptosis, which is induced by RIPs through 
decreasing the Bcl-2/Bax ratio (modifying the outer 
mitochondrial membrane permeability); this in turn 
enhances cytochrome c and Smac translocation into the 
cytoplasm and activates caspase-9 and the downstream 
executioner caspase-3, thereby increasing the production 
of cleaved PARP and resulting in DNA fragmentation 
and apoptosis [34–36].

Death receptor‑mediated apoptosis
Death receptors, such as Fas, deliver apoptotic signals 
into the cytoplasm by binding to Fas ligand (FasL); the 
signals are then passed to downstream procaspase-8, the 
activation of which demands the cytoplasmic adaptor 
molecule, which is indispensable to the binding and pro-
teolysis of procaspase-8 for activation. Once activated, 
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Table 1  Anti-tumor activities of various ribosome-inactivating proteins (RIPs)

RIP Tumor type Tested cell line(s)

Type I

 Trichosanthin Breast cancer MDA-MB-231a and MCF-7 [5]

Lymphoma CEM, Hut-78, Raji, and Daudi [12]

Cervical cancer HeLa [37]; Caski [38]

Choriocarcinoma JAR and BeWo [39]

Colon cancer CT-26 [40]; LoVo [41]

Hepatoma HepG2 [42]

Leukemia Molt-4 and Jurkat [12]; K562 [43]

Lung cancer 3LLa [44]

Melanoma B16 [45]

Nasopharyngeal cancer CNE1a and CNE2a [46]; CNE2 [47]

Prostate cancer RM-1 [48]

Gastric cancer MCG803 [49]

 α-Momorcharin Breast cancer MCF-7, EMT-6a, and MDA-MB-231a [11]

Colon cancer SW480 and SW620 [50]

Epidermoid A431 and Hep-2 [50]

Hepatoma Hep G2 and SMMC-7721 [50]

Lung cancer NCI-H460 and A549 [50]

Melanoma B16, M14, SK-MEL-28, and A2058 [50]

Nasopharyngeal cancer CNE2 and HONE1 [51]

 Momordica anti-HIV protein of 
30 kDa

Bladder cancer 5637 [52]

Breast cancer MDA-MB-231a [6]; BT20 [53]; MCF-7 [54]

Epidermoid A431 [53]

Glioma U87MG [53]

Hepatoma Hep G2a [27]; Hep-3B [53]

Melanoma Malme-3M [53]

Myeloma U266 [53]

Neuroblastoma SK-N-SH [53]

Prostate cancer DU145 [53]

Lung cancer A549 [55]

 Cucurmosin Lung cancer A549 [13]

Melanoma B16 [13]

Hepatoma HepG2a [28]

Leukemia NB4 [14]; K562a [56]

Myeloma RPM18226 [57]

Pancreatic cancer BxPC-3 [58]; SW-1990 [59]; PANC-1a [60]; CFPAC-1 [61]

 Saporin Leukemia NALM-6a [22]; HSB-2a [23]; CCRF CEMa [24]

Glioma U87MG [62]

Lymphoma Ramos, Rajia, Daudi, DOHH-2, and Granta 519, SUDHL-4 [21]; HDLM2, KM/H2, and 
L428 [63]

Neuroblastoma SK-N-MCa [64]

Ovarian cancer PA-1a [64]

Melanoma SK-Mel-1a [64], SK-Mel-28 [65]

Pancreatic cancer BxPC-3a [66]

Prostate cancer LNCaPa, CWR22Rv1, and DU145 [67]; PC-3a [68]

 Gelonin Breast cancer MDA-MB-231a, BT-474, SKBR3, MCF-7, and Eb1 [8]

Melanoma MDA-MB-435a, WM35, WM46, WM3211, WM1346, WM1361A, WM1366, WM793, 
WM983A, WM983B, MeWo, SB2, A375, A375M, SK-MEL-1, SK-MEL-3, SK-MEL-5, SK-
MEL-24, SK-MEL-28, SK-MEL-32, WM35P2N1, AAB-527, and Sbcl2 [18]

Cervical cancer ME-180 [69]
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Table 1  continued

RIP Tumor type Tested cell line(s)

Ovarian cancer SKOV3 [69]

Pancreatic cancer Capan-1, Capan-2, MIA-PaCa-2, AsPC-1, BxPC-3, and L3.6P1 [69]

Sarcoma HT-1080 [69]

Gastric cancer NCI N-87 [69]

Bladder cancer T-24a [69]; RT112a [70]

Epidermoid A431 [71]

Glioma U87 MG [69]; 9L [72]

Prostate cancer PC-3 [72]

Colon cancer HT-29a [71]; CT26a and LS174T [72]

Leukemia NALM-6a [25]; HL-60 [73]

Lung cancer Calu-3 [69]; A549a, H1975, and HCC827 [74]

Lymphoma Rec-1a and NUDHL-1a [25]; Minoa, JeKo-1, SP53 [26]; OCI-Ly3, OCI-Ly10a, SUDHL-4, and 
SUDHL-6 [75]

 Marmorin Breast cancer MCF-7a and MDA-MB-231a [10]

 α-Sarcin Astrocytoma 251-MG [76]

Breast cancer MCF-7 [76]

Glioma RuGli [76]

Pancreatic cancer Patu II [76]

Bladder cancer EJ [77]

Colon cancer HT29 and BCS-TC2 [76]; SW1222 [78]

Sarcoma HT-1080 [76]; S-180 [79]; RD [80]

 Curcin Lung cancer NCL-H446 [81]

Gastric cancer SGC-7901 [81]

Sarcoma S-180 [82]

 α-Luffin Breast cancer MCF-7 [83]

Choriocarcinoma JEG-3 [83]

Hepatoma HepG2 [83]

 MCP30 Prostate cancer LNCaP, PC-3, and PIN [84]

 Gelonium anti-HIV protein of 31 kDa Breast cancer MDA-MB-231a [6]

Type II

 Riproximin Breast cancer MCF-7 and MDA-MB-231 [62]

Larynx cancer Hep2 [62]

Leukemia AR230, CML-T1, HL-60, LAMA84, SKW-3, K562, and BV173 [62]

Lung cancer NCI-H460 and Lewisa [62]

Pancreatic cancer ASMLb [62]

Prostate cancer PC-3 [62]

Sarcoma Saos-2 [62]

Cervical cancer KB-3-1a [62]; HeLa [85]

Colon cancer HT-29, CC531b, and CT-26a [62]; HCT116 [86]

 Abrus agglutinin Hepatoma HepG2a [29]

 Momordica charantia lectin Nasopharyngeal cancer CNE1 and CNE2 [35]

 Articulatin-D Leukemia Jurkat, Molt-4, and HL-60 [15]

Lymphoma U937 and Raji [15]

 Mistletoe lectin I Leukemia NALM-6 [87]

 Foetidissimin II Cervical cancer HeLa [88]

Leukemia TF-1a [88]

 Ebulin I & Nigrin b Cervical cancer HeLa [89]

a  Cell lines that have been studied in mouse.
b  Cell lines that have been studied in rat.
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the initiator caspase-8 can activate caspase-3, eventually 
leading to cell apoptosis.

Marmorin was found to trigger the death receptor 
apoptotic pathway in MCF7 cells; this pathway is also 
preferentially activated in MDA-MB-231 cells [10]. Due 
to caspase-3 deficiency in MCF7 cells, caspase-8 ampli-
fies the apoptotic signal through cleavage of the protein 
Bid, which punctures the mitochondria and causes mito-
chondrial collapse, thereby generating sufficient effector 
caspase levels. Conversely, TCS does not affect Fas or 
FasL levels, indicating that the Fas/FasL pathway is not 
involved in TCS-induced apoptosis [32].

Endoplasmic reticulum stress‑mediated apoptosis
Endoplasmic reticulum stress is found in cells exposed to 
environmental toxins, hypoxia, viruses, ultraviolet light, 
and other stimuli. Its manifestations include misfolded 
and/or unfolded protein aggregation in the endoplasmic 

reticulum lumen as well as Ca2+ balance disorders. 
Endoplasmic reticulum stress can promote a series of 
physiologic changes in the endoplasmic reticulum. Accu-
mulated misfolded and/or unfolded proteins are pro-
cessed, allowing cells to maintain their normal functions 
and remain alive. However, excessive endoplasmic reticu-
lum stress can cause apoptosis.

Trichosanthin treatment was shown to up-regulate 
the endoplasmic reticulum stress-related proteins Bip 
(immunoglobulin-binding protein) and CHOP (C/EBP 
homologous protein) in HL-60 cells, thereby activat-
ing caspase-4, which is involved in caspase-3 activation 
[89]. Endoplasmic reticulum stress was also described in 
marmorin-treated MCF7 and MDA-MB-231 cells, as evi-
denced by CHOP up-regulation and caspase-12 cleavage 
[10].

Horrix et  al. [86] identified activation of the unfolded 
protein response (UPR) in response to endoplasmic 

Figure 1  Cell entry mechanism of ribosome-inactivating proteins (RIPs). Different types of RIPs enter the cell through endocytosis and are subse-
quently degraded in the endoplasmic reticulum. They inactivate ribosomes through cleavage of the A4324 N-glycosidic bond, resulting in protein 
synthesis blockade.
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reticulum stress; the UPR is induced in MDA-MB-231 
cells exposed to low concentrations of the type II RIP 
riproximin. As many cancer cells activate the UPR to 
cope with stressors, α-MMC was shown to down-regu-
late the UPR in NPC cells; however, substantial apopto-
sis was not observed until the α-MMC dosage reached 
a certain threshold, indicating that α-MMC at low con-
centrations probably inhibit increased cell generation via 
down-regulation of the UPR [51]. There are two conceiv-
able strategies to initiate apoptosis through endoplas-
mic reticulum stress: (1) prolonging the UPR to induce 
apoptosis, which likely occurs in riproximin-induced 
apoptosis; and (2) blocking the UPR so that tumors are 
vulnerable to stressors, as with α-MMC.

Future research emphasis
Conventional cancer drugs that are currently in use often 
lack tumor specificity, which greatly limits the therapeu-
tic dose and curative effect. A feasible way to overcome 
this issue is the use of targeted therapy, as follows: (1) 
suitable targeted delivery such as with the immunotox-
ins mentioned above or with bi-specific antibodies (con-
taining two different specific antigen recognition Fab 
fragments); (2) a tumor-specific expression strategy, in 
which the cDNA of RIP is synthesized and cloned into 
a plasmid vector controlled by a cancer-specific pro-
moter, eventually producing RIP in the cell cytoplasm. 
These strategies must be investigated in a series of pre-
clinical studies before assays can be conducted in human 

Figure 2  The apoptotic mechanism of RIPs. RIPs may trigger the death receptor pathway by facilitating the combination of the death ligand 
and its receptor. Caspase-8 is recruited and activated by death domain proteins such as Fas-associated protein with death domain (FADD). C/EBP 
homologous protein (CHOP) and immunoglobulin-binding protein (Bip) are increased under RIP-induced endoplasmic reticulum stress, in which 
activated caspase-4 contributes to capase-8 activation. The release of second mitochondria-derived activator of caspases (Smac) and cytochrome 
c, which can be increased by Bax or decreased by Bcl-2, is promoted by RIP. Cytochrome c aggregates with apoptotic protease-activating factor 1 
(Apaf-1) and becomes an apoptotic body that activates caspase-9, which in turn activates caspase-3 and caspase-8. Activated caspase-3 cleaves 
poly(ADP-ribose) polymerase (PARP), resulting in DNA fragmentation and apoptosis. Smac protects caspase-3 from inhibitor of apoptosis protein 
(IAP) inhibition. Caspase-8 cuts Bid into tBid, which is necessary for Bax oligomerization in the mitochondrial outer membrane. The inhibition of tBid 
insertion into the mitochondrial membrane by Bcl-2 prevents cytochrome c release [31].
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subjects. Several saporin-containing immunotoxins 
in clinical trials have exhibited promising results [20], 
whereas other RIP-containing immunotoxins have barely 
been studied. A few factors must be considered when 
translating preclinical data into the clinic: the risk of 
immunogenicity and toxicity in patients should be mini-
mized; the minimum effect dose and maximum tolerated 
dose should be determined; and possible adverse effects 
during treatment should be predicted. Tumor-specific 
expression strategies are rarely reported; therefore, this 
idea remains to be explored.

Conclusions
Abundant evidence indicates that RIPs exert their cell-
killing abilities through a variety of mechanisms, many of 
which are caspase-dependent. Although several mecha-
nisms involved in RIP-induced apoptosis have been elu-
cidated, more studies are required to reveal the precise 
mechanism. Considering the potential use of RIPs in 
important diseases and their effectiveness as immunotoxins 
for targeted therapy, RIPs are worthy of further exploration.
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