
The G Protein-Coupled Receptor Rhodopsin: A Historical 
Perspective

Lukas Hofmann and Krzysztof Palczewski

Abstract

Rhodopsin is a key light-sensitive protein expressed exclusively in rod photoreceptor cells of the 

retina. Failure to express this transmembrane protein causes a lack of rod outer segment formation 

and progressive retinal degeneration, including the loss of cone photoreceptor cells. Molecular 

studies of rhodopsin have paved the way to understanding a large family of cell-surface membrane 

proteins called G protein-coupled receptors (GPCRs). Work started on rhodopsin over 100 years 

ago still continues today with substantial progress made every year. These activities underscore 

the importance of rhodopsin as a prototypical GPCR and receptor required for visual perception—

the fundamental process of translating light energy into a biochemical cascade of events 

culminating in vision.
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1 Introduction

Molecular studies of rhodopsin began with the work of German physiologist Friedrich 

Wilhelm Kühne (1837–1900) who extracted rhodopsin from bovine retina with a precursor 

of modern detergent bile salts [1]. This scientist made the critical observation that 

rhodopsin’s red color faded after exposure to light in the visible range. Denatured by organic 

solvents but not by salt, rhodopsin could be precipitated out of aqueous solutions with 

ammonium sulfate, a strategy used later for crystallization of this transmembrane protein [2, 

3].

From early work it was clear that rhodopsin’s red color could be restored when an 

illuminated retina was placed on the retinal pigmented epithelium (RPE), a monolayer of 

cells located in the back of the eye [1]. This regenerative process, known as the visual or 

retinoid cycle, is achieved by a series of enzymatic reactions that regenerate the light-

sensitive chromophore [4]. The identity of the chromophore, the light-sensitive 11-cis-

retinal ligand of rhodopsin, was not discovered until the work of George Wald [5].

Since ancient times it was known that absence of carotenoids in a diet lacking retinoids 

could lead to progressive retinal degeneration and blindness. But it was Wald who provided 

chemical evidence that rhodopsin is composed of two elements: an apoprotein opsin and a 

prosthetic, covalently linked 11-cis-retinal [6 – 8]. First, bleaching of rhodopsin caused 
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isomerization of the chromophore to the all- trans-isomer that eventually was released from 

the binding pocket of rhodopsin [9]. Then the spent chromophore was recycled back through 

the retinoid cycle to regenerate the photoactive chromophore which recombined with opsin.

The color of rhodopsin is derived from the chromophore 11-cis-retinal, but surprisingly this 

chromophore absorbs light at 360 nm rather than at 500 nm like rhodopsin. This shift is 

caused by interaction of the chromophore with the protein and is termed the “opsin shift.” 

Interactions of this universal chromophore of vision with other visual pigment apoproteins 

also lead to significantly shorter (hypsochromic) and longer wavelength (bathochromic) 

light absorption shifts producing the “spectral tuning” of cone pigments. The protonated 

Schiff base linkage of 11-cis-retinal with opsin [7, 10, 11] is critical for specifically tuning 

its spectral absorbance.

Exposure of rhodopsin to light leads to the highly unstable intermediates metarhodopsin I 

(Meta I) and metarhodopsin II (Meta II) that achieve an equilibrium between these two 

states within milliseconds [7]. Meta II is the signaling form of rhodopsin that subsequently 

interacts with the G protein transducin, rhodopsin kinase (GRK1), and arrestin (reviewed in 

ref. 12, 13).

Though rhodopsin has been studied by almost all molecular techniques, there is still more to 

discover. Our level of understanding increases as novel approaches are developed. With its 

exquisite sensitivity to detect a single photon of light in a highly reproducible way, 

rhodopsin provides our scotopic window to the world. As such, rhodopsin comprises the 

center of our interest, and hopefully this series of articles will provide inspiration for 

pursuing all remaining unanswered questions about this molecular complex.

2 Expression Systems

The rhodopsin transcript is among the most highly expressed in the eye and retina, 

accounting for 9,114 and 11,745 normalized fragments per kilobase of exon per million 

mapped reads (FPKM), respectively [14]. The retina is a neuronal tissue composed of 

several cell types but rods constitute about 80 % (or about 108 photoreceptor cells) of the 

cells in the human, mouse, and bovine retina [15, 16]. Once expressed, rhodopsin is 

transported to and inserted in elongated cilia called rod outer segments (ROS), which consist 

of stacks of 600–1,600 independent disk membranes surrounded by a plasma membrane. 

Rhodopsin is the major protein in rod outer segment membranes (>90 % with a 5 mM 

concentration within ROS) [17]. This high abundance in membranes of a native source was 

initially one of the main attractions of this GPCR. The amount of material isolated from just 

one bovine retina was about 0.5–1 mg of protein [18]. The native protein also lacked any 

artifacts generated by heterologous expression systems (such as changes in posttranslational 

modifications), making the study of native rhodopsin highly relevant to mammalian/human 

physiology. Expression of this protein in other model systems was also needed to probe its 

structure using mutagenesis, but the key to these approaches was rhodopsin’s reliable 

expression and purification. Toward this goal the most critical work was pioneered by 

Oprian and colleagues [19]. A number of mutagenesis studies followed, including spin 

labeling of Cys residues throughout the rhodopsin structure [20] and employment of 
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unnatural amino acids to obtain structural information by the Sakmar group [21, 22]. Today, 

rhodopsin can be expressed in heterologous systems ranging from transformed cells to 

whole organisms such as Caenorhabditis elegans [23]. Because in heterologous systems 

rhodopsin can couple to Go/I, illumination causes a sudden and transient loss of worm 

motility dependent on cyclic adenosine monophosphate [24].

3 Three-Dimensional Structure of Rhodopsin

The high expression level and newly developed purification methods for rhodopsin led to 

the first crystallization of any GPCR [25]. For the first time, a single study revealed the 

internal organization of rhodopsin at amino acid resolution. Much has been written about the 

structure of rhodopsin as an archetypical membrane-bound GPCR [12, 18, 20, 26 – 28], and 

there is no need to repeat it here. As predicted, rhodopsin is composed of seven-

transmembrane α-helical segments embedded in the plasma membrane with an almost 

equally distributed mass between the extracellular (intradiscal) and intracellular domains. 

The chromophore is embedded in the hydrophobic region, about 2/3 of the way from the 

cytoplasmic surface (Fig. 1). Many other GPCR structures followed that of rhodopsin 

crystallized under different conditions or as photoactivated intermediate states [29 – 42] 

(recently reviewed in ref. 43).

4 Posttranslational Modifications of Rhodopsin

The amino acid sequence of opsin was determined by the laboratories of Ovchinnikov [44] 

and Hargrave [45]. It was noted that rhodopsin’s predicted topology resembles that of 

bacteriorhodopsin [44]. Once the sequence was obtained, it became possible to assemble the 

seven-transmembrane helix topology and posttranslational modifications of this protein 

required for its function (Figs. 2, 3, 4, 5, and 6).

4.1 Disulfide Bridge

The primary sequences of GPCRs are highly diverse [46] but structurally very similar [43], 

with frequently conserved specific features. One of these is the extracellular disulfide bridge 

that connects loop II to helix III (Fig. 2) [47]. This bridge between Cys-110 and Cys-187 is 

essential for the correct tertiary structure of the protein [48, 49]. In rhodopsin, this part also 

forms a “plug” underneath the chromophore. When this disulfide bridge is formed remains 

to be determined, so it could be a co-translational rather than a posttranslational 

modification.

4.2 Palmitoylation and Acylation

Among class A GPCRs, most contain single- and double-Cys residues at the end of 

cytoplasmic helix 8 that are frequently, if not always, palmitoylated. Rhodopsin is double 

palmitoylated (Fig. 3) [50, 51]. The palmitoylated Cys residues are close to the NPxxY 

region, which suggests they are important for activation. Separate in vivo studies indicate 

they are also important for the structural integrity of the protein [52]. It is unclear if S-

palmitoylation is an enzymatic or nonenzymatic reaction in vivo. In addition to S-acylation 

at these Cys residues, the N-terminus is acetylated as well (Fig. 4).
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4.3 Glycosylation

Glycosylation of family A GPCRs usually occurs at the N-terminal end and extracellular 

side of these receptors. As in other GPCRs, rhodopsin is glycosylated at the (N-X-S/T) site 

or, more precisely, at the two Asn2 and Asn15 residues located within the N-terminal region 

[53 – 55] (Fig. 4). N-terminal glycosylation, especially at Asn15, is crucial for proper 

folding and function of rhodopsin [53]. Furthermore, it has been reported that the N15S 

mutation causes autosomal dominant retinitis pigmentosa in humans due to the lack of 

glycosylation [56]. Thus, glycosylation of rhodopsin and members of family A GPCRs in 

general is essential for the transportation and function of these receptors. It was believed that 

the core structure of (Man)3(GlcNAc)2 is fairly uniform [57], but recently more sensitive 

methods have revealed some heterogeneity of the glycosylation modifications at both sites 

[58].

5 Regeneration with Cis-Chromophores

Rhodopsin forms a permanent Schiff base linkage with only some cis-retinals. Though the 

native chromophore is 11-cis-retinal (Fig. 5), visual pigment in biochemical assays can be 

formed with 9-cis-retinal (isorhodopsin), 7-cis-retinal, and some of the double cis-retinals, 

but not with 13-cis-retinal. Many retinal analogs have been successfully used to probe 

rhodopsin photoactivation (e.g., the desmethyl series) [59, 60]. All-trans-retinal only 

increased the basal activity of opsin, but the mechanism is unknown [61]. Regeneration with 

9-cis-retinal (or derivatives) could have clinical applications when the visual cycle is non-

functional as in Leber congenital amaurosis (LCA) [62].

6 Phosphorylation

Rhodopsin phosphorylation was accidently discovered in 1972–1973 when rod outer 

membranes were incubated with radioactive γ-32 PATP (reviewed in ref. 63). Today, we 

know that this is one of the major desensitizing mechanisms of GPCRs. One of the first 

applications of mass spectrometry in vision research [64], in combination with a specific 

cleavage of rhodopsin at the C-terminal region by Asp endopeptidase, provided information 

as to the major site of phosphorylation [65]. Hurley and colleagues showed that 

photoactivated rhodopsin is repeatedly phosphorylated and dephosphorylated in an ordered 

fashion [66, 67]. All phosphorylation sites are located in the C-terminal region of rhodopsin. 

The phosphorylated molecules include Ser334, Ser338, and Ser343 (Fig. 6). 

Phosphorylation is strictly dependent on photoactivation of rhodopsin and multiple sites can 

be phosphorylated in photoactivated rhodopsin, contributing to subsequent recognition by 

arrestin.

7 Photoactivation Mechanism of Rhodopsin

Conformational changes in the opsin moiety occur after rhodopsin is activated by light and 

the chromophore is isomerized from 11-cis-retinylidene to all-trans-retinylidene. Generally, 

these changes were much smaller than anticipated from biophysical studies prior to X-ray 

crystallography and found mostly in the area of the cytoplasmic end of helix VI (reviewed in 

ref. 29). Based on solid state NMR data, Brown and colleagues proposed a multiple step 
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activation mechanism and reported helix fluctuations in the Meta I-Meta II equilibrium on a 

microsecond-to-millisecond timescale [68]. This proposal would simply suggest that 

rhodopsin becomes more flexible during the activation process, allowing formation of new 

productive complexes with partner proteins. Perhaps small conformational changes, changes 

in protonation of the transmembrane and cytoplasmic residues, and an increase in overall 

dynamics is how rhodopsin achieves a conformation that can induce a specific fit with 

prebound transducin. Subsequent nucleotide exchange on the α-subunit of the G protein 

would then activate the visual cascade.

7.1 Water Molecules

Water molecules, perhaps as many as 30, are integral components of rhodopsin. Identified 

by various methods, these are located within the transmembrane segment of rhodopsin and 

some are exchangeable with bulk water. However, many are not and likely were 

incorporated during biogenesis and inserted into the membrane of rhodopsin [69, 70]. 

Internal waters are located within a cavity that extends from the chromophore to the 

cytoplasmic surface (Fig. 7). Water is also required for chromophore hydrolysis from all-

trans-retinylidene [71, 72]. Water is a critical element for the activation process [73] and is 

involved in multiple steps, including the protonation and deprotonation of key 

intermolecular sites within the core and cytoplasmic surface of rhodopsin [74]. Importantly, 

internal water is conserved among all GPCRs, suggesting a universal role for these 

prosthetic-like groups in receptor activation [75].

8 Conformationally Sensitive Regions

Three regions in rhodopsin were Identified that are critical for photoactivation (Fig. 8). All 

protein and water molecule changes are initiated by chromophore isomerization. This signal 

is propagated to two independent surface regions, namely, the DRY and NPxxY regions 

[76]. The latter are also conserved regions among GPCRs, suggesting some commonality in 

the activation mechanism among these receptors.

9 Human Diseases Associated with Mutations in the Opsin Gene

Mutations in the opsin gene can cause a hereditary retinal degenerative disease called 

retinitis pigmentosa (RP) (RetNet, https://sph.uth.edu/RetNet/) [77]. RP is manifested by 

progressively decreased vision under low light and loss of peripheral visual fields [78, 79]. 

To date, more than 100 mutations were Identified to be associated with autosomal dominant 

RP (30–40 % of all cases) [79]. In contrast, the c.448G > A (p.E150K) mutation and severe 

truncation of the opsin gene are inherited in an autosomal recessive pattern [80, 81]. These 

inherited diseases remain without a cure, and active research is ongoing to retain the vision 

and stop the progression of retinal degeneration of those affected [82, 83].

10 Future Directions

In the opinion of these authors, there are five crucial areas for research that have yet to be 

fully pursued. Judging from the great interest in this receptor, it is only a question of time 

when a fuller picture of how rhodopsin works will become available.

Hofmann and Palczewski Page 5

Methods Mol Biol. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://sph.uth.edu/RetNet/


There is a need to understand how rhodopsin specifically interacts with the G protein 

transducin, rhodopsin kinase, and arrestin. Although some low resolution studies have been 

accomplished [84], the most informative would be X-ray structures of these complexes 

followed by their biophysical probing. No single structure will be fully informative for any 

of these complexes, as it would represent only one stable conformation trapped in extremely 

high concentrations of a precipitating agent. But such structures will set the boundaries for 

possible conformational changes of this receptor. Several of these structures would provide 

an even fuller picture and possibly the mechanism of activation of these partner proteins. 

NMR methods could also add much more information about the dynamics of these 

complexes.

Rhodopsin is a highly dynamic, chromophore-bound protein with intrinsic water molecules. 

How this receptor and these waters reorganize during activation needs to be solved. Perhaps 

a combination of computational [85, 86] and NMR studies [68, 87] will dominate in this 

area of investigation.

Like almost all other GPCRs, rhodopsin forms oligomers in native membranes [88 – 90]. 

Here, two questions remain as top priorities. One is how are these rhodopsin molecules 

specifically arranged in rod outer segment membranes? It is unclear which helices of 

rhodopsin are involved and form complexes. Perhaps recently developed methodologies [91] 

will provide tools to answer these questions and provide thermodynamic parameters for 

these interactions along with their specificities. The measured Kd between two opsin 

molecules was about 10−5 M [91]. Second, what are functional consequences of rhodopsin 

oligomerization? Improved tools combined with knowledge derived from previous reports 

[92, 93] are needed to answer this question.

Comparative studies between rhodopsin and cone visual pigments are needed to understand 

the spectral tuning of these pigments, which use a common chromophore. Again, the first 

step could involve X-ray crystallography to obtain and analyze the structure of these 

pigments.

And finally, pharmacological and genetic rescue of mutant rhodopsin molecules should be 

anticipated. Toward this goal, proper animal models must be generated, as has already been 

achieved recently with two informative mutations of this receptor [94 – 96]. Taken together, 

innovative approaches could bring an end to blinding diseases caused by mutations in the 

opsin genes.

Thus, there remain many challenges, and much needs to be accomplished!
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Fig. 1. 
Three-dimensional structure of rhodopsin. Rhodopsin is depicted in a perspective with x, y, 

and z axes with structures colored in blue to red from the N- to C-termini in a ribbon 

representation. Posttranslational modifications are highlighted with yellow panels. P 

palmitoylation, R 11-cis-N-retinylidene-Lys, Ph phosphorylation, C disulfide bond, and G 

glycosylation
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Fig. 2. 
Conserved disulfide bonds in rhodopsin. Conserved disulfide bonds are found in many 

family A GPCRs between Cys187 and Cys110. Rhodopsin is colored in blue to red from N- 

to the C-terminus in a wire representation. Cys residues are shown in a scaled ball and stick 

representation according to element color
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Fig. 3. 
Palmitoylation sites on rhodopsin. Palmitoylation of rhodopsin takes place at the C-terminus 

on Cys322 and Cys323 portrayed in a s caled ball stick representation according to element 

colors. Rhodopsin is colored in blue to red from N- to the C-terminus in a wire 

representation
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Fig. 4. 
Glycosylation sites on rhodopsin. Glycosylation sites on rhodopsin are located at Asn2 and 

Asn 15 of the N-terminus. The N-terminal Met1 is acetylated and depicted in a scaled ball 

stick representation according to element colors. Rhodopsin is colored in blue to red from 

the N- to C-terminus in a wire representation
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Fig. 5. 
The chromophore-binding site of rhodopsin. The 11-cis-retinal chromophore is covalently 

attached to rhodopsin via a Schiff base at Lys296. The counter ion, Glu113, causes 

protonation of the Schiff base. 11-cis-N-Retinylidene-Lys is depicted in a scaled ball stick 

representation; coloring is according to elements except for the chromophore, which is 

shown in white. The surface of 11-cis-N-retinylidene-Lys is portrayed in mesh and stained 

according to interpolated charges determined with Accelrys Discovery Studio software. 

Rhodopsin is colored in blue to red from N- to the C-terminus in a wire representation
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Fig. 6. 
Phosphorylation sites on rhodopsin. Phosphorylation sites on rhodopsin are localized at the 

C-terminus on the three Ser334, Ser338, and Ser343 residues shown in a scaled ball stick 

representation according to element colors. Rhodopsin is colored in blue to red from N- to 

the C-terminus in a wire representation
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Fig. 7. 
Water molecules in rhodopsin. Internal water molecules are shown as spheres represented 

with element colors (H, white; O, red). Water molecules were combined and aligned 

according to the protein structure derived from ten published rhodopsin coordinates. This 

picture shows that the waters are distributed throughout rhodopsin in a channel-like 

alignment. Furthermore, the number of water molecules is greater at the N-terminal 

cytoplasmic site than at the C-terminal luminal site. The regions DRY, NPxxY, and 

chromophore, believed to be involved in the activation and transformation of photoactivated 
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rhodopsin, are highlighted with yellow ovals. Rhodopsin is colored in blue to red from N- to 

the C-terminus in a schematic representation
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Fig. 8. 
Key regions within rhodopsin that undergo conformational changes upon photoactivation. 

The three regions, chromophore, DRY, and NPxxY, believed to be involved in activation 

and transformation of photoactivated rhodopsin, are shown at three horizontal levels. The 

different states of rhodopsin, Meta II, and opsin are distributed in the three rows. The amino 

acids which undergo a significant change in their conformation and/or an interaction 

between these states are depicted in a stick representation. Rhodopsin is colored blue to red 

from N- to the C-terminus in a ribbon representation. Changes at the chromophore site are 
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dominated by interactions with Lys296. In the rhodopsin state, Phe293 residue coordinates 

Lys296 residue via π-interactions, whereas the Asp113 residue stabilizes the positive charge 

located at the Schiff base. These interactions undergo changes in the Meta II state that 

finally produce a different rotamer for the Phe293 residue and a coordination of the Lys296 

residues through Asp181 and Asp113 residues. Changes found in the DRY motif are 

dominated by the interactions of Arg135 residues. In the rhodopsin state Arg135 residues 

are coordinated by Asp247, Asp134, and Thr251 residues. During photoactivation, 

interactions with Arg135 residues are weakened and finally abolished. Asp247 and Thr251 

are found as different rotamers which interact with Lys231 through electrostatic interactions 

in the opsin state. Changes in the NPxxY motif are mainly found in the hydrogen bond 

interactions between the Tyr306 and Asp73 residues, whereas this conformation is further 

stabilized by the π–π interaction between the Tyr306 and Phe313 residues. These 

interactions are weakened during photoactivation and found abolished in the opsin state
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