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Abstract

Most computational protein structure prediction methods are designed for either template-based or 

template-free (ab initio) structure prediction. The approaches that integrate the prediction 

capabilities of both template-based modeling and template-free modeling are needed to 

synergistically combine the two kinds of methods to improve protein structure prediction. In this 

work, we develop a new method to integrate several protein structure prediction methods 

including our template-based MULTICOM server, our ab initio contact-based protein structure 

prediction method CONFOLD, our multi-template-based model generation tool MTMG, and 

locally installed external Rosetta, I-TASSER and RaptorX protein structure prediction tools to 

improve protein structure prediction of a full-spectrum difficulty ranging from easy, to medium 

and to hard. Our method participated in the 11th community-wide Critical Assessment of 

Techniques for Protein Structure Prediction (CASP11) in 2014 as MULTICOM-NOVEL server. It 

was ranked among top 10 methods for protein tertiary structure prediction according to the official 

CASP11 assessment, which demonstrates that integrating complementary modeling methods is 

useful for advancing protein structure prediction.
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1. INTRODUCTION

The tertiary structure of a protein is important for understanding its functions. Experimental 

techniques such as x-ray crystallography and nucleic magnetic resonance can determine 

protein structure with high-resolution, however, they are too expensive to be applied to all 

the proteins. Computational protein structure prediction methods aim to construct the 

tertiary (three-dimensional) structure of a protein from its amino acid sequence [1, 2]. With 
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a large number of known protein sequences, but a relatively small number of known protein 

structures, fast and accurate computational methods for protein tertiary structure prediction 

need to be developed.

A number of useful protein structure prediction methods that can build good structural 

models for a large portion of proteins have been developed [3-7]. These methods can be 

generally classified into two categories: template-based modeling – predicting the structure 

of a protein by using the known structure of its homologous proteins as template, and 

template-free modeling – reconstructing the structure of a protein without using the 

structural knowledge of any significant template protein. Even though these two kinds of 

methods are complementary, few methods have been developed to combine the strengths of 

the two kinds of methods to improve protein structure prediction. Therefore, more hybrid 

approaches of integrating both template-based modeling and template-free modeling are 

needed [8-14].

In this spirit, we developed a new approach called MULTICOM-NOVEL to integrate a 

variety of template-based and template-free model sampling methods to improve structure 

prediction. It integrates the predictions of our MULTICOM tertiary structure prediction 

server [15-17], our in-house multiple-template-based modeling tool MTMG, our ab initio 

residue-residue contact-based model generation method CONFOLD [18] built on the CNS 

system [19, 20], and locally installed external state-of-the-art structure prediction tools such 

as Rosetta [21] and I-TASSER [22, 23]. MULTICOM-NOVEL participated in the 11th 

Critical Assessment of Techniques for Protein Structure Prediction (CASP11) in 2014, and 

was ranked among top 10 methods out of 44 servers according to the official CASP11 

assessment (http://www.predictioncenter.org/casp11/).

2. METHODS

2.1. Overview of the Protein Conformation Generation Process

MULTICOM-NOVEL generated an ensemble of protein models for a protein target using 

multiple complementary methods in each step of protein structure prediction, such as 

sequence/profile comparison tools (PSI-BLAST [24], HHSearch [25], and RaptorX [26]) for 

template identification, target-template alignment tools (PSI-BLAST, HHSearch, RaptorX, 

MSACompro [27], HHMsato [28], and Promals3d [29]) for target-template alignment, 

MULTICOM template and alignment combination protocol [15, 16] for alignment 

combination, our in-house multiple-template-based modelling tool MTMG and external 

Modeller[30] for template-based model generation, locally installed external tool RaptorX 

for generating template-based models, local Rosetta for ab initio modeling, local I-TASSER 

[22, 23] for template-based modeling, our in-house contact-based modeling CONFOLD [18] 

for ab initio modeling, and our MULTICOM server for template-based modeling [15-17]. 

The ensemble of models predicted for a target were then evaluated by two methods: a 

single-model absolute model quality assessment tool – ModelEvaluator [31] and a fully 

pairwise model comparison tool – APOLLO [32]. From the ensemble of the models, 

MULTICOM-NOVEL chose top five models ranked by the weighted sum of APOLLO 

scores and ModelEvaluator scores as final predictions.
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In addition to using external I-TASSER, Rosetta, RaptorX to generate some models, 

MULTICOM-NOVEL primarily used our in-house protein structure prediction tools to 

generate conformations for a target protein in the following three ways. First, it used our 

previously developed MULTICOM server [15-17] to predict models for each target. 

MULTICOM combines multiple sources of complementary information and alternative 

methods at five major steps of protein structure prediction: template identification, query-

template alignment and combination, model generation, model quality assessment, and 

model refinement. MULTICOM was ranked among the top methods in template-based 

modeling and template-free modeling during CASP9 and CASP10 in 2010 and 2012, 

respectively.

Second, for template-based modeling, we used our in-house MTMG to generate models 

based on all the sequence alignments between a target and templates generated by 

MULTICOM-NOVEL. MULTICOM-NOVEL built two template databases for identifying 

homologous templates for a target. It automatically downloaded new protein structures 

released in the Protein Data Bank (PDB) [33] every week. The ATOM file (i.e. coordinates) 

and FASTA sequence of each protein chain in each PDB file were extracted. All the 

extracted FASTA sequences after filtering identical sequences and their structural 

information were stored in the first template database. In order to construct the second 

template database, the protein sequences were filtered at 90% identity threshold by CD-HIT 

[34] in order to remove highly similar proteins. HHSearch was used to build a hidden 

Markov model (HMM) profile file for each of the remaining sequences. The HMM profile 

files were stored in the second template database. PSI-BLAST and HHSearch were used to 

search a target protein against the two template databases separately to identify homologous 

templates, which were used by MTMG - a novel probabilistic multi-template based model 

generation tool to generate structural models for the target. MTMG uses information from 

the multiple sequence alignment of a target and multiple templates and the structures of the 

templates to predict structures for the target. Based on the level of the consistency between 

template structures, MTMG either directly uses the weighted average coordinates of 

templates or samples positions (x, y, z coordinates) for residues according to the weighted 

point cloud.

Third, for ab initio template-free modeling, we used our in-house residue-residue contact 

guided modelling method (CONFOLD) that takes residue-residue contact predictions and 

three-class secondary structure (helix, strand, and coil) predictions as input to build three-

dimensional models using distance geometry simulated annealing protocol implemented in 

the CNS suite. CONFOLD transforms contacts and secondary structure information into 

appropriate distance, angle and hydrogen bond restraints to guide conformation sampling. 

CONFOLD used top L/2 contacts each predicted by NNcon[35] and SVMcon[36], where L 

is the sequence length, and secondary structures predicted by PSPro[37] to generate 

restraints for model generation. The average of the distance between the residue pairs 

predicted to be in contact was used to select top 20 models for each target.
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2.2. Integration of Model Generation Methods

Figure 1 illustrates how different methods are integrated in MULTICOM-NOVEL. It used 

PSI-BLAST and HHSearch to search a protein target against the two template databases 

separately to identify homologous templates. In each iteration of search, the identified 

templates were ranked by e-values from low to high, and templates with low e-value (i.e. e-

value < 1) were used as candidate templates.

A hard sequence region of a target was defined as the continuous residues of the target 

sequence that were not covered by any homologous templates in the previous iterations of 

search. A short hard uncovered region was ignored because the model generation tools such 

as Modeller [30] and MTMG can handle it well by constructing a loop for it. A hard region 

that spans >= 30 residues for a protein with >= 100 residues or >=20 residues for a protein 

with <100 residues was the focus of the search in the next iteration. If no homologous 

templates were found for the longest hard region, it was marked “final hard” and would not 

be searched again. Search stops if no homologous templates could be found for any hard 

region. If PSI-BLAST and HHSearch identified at least one homologous template for a 

target and no final hard region at the end of search existed, the target was marked “easy”. If 

there was at least one homologous template for the target and at least one hard region, the 

target was marked “medium”. If no homologous template was found for any regions of a 

target, the target was marked “hard”. Figure 2 illustrates how a sequence is searched during 

iterations and how the regions of the sequence are annotated as hard and easy regions by 

MULTICOM-NOVEL.

For an easy or medium target, MULTICOM-NOVEL extracted the pairwise sequence 

alignment between the target and each homologous template and combined them into a 

multiple sequence alignment for PSI-BLAST and HHSearch separately. If the homologous 

template with lowest e-value covered at least 90% of the target sequence, its alignment was 

extracted from PSI-BLAST and/or HHSearch and was specially marked as the single best 

sequence alignment. The templates identified by PSI-BLAST and HHSearch were also 

combined to generate a consensus list of templates. Three alignment generation tools 

(MSACompro[27], HHMsato [28], Promals3d [29]) were used to align the target with these 

consensus templates to generate one-target multiple-template alignment. The hard regions of 

a target not covered by a template in the alignments were marked for template-free 

modeling. Figure 3 shows the workflow of target-template sequence alignment process in 

MULTICOM-NOVEL.

Modeller [30] and MTMG were used to generate template-based models for the target based 

on all the sequence alignments generated in the previous steps and template structures. For 

medium targets, Rosetta [21] was used to generate models for each of the hard regions in the 

target. The predicted models of the hard regions together with template-based models were 

used to construct the full-length models for the target. For hard targets, locally installed I-

TASSER, Rosetta, and our in-house ab initio contact-based modeling method CONFOLD 

were used to predict models from scratch. Due to limitation of CPU, I-TASSER, Rosetta, 

and CONFOLD generated 5, 100, and 20 models separately for each hard target. In addition, 

RaptorX and MULTICOM predicted 5 and 50 models for every (easy, medium, or hard) 
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target separately. All the models generated by these methods formed a model pool that went 

through model selection.

2.3. Model Selection

MULTICOM-NOVEL used APOLLO [32] to rank all the models predicted by each method 

except for those generated by RaptorX, I-TASSER, and Rosetta. The default ranking of 

those models assigned by RaptorX, I-TASSER and Rosetta were used. Top 5 models 

generated by each method were pooled together and evaluated by APOLLO [32] and 

ModelEvaluator[31], separately. The rankings generated by the two methods were 

complementary because APOLLO [32] is a fully pairwise model comparison tool that ranks 

models based on its structural similarity with other models, but ModelEvaluator is a single-

model quality assessment tool that assigns an absolute quality score to a model regardless of 

other models. The weighted sum of the APOLLO score and ModelEvaluator score was used 

to rank all these models. The weight assigned to APOLLO score and ModelEvaluator score 

is 0.8 and 0.5, respectively.

MULTICOM-NOVEL picked up top 5 models according to the final ranking. In order to 

increase the diversity of the models, for easy and medium targets, the top 1 models 

generated by RaptorX, MULTICOM, multiple sequence alignment, and pairwise sequence 

alignment substituted some of the top 5 models from bottom to top if they had not already 

existed within top 5 models. For hard targets, the top 1 model generated byCONFOLD, 

MULTICOM, RaptorX, Rosetta, and I-TASSER substituted some of the top 5 models from 

bottom to top if they had not existed within top 5 models. After the adjustment, the final top 

5 models were submitted to CASP11.

2.4. Data Set

In order to objectively evaluate the performance of MULTICOM-NOVEL, we blindly tested 

it in the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) 

in 2014. CASP11 released 100 protein targets whose structures were not available to the 

community. By the date, 85 official targets and 105 domains (from 79 targets) are available 

to assess the performance of the method. Among these 79 targets, 54 targets have only one 

domain and other 25 targets contain multiple domains. For example, T0759 is comprised of 

109 residues, and contains two domains: T0759-D1 (residues 12~45) and T0759-D2 

(residues 46~107). T0760 consists of 242 residues, and contains only one domain: T0760-

D1 (residues 33~242). This diverse and large dataset contains protein topologies having 

different difficulty levels, making it ideal for objective evaluation of our method.

3. RESULTS AND DISCUSSION

MULTICOM-NOVEL participated in the 11th Critical Assessment of Techniques for 

Protein Structure Prediction (CASP11) in 2014. According to the CASP11 official 

assessment, MULTICOM-NOVEL was ranked among top 10 automated server methods for 

protein tertiary structure prediction out of 44 server groups. In addition to referring to the 

official CASP11 assessment, we conducted a detailed evaluation of the models generated by 

MULTICOM-NOVEL on the 85 CASP11 targets and 105 domains in order to understand 
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when it worked and when it did not. Table 1 reports the average GDT-TS scores and TM-

scores [38] of top 1 and best of 5 models predicted by MULTICOM-NOVEL. The average 

TM-score of the top 1 submitted models for all the targets and domains are 0.57 and 0.53 

separately, which are greater than 0.5 threshold that generally indicate that the topology of a 

model is correct.

From our analysis, the top 1 models of MULTICOM-NOVEL won other top 1 models 

submitted by CASP11 server predictors on three targets (T0760, T0832, T0855) and three 

domains (T0760-D1, T0832-D1, T0855-D1). The best submitted models of MULTICOM-

NOVEL were better than other server predicted models in CASP11 on one target (T0760) 

and four domains (T0760-D1, T0761-D1, T0790-D1, T0855-D1). The results indicate that 

the target-based results and the domain-based results are largely consistent and our method 

can predict good protein models for both an entire protein and domains.

We compared top 5 models for each of 85 CASP11 targets and 105 domains predicted by 

MULTICOM-NOVEL in order to evaluate the performance of the ranking strategy. Figure 4 
shows the histogram of the differences of GDT-TS scores between best of top 5 models and 

top 1 modelson 105 domains. The difference between GDT-TS scores of best of top 5 

models and top 1 models is small (<0.05) on 72% of the domains, suggesting the model 

ranking strategy worked reasonably well. For 34 of these 76 domains, top 1 models were 

indeed the best models as well. Even though the ranking strategy worked well on average, it 

failed on some domains. For example, the GDT-TS score of the top 1 model of T0780-D2 

was 0.14, much less than GDT-TS score 0.52 of the best model. The loss for this case was 

0.38. For full length targets, the difference between GDT-TS scores of best of top 5 models 

and top 1 models is small (<0.05) on 69 targets, and top 1 models were the best models on 

30 targets. The largest loss of GDT-TS score occurred on T0768, and the loss was 0.21.

We further investigated the entire MULTICOM-NOVEL model pool in order to check 

whether there were better models than the top 5 ranked models in the model pool. The best 

models in the model pool had higher GDT-TS scores than top 1 selected models of 

MULTICOM-NOVEL on 99 out of 105 domains and 83 out of 85 targets separately. The 

best models in the model pool had higher GDT-TS scores than best of top 5 selected models 

on 87 domains and 73 targets separately.Our analysis indicates that there were better models 

for most of the targets and domains that had not been selected by the ranking method, 

suggesting that our technique of selecting the best model out of the entire model pool can be 

further improved.

We also assessed the performance of different model generation methods in MULTICOM-

NOVEL. Figures 5 and 6 show the GDT-TS scores of the best models generated by the 

methods on 75 template-based modeling (TBM) and 30 template-free (FM) CASP11 

domains. A GDT-TS score 0 means that a method did not generate any model for the 

domain. Our in-house MULTICOM server contributed the best models for 58 TBM domains 

and 7 FM domains. Rosetta contributed the best models for 6 TBM domains and 18 FM 

domains. RaptorX generated the best models for 9 TBM domains. I-TASSER, CONFOLD 

and other template-based methods also predicted the best models for some domains. Our 

analysis shows that the modeling capabilities of the components in MULTICOM-NOVEL 
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cover all the difficulties of proteins, from easy to medium, and to hard. Therefore, 

combining the models generated by these complementary methods is a good direction to 

improve protein structure modeling.

Figure 7 shows one example that the top 1 MULTICOM-NOVEL model is the best model 

among all the CASP11 models submitted by all the server predictors participating in 

CASP11. The top 1 model was generated by our MULTICOM server [15-17] for T0760-D1 

(domain 1 of target T0760) using 4J8QA and 3K0YA as templates. The model has GDT-TS 

score 0.75, TM-score 0.84, and RMSD 3.14 Å. Figure 8 illustrates the distributions of GDT-

TS scores of all the MULTICOM-NOVEL server models (A) and all the CASP server 

models (B) of T0760-D1. The results show that the CASP model pool has higher GDT-TS 

score on average, but the MULTICOM-NOVEL model pool contains the best models.

CONCLUSION

We developed MULTICOM-NOVEL – a new method to combine template-based modeling 

and template-free modeling to improve protein structure prediction. The blind evaluation of 

MULTICOM-NOVEL in the CASP11 experiment shows that combination of multiple 

different methods can improve the quality of modeling for all kinds of targets of different 

difficulty. It also demonstrates that a systematic integration of existing proteins structure 

prediction methods, with addition of some in-house methods to supplement and complement 

the existing methods, can perform relatively well for template-based as well as template-free 

protein modeling.
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Figure 1. 
Integration of protein structure prediction methods and components in MULTICOM-

NOVEL.
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Figure 2. 
Illustration of the template search algorithm. The target sequence is searched against the 

template databases by HHSearch or PSI-BLAST in three iterations. The sequence region 

covered by a homologous template is labeled as easy region, otherwise hard region. The 

hard region left in the last iteration is labeled as final hard region. The example shown here 

has both easy region and hard region and therefore is considered a “medium” target.
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Figure 3. 
The workflow of target-template sequence alignment process in MULTICOM-NOVEL.
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Figure 4. 
The histogram of the differences of GDT-TS scores between best of top 5 models and top 1 

models generated by MULTICOM-NOVEL on 105 CASP11 domains.
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Figure 5. 
Comparisons of GDT-TS scores of the best models generated by the individual methods in 

MULTICOM-NOVEL on 75 TBM CASP11 domains.
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Figure 6. 
Comparisons of GDT-TS scores of the best models generated by the individual methods in 

MULTICOM-NOVEL on 30 FM CASP11 domains.
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Figure 7. 
Structural superposition between the native structure of T0760-D1 (blue) and the top-one 

model of MULTICOM-NOVEL (gold).
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Figure 8. 
Distributions of GDT-TS scores of MULTICOM-NOVEL server models (A) and CASP 

server models (B) of T0760-D1.
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Li et al. Page 18

Table 1

The Average GDT-TS Scores and TM-scores of Top One and Best of Five Models on 85 CASP11 Targets and 

105 Domains.

Target
Top One Best of Five

GDT-TS TM-score GDT-TS TM-score

Full length
targets 0.48 0.57 0.51 0.60

Domains 0.47 0.53 0.51 0.57
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