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Abstract

Often in pharmaceutical research, the goal is to identify small molecules that can interact with and 

appropriately modify the biological behavior of a new protein target. Unfortunately, most proteins 

lack both known structures and small molecule binders, prerequisites of many virtual screening, 

VS, approaches. For such proteins, ligand homology modeling, LHM, that copies ligands from 

homologous and perhaps evolutionarily distant template proteins, has been shown to be a powerful 

VS approach to identify possible binding ligands. However, if we want to target a specific pocket 

for which there is no homologous holo template protein structure, then LHM will not work. To 

address this issue, in a new pocket based approach, PoLi, we generalize LHM by exploiting the 

fact that the number of distinct small molecule ligand binding pockets in proteins is small. PoLi 

identifies similar ligand binding pockets in a holo-template protein library, selectively copies 

relevant parts of template ligands and uses them for VS. In practice, PoLi is a hybrid structure and 

ligand based VS algorithm that integrates 2D fingerprint-based and 3D shape-based similarity 

metrics for improved virtual screening performance. On standard DUD and DUD-E benchmark 

databases, using modeled receptor structures, PoLi achieves an average enrichment factor of 13.4 

and 9.6 respectively, in the top 1% of the screened library. In contrast, traditional docking based 

VS using AutoDock Vina and homology-based VS using FINDSITEfilt have an average 

enrichment of 1.6 (3.0) and 9.0 (7.9) on the DUD (DUD-E) sets respectively. Experimental 

validation of PoLi predictions on dihydrofolate reductase, DHFR, using differential scanning 

fluorimetry, DSF, identifies multiple ligands with diverse molecular scaffolds, thus demonstrating 

the advantage of PoLi over current state-of-the-art VS methods.

Introduction

Identifying lead molecules that bind to a given target protein is a fundamental challenge in 

pharmaceutical research. This issue has been addressed using both experimental high 

throughput screening (HTS) and computational in-silico (commonly referred as virtual 

screening, VS) approaches1. Although HTS is currently the best method for lead 

identification, the dependence of the results on experimental factors, “chemical space” 

coverage, applicability for all targets, along with the cost and time required to perform such 

*All correspondence should be addressed to skolnick@gatech.edu. 

Availability PoLi is freely available as a webserver at http://cssb.biology.gatech.edu/PoLi.

Competing interests The authors declare no competing financial interest.

HHS Public Access
Author manuscript
J Chem Inf Model. Author manuscript; available in PMC 2015 October 05.

Published in final edited form as:
J Chem Inf Model. 2015 August 24; 55(8): 1757–1770. doi:10.1021/acs.jcim.5b00232.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cssb.biology.gatech.edu/PoLi


screens limit their applicability2. For this reason, new computational approaches that can 

efficiently screen large databases are needed, as they not only complement HTS but also 

have much higher throughput and greatly reduced cost and increased speed3.

Based on the availability of target protein structures, either structure or ligand-based VS 

calculations are performed to identify potential lead molecules. The most commonly used 

structure-based VS approach is molecular docking, which does not require a priori 

knowledge of known binders4 and can target a specific binding pocket of interest. Molecular 

docking involves screening database molecules based on their calculated interaction energy 

with the receptor binding site5. As such, its performance relies heavily on the receptor 

structure quality and flexibility6. For example, ~90% of docking accuracy is lost if models 

of trypsin and HIV-1 protease with a root-mean-square deviation from native, RMSD, 

>1.5Å are used7. It also depends on the presence of water molecules, the conformations of 

database molecules, and the sensitivity of the scoring function used for evaluating protein-

ligand interactions8. Another structure based variant docks small molecule fragments to 

screen for promising leads9. However, distinguishing binding and non-binding fragments is 

a challenge in these methods, as fragments bind with very low weak binding affinity which 

cannot be captured using the inaccurate scoring functions that we currently have10. 

Moreover, like other small molecule docking approaches, fragment-based approaches also 

require a high-resolution structure, which is not always available. To address this problem 

homology models that are very closely related to the template proteins in the PDB have been 

used; moreover, the models frequently require a lot of side-chain refinement11.

In the absence of a target receptor structure, ligand-based VS approaches are generally used. 

Ligand-based VS is robust, but requires at least one known bioactive molecule, that is used 

as a seed to fish out database molecules with similar chemotypes. Most common ligand-

based VS approaches evaluate a 2D fingerprint12, pharmacophore13 or 3D shape-based 

similarity14 between known bioactive and database molecules. Thus, most structure and 

ligand-based VS methods require either an experimentally solved receptor structure or an 

experimentally determined bioactive molecule. As such, they cannot be readily applied to 

many proteins of therapeutic interest.

To address these significant limitations, we recently described two new virtual screening 

approaches15, 16. The first, FINDSITEfilt 15, can use either experimental or predicted low-

resolution target protein structures to screen database molecules based on 2D fingerprint 

similarity with template ligands in the PDB holo template library. FINDSITEcomb includes 

FINDSITEfilt for proteins having holo templates, but for those proteins lacking holo 

templates, also uses an artificially generated template library of predicted tertiary structures 

whose binding ligands are found in the CHEMBL17 and DrugBank18 ligand binding 

databases. Template ligands are copied from globally related protein structures based on 

structural similarity to the target, without considering where the ligand actually binds in the 

template protein. These methods have the inherent advantages of speed, lack of requirement 

of high-resolution protein structures, and do not need known binders. Although both 

approaches achieve good enrichment in identifying out active molecules, FINDSITEfilt, in 

particular, depends on the availability of proteins with a similar fold in the holo template 
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library for effective virtual screening. More importantly, both FINDSITEfilt and 

FINDSITEcomb were not developed with the goal of targeting a specific binding pocket.

To begin to generalize our approach, we developed a shape-based virtual screening 

algorithm, LIGSIFT16 that screens database molecules based on their 3D shape and 

chemical feature similarity to a target seed ligand. LIGSIFT was benchmarked using the 3D 

similarity of database molecules to a known binding ligand to the target protein, as provided 

by the DUD database19, and its performance without known binding ligands was not 

established. Thus, a new pocket centric approach that can target a specific binding pocket of 

interest, overcome the requirement of global fold similarity between template and target 

structures, and which combines both 2D and 3D based ligand similarity metrics for virtual 

screening using ligands identified from holo templates is needed.

Based on these ideas and the fact that the space of protein-ligand binding pockets is small 

and close to complete20, we developed a new virtual screening pipeline, PoLi, that first 

predicts the ligand binding pocket in the target protein, selectively copies parts of template 

ligands based on binding-pocket alignment, then performs virtual screening of database 

molecules based on combined 2D and 3D ligand similarity metrics to the selected template 

small molecules. Large scale in-silico benchmarking followed by in-vitro high-throughput 

experimental validation of predictions on E. coli DHFR, establishes PoLi as an effective 

virtual screening approach.

Results

Overview of PoLi pipeline

PoLi is based on the basic idea that the number of distinct binding pockets is small20, and 

for many query proteins that lack any known active molecule, one can detect binding 

pockets in the query protein structure, identify similar pockets in the holo-template library, 

copy ligands from similar pockets and subsequently use them for ligand-based virtual 

screening. Figure 1 shows the schematic representation of PoLi. The input to the PoLi 

pipeline is a 3D structure of the query protein. If an experimentally determined structure of 

query protein is already available, it can be used directly; otherwise starting from a query 

protein sequence, the TASSER-VMT21 structure modeling pipeline is used to generate 3D 

models of the query protein. The next step in the hierarchical pipeline is the detection of 

ligand binding sites and copying of ligands from similar binding pocket of holo-template 

proteins. In PoLi, ligand binding pockets in the query protein's structure are predicted using 

two different approaches: first by global structural superposition of holo-proteins in the PDB 

library on the query protein structure using the TM-align22 structure alignment algorithm, 

and second by detecting pockets using the ConCavity23 algorithm. These predicted pockets 

are then structurally aligned against known ligand binding pockets in the PDB holo-template 

library, using the sequence-order independent binding-site comparison algorithm APoc24, 

and template ligands from similar binding pockets are copied in the query ligand-binding 

pocket. These copied template ligands are later pruned to remove parts of the template 

ligand that interact with the unaligned region of template binding pocket, and then used in 

ligand-based VS. Virtual screening in PoLi is performed using a combination of 2D 

fingerprint based and 3D-shape based similarity metrics, where the 2D path-based 
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fingerprint is generated using OpenBabel25 and 3D similarity is calculated using a variant of 

the LIGSIFT16 algorithm. LIGSIFT is a small molecule structural alignment algorithm that 

uses an atom-centered smooth Gaussian function to describe the ligand structure and 

perform rapid overlay to measure 3D shape and chemical similarity. The ligand 3D 

similarity between molecules in LIGSIFT is evaluated using a size-independent scoring 

function (a scaled TC). The statistical significance of the similarity score (P-value) is 

estimated based on millions of comparisons of randomly selected ligands16. A detailed 

description of the pipeline modules is provided in the Materials and Methods section.

Detection of template seed ligands for virtual screening

We first validate our approach to detect chemically similar ligands using a pocket-based 

search. These detected ligands will be used as seed ligands for ligand-based virtual 

screening. The objective of this exercise is to show that the ligands copied from template 

proteins have a statistically significant chemical similarity to the native ligand when they 

come from structurally similar pockets as assessed using the ligand binding pocket structural 

comparison algorithm APoc24. In practice, we selected a non-redundant set of 30,000 

ligand-pairs with statistically significant chemical similarity (LIGSIFT 3D chemical 

similarity P-value < 0.001) and 35,000 ligand pairs that lack significant chemical similarity 

score from the PDB holo template library, such that the corresponding receptor pairs share < 

30% sequence identity. Figure 2 shows the performance of APoc's pocket similarity24 to 

detect templates that have chemically similar ligands bound to them, in comparison to TM-

align22 (global structural similarity) and HHalign26 (threading). Predictions are labeled as 

correct if the P-value of the 3D chemical similarity score between copied template ligand 

and the query ligand is < 0.001. As shown in Figure 2, the pocket similarity based approach 

(APoc) outperforms both TM-align and HHalign in detecting true positives. For instance at 

95% specificity, APoc identifies 34% of chemically similar ligand pairs, TM-align global 

structural template matching recovers 18.5% true positives, while HHalign only identifies 

14.5% true positives. This establishes that pocket similarity is the best of the three 

approaches to identify templates that have ligands with overlapping chemical features.

Benchmarking performance on DUD and DUD-E databases

Benchmarking of virtual screening algorithms was done on 40 DUD database proteins19 and 

65 proteins included in the DUD-E database27. Both are routinely used for testing scoring 

functions and virtual screening methods. Our objective here is to analyze the overall 

performance of the PoLi pipeline, which includes structure modeling of the receptor, 

binding site prediction and virtual screening of database molecules (see Materials and 

Methods). We also ran the same pipeline using experimentally solved protein structures to 

assess the effect of model quality on virtual screening performance. For structure modeling 

of target proteins and binding site predictions using both modeled and experimental 

structure, closely related homologous proteins were excluded from template libraries using a 

sequence identity threshold of 30%.

Model quality of target proteins—Since model quality and accuracy of binding site 

predictions are expected determinants of structure-based methods for virtual screening, 

including PoLi, we first examine the quality of predicted protein structures. Figures 3A & B 
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present the global and local structure quality of predicted TASSER21 models. The global 

structure quality of models is measured as TM-score28, with values ranging between [0,1] 

with a higher score indicating better structural match between the model and native 

structure. Statistically, a TM-score < 0.3 means random structural similarity and TM-score 

>0.4 indicates that the protein pairs have a similar fold. The average TM-scores of DUD and 

DUD-E set proteins are 0.76±0.18 and 0.73±0.12 respectively (Fig 3A), clearly highlighting 

that the predicted structure of most proteins share high structural similarity with the 

experimentally determined structure. Two proteins in both sets, namely hmgr 

(hydroxymethylglutaryl-CoA reductase) and sahh (S-adenosyl-homocysteine hydrolase) in 

the DUD set, and nos1 (Nitric oxide synthase) and pa2ga (Phospholipase A2 group IIA) in 

the DUD-E set, have incorrectly predicted structures; i.e., the TM-score between the model 

and experimental structure is < 0.4. For these proteins, the structural confidence C-score of 

model29 is also < −3; i.e. they can be easily recognized as having poorly predicted structures 

even in the absence of experimentally determined structures (Table S2). Fig 3B shows the 

structure quality of the predicted models near the known ligand binding site of the co-

crystallized ligand. The mean Cα RMSD of binding pocket residues (residues within <4.5 Å 

from co-crystallized ligand in experimental structure) in the DUD proteins is 4.3±5.7Å and 

in the DUD-E proteins, it is 3.3±3.2Å. In most cases, the structure near the known ligand 

binding pocket is also reasonably well predicted (Table S2), with some local structural 

variations (typical of any homology based structure modeling algorithm). This is not 

surprising, as functionally important regions are generally more conserved than other parts 

of the protein and are more likely to be correctly predicted. Nevertheless, for some proteins, 

the structural variations of the binding pocket residues can be large (Cα RMSD >5Å), 

because of two reasons: (a) the global structure itself is incorrectly predicted and so is the 

binding pocket (e.g. in hydroxymethylglutaryl-CoA reductase), or (b), while the global fold 

is basically correct, the structure of the ligand binding site is only partially correct. For 

example, it could be an inter-domain binding pocket with one incorrectly predicted domain 

(e.g. in glycogen phosphorylase beta). Such structural variations affect both binding pocket 

predictions and have a seriously adverse effect on the performance of molecular docking 

methods that use these models.

Analysis of binding site predictions—Figure 3C shows the performance of the PoLi 

pipeline in recapitulating known ligand binding sites as provided in the DUD and DUD-E 

databases19, 27 using both modeled and experimental structures. Using modeled structures, 

ligand-binding pockets are correctly identified (within 5Å from the geometric center of the 

experimentally solved ligand-protein) in 32 of the 40 DUD set proteins, and in 52 of the 65 

DUD-E set proteins. When experimental structures are used, binding pockets can be 

correctly predicted for 36 proteins in DUD set and 60 proteins in DUD-E set, within the 

same distance cutoff. Among the modeled protein structures with incorrectly predicted 

binding pockets (pocket distance >5Å), 5 of the 8 proteins in DUD set and 7 of the 13 

proteins in DUD-E set have binding pocket residues with a Cα RMSD >5Å. For the 

remaining predicted and experimental structures even though binding pocket cavities could 

be detected, they lacked a significant match (P-value < 0.001 and PS-score > 0.35) to known 

ligand binding pockets in the PDB holo template library. This is one of the main limitations 

of LHM based binding site predictions. Thus, these VS predictions are of poor quality. Also 
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in some targets (e.g. in HIV reverse transcriptase), the known ligand-binding site is 

interfacial (formed by contacts of protein chains in a complex) and cannot be always 

predicted using monomeric structures alone (especially in those models having structural 

variations near the pocket), a limitation of this approach.

Virtual screening performance on DUD and DUD-E targets—The above analyses 

have shown that: (a) a pocket-based approach is better than both global similarity and 

homology based approaches in detecting templates whose ligands have similar chemical 

features, and (b) for most proteins, computationally generated models have a correctly 

predicted fold, whose ligand binding pockets can also be correctly identified in ~80% of the 

cases. In this section, we examine the next module of the PoLi pipeline: the ability to 

identify active molecules in the DUD19 and DUD-E27 databases. Performance is evaluated 

using standard evaluation metrics: (a) the Enrichment Factor (EF) of the screened compound 

library, (b) the Hit Rate (HR) of active molecules and (c) the Receiver Operating 

Characteristic (ROC) curve. Descriptions of these metrics are given in Materials and 

Methods.

Table 1 shows the virtual screening performance of PoLi using both computationally 

generated models and experimentally determined receptor structures. The average 

enrichment in the top 1% of the screened library is 13.4 and 9.6 for DUD and DUD-E set 

modeled receptor structures, and the average hit rates are 38.0 and 14.3 respectively. When 

experimental structures are used, the enrichment rates in the top 1% increase to 15.2 and 9.6, 

and the hit rate increases to 43.3 and 14.6 respectively for the DUD and DUD-E sets. A 

paired Wilcoxon signed rank t-test between EF1% achieved using model and experimental 

structures has a p-value of 0.44 on the DUD set and 0.30 on the DUD-E set, suggesting that 

the difference in VS performance using model and experimental structure is not statistically 

significant. Moreover, using a known binder of each target protein (taken from the 

experimental structure in PDB), the best average EF1% obtained using LIGSIFT shape-

based screening is 17.4 and 18.7 for the DUD and DUD-E sets respectively; this is notable 

since PoLi predictions were generated by using ligands copied from templates with < 30% 

sequence identity.

Since model quality and accuracy of binding pocket predictions directly affect the 

performance of the PoLi pipeline, we further analyzed the VS results only for proteins with 

reasonable quality model (TM-score > 0.5) and for those proteins in which one of the 

predicted pockets overlap with the known ligand binding site in the experimental structure 

(pocket distance <5 Å). Since most proteins are reasonably well predicted, using correctly 

modeled structures, the EF1% on DUD and DUD-E set, marginally improved to 14.1 and 

9.9 respectively (Table 1), an increase of approximately 3–5% compared to EF1% obtained 

for all the proteins. A more significant improvement is observed when proteins in which the 

known ligand binding site was recapitulated as one of the binding site predictions. The 

EF1% for DUD and DUD-E are 15.9 and 11.0 respectively, an improvement of 

approximately 14–18%.

It is interesting to observe that using both modeled and experimental structures the 

performance of PoLi is consistently lower on the DUD-E set compared to the DUD set, 
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while performance remains similar when known binders are used as input for LIGSIFT-

based VS. This decrease in performance cannot be attributed to either structure quality, as 

the average TM-score for both sets ~0.7, or to the accuracy of binding pocket predictions, as 

just 20% of modeled proteins and ~10% of experimental structures in both the sets have 

predicted pockets at a distance >5Å from the geometric center of the experimentally solved 

ligand location in the protein's structure.

We sought to analyze this further by examining the highest 3D and 2D molecular similarity 

between database molecules and collected template ligands. Table 2 clearly shows that the 

main reason for the decrease in performance on the DUD-E set (using both experimental and 

modeled structures) is because of increased overlap between the active and decoy molecular 

similarity distributions. More specifically, there is an overall decrease of 3D similarity 

scores in the DUD-E compared to the DUD database. A detailed statistical analysis 

performed by taking random samples from DUD and DUD-E database and analyzing the 

difference between 3D similarity scores of actives and decoy molecules reveals that the 

mean of the difference distribution is 0.08 in the DUD set and 0.02 in the DUD-E set. Also a 

Welch's t-test performed on the difference distributions has a P-value < 2.2E-16, suggesting 

that difference between the highest similarity scores of actives and decoys in the DUD set 

was significantly greater than in the DUD-E set.

Comparison with control methods for virtual screening—Without known binders, 

molecular docking is the most widely used virtual screening approach and has been 

benchmarked on numerous occasions using experimental structures30, 31. Another virtual 

screening approach, that is becoming increasingly popular copies ligands from homologous/

structurally analogous template proteins and uses them as seeds for ligand-based virtual 

screening15, 32. Here, template ligands are copied, and either a single or combination of 

different 2D molecular similarity metrics is used for ranking the database molecules.

As our experimental control, we employed the widely used molecular docking tool 

AutoDock Vina33, our in-house developed VS algorithm FINDSITEfilt (as it also uses a 

PDB holo template library) and shape-based VS using LIGSIFT. Docking runs of AutoDock 

Vina were performed with default options, and the entire receptor structure was enclosed 

within a box during the docking simulations (as if the binding pocket were unknown). 

Furthermore, to avoid any bias arising due to differences in holo template library, both 

FINDSITEfilt and LIGSIFT used the same set of templates as PoLi for virtual screening. 

FINDSITEfilt uses a 2D fingerprint similarity metric (Eq. 6) between these selected 

templates and database molecules, while LIGSIFT uses these template ligands as seeds 

(without any pruning) for shape-based structural alignment with database molecules (Eq. 4). 

Thus, FINDSITEfilt is the VS performance achieved using a 2D approach, while LIGSIFT is 

representative of a 3D VS algorithm.

Table 3 reports the AUC, EF and HR obtained on the DUD and DUD-E sets using modeled 

protein structures. The average enrichment factors of PoLi, LIGSIFT, FINDSITEfilt and 

AutoDock Vina in the top 1% of the screened library (EF1%) are 13.4, 11.8, 9.0 and 1.6 

respectively on the DUD set. A similar trend is also observed on DUD-E set where PoLi, 

LIGSIFT, FINDSITEfilt and AutoDock Vina achieve EF1%s of 9.6, 5.9, 7.9 and 3.0 
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respectively. Fig S1 shows the distribution of AUC and EF1% for the DUD and DUD-E set 

proteins using a boxplot. A paired Wilcoxon signed rank t-test between EF1% of PoLi and 

control methods (LIGSIFT, FINDSITEfilt and AutoDock Vina), after Boneferroni correction 

for multiple comparison, have p-values of 8.45E-02, 4.18E-02 and 1.51E-06 respectively on 

the DUD set and 0.0004, 0.0099 and 0.0011 respectively on the DUD-E set of proteins. It is 

clear from these results that establishing which molecular similarity metrics (3D shape-

based or 2D fingerprint based) is better is difficult, as their performance can vary with the 

protein target. Nevertheless, fusion of 2D and 3D similarity metrics based on their Z-score 

(Eq. 7) shows the best performance in virtual screening on the tested databases. The 

observed improvement of PoLi is also partially due to the pruning of template ligands. 

Biased structural overlap of ligands near the hot-spot regions also contributed to the 

enrichment of actives in the DUD set, where EF1% increased from 12.3 for unbiased 

structural overlap to 13.4 for biased overlap. For DUD-E set the performance was similar, 

where EF1% was 9.7 for unbiased structural overlap and 9.6 for biased overlap. Molecular 

docking using AutoDock Vina has the worst performance in identifying active molecules. 

One might expect that without explicitly providing the exact location of target binding site, 

molecular docking will certainly result in poor enrichment of active molecule. However, a 

similar analysis done by Feinstein and Brylinski32 have shown that even when the predicted 

binding site in modeled receptor structures of the DUD-E set were specified, the resulting 

EF1% was 2.45 and 2.86 on high and medium quality models. These results suggest that 

traditional docking-based approaches cannot correctly evaluate protein-ligand interactions 

on predicted protein structures, as they frequently have incorrect side-chain orientations.

Predictions using globally unrelated template proteins—An important advantage 

of PoLi over existing template-based methods15, 32 for virtual screening is that it can copy 

ligands from proteins with different folds but similar pockets and use them for ligand-based 

virtual screening. To examine this in greater detail, we performed an experiment in which 

binding site predictions and ligand copying were done using templates with unrelated fold 

(TM-score < 0.4) and templates with similar fold. Table 4 shows the result of this analysis 

on the DUD and DUD-E databases. It is encouraging to observe that using ligands copied 

from globally unrelated template proteins, PoLi can achieve an EF1% of 7.1 on the DUD set 

and 2.7 on DUD-E set proteins. These EF1% values are significantly higher on the DUD set 

and are similar for DUD-E targets when compared to the EF1% obtained using molecular 

docking (Table 3), which is currently the best approach for screening database molecules in 

the absence of any homologous/structurally analogous holo-template protein. Similarly, 

when we restrict PoLi to only use template ligands from related folds (TM-score >0.4), the 

EF1% on DUD and DUD-E targets increases to 12.0 and 8.7 respectively, which is still 

lower than that achieved using default PoLi pipeline (Table 1) that uses all templates ligands 

irrespective of the fold they were collected from. It needs to be mentioned that when we 

restricted PoLi to use only template proteins with similar global fold, then 8 proteins in 

DUD set and 11 proteins in DUD-E set failed to generate any predictions because of lack of 

similar template pockets. For the subset of proteins where predictions could be made using 

globally related template proteins, the EF1% is 15.0 and 10.5 on DUD and DUD-E sets 

respectively. On the same set, a combination of both globally related and unrelated template 

ligands yield EF1% of 15.9 and 10.0 respectively. These results highlight that even though 
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template ligands copied from globally related proteins on average yield better enrichment 

during virtual screening; ligands copied from unrelated folds improve prediction coverage. 

For example EF1% for targets that could only be predicted after copying ligands from 

globally unrelated template structures (shown as Failed in Table 4) are 4.0 and 7.3 on DUD 

and DUD-E set proteins. Also, unrelated fold template ligands complement the ligands 

templates copied from globally related template proteins to improve the overall virtual 

screening performance, as observed for DUD database proteins (shown as Combined in 

Table 4).

Pocket specific virtual screening performance—Another important advantage of 

PoLi compared to other LHM methods15, 32, is its ability to generate pocket specific 

predictions, similar to docking approaches. To analyze if pocket specific predictions can 

yield better virtual screening performance, we analyzed the EF1% and AUC of ranked 

database molecules for the top 5 predicted pockets treated individually (Table 5). As shown 

in the table, in both the DUD and DUD-E databases, the best virtual screening performance 

(both EF1% and AUC) is achieved using the top predicted pocket, which has the maximum 

number of superposed template ligands (pocket 1). Using modeled receptor structures, 

pocket 1 results in an average AUC and EF1% of 0.77 and 13.3 on the DUD set, and 0.74 

and 9.4 on the DUD-E set. Interestingly, virtual screening on other predicted pockets 

(pocket 2–5) also resulted in non-random ranking of database molecules (AUC > 0.5 and 

EF1% > 0). Moreover, the combined ranking procedure used in PoLi, which combines 

predictions from all the pockets, results in slightly improved predictions compared to 

individual pocket based predictions (compare Table 1 & 5). This suggests that some of the 

experimentally known active molecules in the DUD and DUD-E databases could bind in 

pockets different from pocket 1. For example, both experimentally verified canonical and 

alternate binding sites in PPAR34 were predicted by PoLi and resulted in non-random 

predictions (AUC > 0.5 and EF1% >0) for both sites.

Experimental validation of PoLi VS—To demonstrate the utility of PoLi as a better VS 

option in identifying small molecule binders, experimental validation was carried out using a 

high-throughput DSF approach. The method relies on the increase in fluorescence quantum-

yield of the extrinsic fluorophore reporter dye Sypro orange upon its interaction with an 

unfolded protein. In the presence of the ligand that binds to and stabilizes the protein of 

interest, the transition midpoint of unfolding shifts to higher temperatures, the magnitude of 

which is proportional to the strength of binding.

Escherichia coli DHFR, an enzyme that is the sole source of cellular tetrahydrofolate and 

thus pivotal for nucleic acid synthesis, was chosen for its immense medical importance35. 

The top 90 predictions from PoLi (approximately the top 3% of the ligand library) were 

tested. Out of 76 interpretable curves, (i.e. those showing a single sigmoidal transition and 

reasonably good Q values; see Methods), 14 curves showed a substantial shift in their 

thermal unfolding transition midpoint indicative of ligand binding (Fig.4 and Fig.5). This 

indicates a success rate of 18.4%. Table 6 shows the thermal shift assay parameters for all 

hits. 7 out of the 14 hits obtained were within the top 10 ranks assigned by the PoLi VS 

algorithm with a distinct positive skew to the distribution of top ranking hits when plotted 
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against the rank. Moreover, 13 of the 14 hits have consistently low μM affinities in spite of 

the high Tm of 51.9 °C for the protein-alone. This is a clear indication of the strength of the 

methodology in identifying experimentally verified binders as top ranking predictions.

Figure 4 shows the thermal melting curves, their first derivatives and the non-linear fits used 

to estimate thermal melt parameters for the various classes of molecules that showed 

unambiguous binding to prokaryotic DHFR. Figure 5 provides the chemical structures for 

these hits.

The algorithm was capable of picking up derivatives of 1,3,5-triazine-2,4-diamine; this 

represents the most populated group of identified ligands (Fig. 5A). Among molecules 

belonging to this class, NSC133071 shows the highest shift with a ΔTm of 14.3 °C followed 

by NSC168184 & CHEMBL597262 with ~10.6 °C each, CHEMBL333873 with 9.6 °C, 

NSC117268 with 8.5 °C and NSC104129 with 5.4 °C, respectively (Table 6, Fig 4A & 4E 

and Fig 5A). An approximate estimate of the dissociation constant for NSC133071 shows 

that it binds tightly to E. coli DHFR, with a 6.4 ± 1.5 μM KD (Table 6). The tighter binding 

of this molecule compared to others from this class can be ascribed to possible favorable 

contacts made by the [3-chloro-4-(3-phenoxypropoxy)phenyl] substituent at the 1st position 

of the triazine ring. It should be noted here that cycloguanil, a molecule belonging to the 

1,3,5-triazine-2,4-diamine class, is a known inhibitor of Plasmodium falciparum DHFR 36. 

However, to the best of our knowledge, no report exists on either binding or inhibition of E. 

coli DHFR by molecules predicted by PoLi VS and experimentally validated in the current 

study. Thus, all hits are novel binders. Moreover, in spite of the presence of 1,3,5-

triazine-2,4-diamine ring, it would be difficult to predict the binding of NSC117268 to E. 

coli DHFR solely relying on 2-D ligand comparison methodologies or SAR intuition (Table 

6). The presence of two bulky ortho ring substituents at the 1st and 6th position on the core 

ring precludes intuitive assumptions about binding. We posit that the 3-D method of 

comparison facilitated the prediction of NSC117268 as a potential binder.

The second class of molecules predicted to bind to E. coli DHFR, and subsequently 

validated experimentally, are derivatives of quinazoline-1,3-diamine (Fig. 4B, 4F and 5B). 

In previous studies from our lab37–39, we have demonstrated the binding and potent 

inhibition of E. coli DHFR by two of these molecules (NSC339578 and NSC309401); both 

contain a pyrroloquinazoline core ring. The prediction of these molecules by PoLi as 

potential binders validates the VS approach and demonstrates its predictive power. 

Furthermore, a novel molecule NSC305782 showed binding to the enzyme with a ΔTm of 

14.4 °C, indicative of strong binding.

The third class of predicted molecules contains either a diaminopteridine ring (NSC740) or a 

diaminopyrimidine ring (NSC7364 and NSC71669) (Fig 4C, 4G and 5C). NSC740, 

commonly known as methotrexate, is a well-known DHFR inhibitor acting on both 

prokaryotic and eukaryotic homologs35, 40. Likewise, NSC7364 is commonly known as 

metoprine and is also a known inhibitor of DHFR from various sources41. Prediction of the 

above two molecules serves as an internal quality control of the VS algorithm's predictive 

ability and reinforces our confidence in the novel ligands that are predicted. The sole novel 

hit from this class, NSC71669, with two trifluoromethyl phenyl substituents on the 
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diaminopyrimidine ring gave a ΔTm of 15 °C that translates into an approximate dissociation 

constant of 05.2 ± 1.3 μM. Once again, it should be noted here that NSC71669 would have 

been difficult to predict solely relying on 2-D comparison methodology (Table 6) or SAR 

intuition.

Lastly, the fourth class contains two hits (NSC89759 and NSC11150) with structures 

containing 2,4-dihydroxyphenyl rings that are very different from known DHFR inhibitors 

(Fig 4D, 4H and Fig 5D). This class of compounds would require further experimental proof 

before establishing their veracity as genuine DHFR binders/inhibitors. If these molecules are 

true hits, they represent novel structural scaffolds amenable to further exploration as 

potential DHFR inhibitors.

In conclusion, PoLi predicted 14 ligands as binders of E. coli DHFR, with 10 of them being 

novel. Further, it offers the advantage of predicting diverse ligands as potential binders in 

that it uses a 3-D metric that aids in selecting ligands that may get overlooked if only a 2D 

metric of ligand comparison is employed.

Discussion

Drug discovery pipelines have many bottlenecks, but new computational methods capable of 

identifying multiple novel lead molecules that likely bind to the protein of interest could 

improve the situation. In that regard, computational approaches that employ molecular 

similarity based searches and small molecule docking are the two most commonly used 

methods for virtual ligand screening. While molecular similarity based VS requires a priori 

knowledge of at least one known binder, for molecular docking, receptor structure quality is 

crucial for success. Such limitations have proven to be quite problematic. Methods that can 

use computationally generated receptor structures will allow us to approach drug discovery 

from a Systems Biology perspective and investigate the interaction of lead molecules at the 

proteome level. In that regard, we have developed a number of methods that can use 

modeled receptor structures for lead identification15, 42. Our initial efforts in this direction 

utilized ligands from structurally related template proteins for ligand-based VS15. While the 

capability of this method has been both computationally and experimentally demonstrated 

for its ability to correctly predict new lead molecules for diverse targets15, 37, it has some 

inherent limitations: (a) template ligands are used without any pruning to remove parts that 

interact with template binding site region bearing no similarity with target pocket, (b) 

template ligand selection is limited to proteins sharing global structural similarity to target, 

and (c) the predictions are not pocket specific and cannot be used for targeting a specific 

binding pocket of interest.

To address these limitations, we have developed PoLi, which copies ligands from related 

pockets (irrespective of the global fold of the template protein), prunes the ligand to avoid 

false positive matches and then uses them in virtual screening. Moreover, since specific 

pockets can be targeted, one might be able to identity ligands with novel models of action. 

Other special features of PoLi include: (a) biased structural overlap between the database 

molecule and template ligand to promote overlap in hot-spot regions of the target's binding 
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pocket, and (b) ranking of database molecules using a data fusion technique that combines 

2D and 3D molecular similarity scores for improved virtual screening performance.

On the widely used DUD and DUD-E benchmark databases, PoLi shows improved 

performance in detecting active molecules compared to all other methods used in this study. 

Notably, even when template proteins with similar fold (TM-score > 0.4) are excluded, PoLi 

achieves an EF1% of 7.1 on DUD database proteins and 2.7 on DUD-E database proteins, 

which is significantly higher for the DUD set and similar for DUD-E set when compared to 

the EF1% achieved using AutoDock Vina molecular docking. Considering that many 

proteins lack a globally related template protein in the PDB holo template library, this gives 

PoLi a significant advantage over other LHM based virtual screening algorithms15, 32.

Experimental demonstration of an 18.4% success rate to identify lead molecules that bind 

the pharmaceutically relevant target, E. coli DHFR, demonstrates the power of the 

methodology. With 14 total hits, 10 of which are novel, it becomes amply clear that the VS 

is capable of finding novel analogues from chemical classes that constitute known DHFR 

inhibitors. Further, the demonstration that the methodology is capable of predicting binders 

based on a 3-D metric of comparison, as exemplified by NSC117268 and NSC71669, offers 

a distinct advantage over traditional 2-D comparison and SAR intuition. For example, using 

2D fingerprint similarity as the only scoring metric and with same set of templates as input, 

only 5 of these 14 hits would have ranked among the top 90 predictions that were 

experimentally validated using differential scanning fluorimetry.

In summary, PoLi is a new hybrid approach for virtual screening that has multiple 

advantages over contemporary approaches. Nevertheless, the somewhat low enrichment of 

active molecules (EF1%) in the DUD-E database results from the rather small difference 

between active and decoy molecules. A more elaborate screening procedure that evaluates 

the interactions made by database molecules in the target binding pocket can provide a 

potential solution. This type of approach will be examined in future studies.

Materials and Methods

Structure modeling and binding site identification

For each target protein, structural models are generated using the TASSER-VMT21 

automated structure modeling pipeline, wherein template proteins in the non-redundant PDB 

library are selected using the SP3 threading algorithm43, followed by multiple TASSER 

refinement using a variable number of templates and SPICKER clustering44. For 

benchmarking, we removed homologous template proteins from both the threading library 

and holo template binding site library (described in next section) using a threshold of 30% 

pairwise sequence identity.

Given a target structure, that can be either modeled or experimental, ligand-binding pockets 

are predicted using two different approaches. In the first, the superposition matrix from the 

TM-align22 global structural alignment is used to overlay template ligands onto the target 

structure and predict the pockets based on residues that make contact (distance < 4.5Å) with 

the superimposed ligand. Next, binding pocket similarity of this predicted pocket (in the 
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target) and original template ligand-binding site is evaluated using the APoc pocket 

alignment algorithm24, to filter out cases where even though the receptors share fold 

similarity (TM-score >0.4), their ligand binding pockets are not similar (APoc P-value > 

0.001 or PS-score < 0.35). The second approach to predict pockets uses the cavity detection 

algorithm ConCavity23 to find pockets. Then, these pockets scan the holo-template binding 

site library using APoc. Then, ligands of matched pockets in the PDB (with P-value < 0.001 

and PS-score >0.35) are copied onto the target structure. Finally, all superimposed template 

ligands are clustered based on their spatial distance, measured from the center of mass of the 

ligand, using an average-linkage clustering algorithm and a threshold distance of 4.5Å.

Holo templates and small molecule screening library

The holo template library required by PoLi for binding pocket prediction and virtual 

screening was compiled from the May 14, 2014 release of BioLiP database45. Downloaded 

protein-ligand complexes were filtered to remove nucleic acids and small molecules with 

less than 6 atoms. This filtering process resulted in 40,158 receptors with 44,098 non-

redundant ligands and binding sites.

The small molecule screening library is compiled from two different sources. A large 

fraction (2628 molecules) of this library was compiled from NCI/DTP Open Chemical 

Repository molecules. In addition, 400 molecules were added using Malaria Box donated by 

Medicines for Malaria Venture (MMV). A maximum of 200 low energy conformation of 

these molecules were generated using RDKit conformer generation tool46 were used for 

shape-based screening (described below).

PoLi virtual screening pipeline

Figure 1 shows the schematic representation of the PoLi pipeline. Starting from the tertiary 

structure of a protein, the first step is to identify potential small molecule binding sites in the 

target protein structure. The modus operandi of small molecule binding site prediction in 

PoLi is based on the structural alignment of putative target pockets with a known template 

ligand binding site. This also enables copying of template ligands in the predicted ligand-

binding pocket using the superposition matrix generated during the pocket alignment. Since 

PoLi relies on this binding site comparison to selectively copy template ligands, an 

advantage of this approach is its ability to copy ligands from protein structures that have 

different global folds but have similar ligand binding pockets. Up to the top 200 template 

ligands, ranked based on the harmonic mean of binding pocket similarity (APoc PS-score) 

and the identity of binding site residues are selected and clustered based on their spatial 

distance. Then, ligand-based virtual screening uses these selected template ligands.

Ligand pruning and identification of hot-spot regions—Naïvely copying template 

ligands and using them in virtual screening usually leads to spurious results, as parts of the 

template ligand that interact with unaligned regions of the template binding site can also be 

copied. Moreover, since both target and template binding pockets have their own sets of 

ligand binding residues, even structurally aligned residues in the binding pocket alignment 

are not always chemically similar and can potentially make disparate interactions. In PoLi, 

these issues are addressed by only copying parts of the template ligand that interact with 
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template residues that are chemically similar to the aligned target residue. This is performed 

by first defining template binding site residues, which are at a distance < 4.5 Å of heavy 

atoms from the ligand. Also a map between the heavy atom index of the template ligand and 

the residue index of the template receptor is built. Next, an APoc alignment between the 

template and query pocket is used to define the aligned and unaligned template binding site 

residues. This is followed by deletion of atoms, which do not make any contact with aligned 

template residues, with an exception not to delete all atoms that are part of an aromatic/non-

aromatic ring if at least one atom of the same ring makes contact with any aligned template 

residue.

A hot spot is defined as the location on the protein that has a high ligand binding propensity. 

These regions are usually experimentally detected by screening large libraries of fragment-

sized organic compounds for binding to target proteins using NMR or X-ray crystallography 

and identifying regions that have large fragment clusters47. Based on a similar concept, we 

tried to identify parts of template ligand that can make interactions in the hot-spot region by 

clustering pharmacophores of superposed template ligands in order to bias the LIGSIFT 

structural alignment near these hot spot regions. However, it is difficult to detect 

pharmacophore clusters that can make similar interactions, as the copied template ligands 

are unaligned to each other (Fig S2B).

We addressed the problem of identifying the hot spot region by examining the number of 

potential interactions that a target binding site residue can make with all copied template 

ligands (based on its occurrence in binding site alignment with the template residues that 

interact with ligand). Lets say for a given target protein, we selected P template proteins, 

and for a given template protein p (p ∈P) the bound ligand has L atoms. Let T be the set of 

binding site residues that interact with L and are also conserved (both structurally aligned 

and chemically similar) in in the APoc binding site alignment. Since, template residue t (t 

∈T) is structurally aligned with target residue q, we assume that template ligand atom a 

(a∈L) can potentially make similar interactions with q. Now, to bias the small molecule 

structural alignment near hot spot regions or the regions that have high propensity to make 

interactions, a weight h is assigned to each template ligand atom a that can potentially 

interact with q (Fig S2C), and is defined as:

(1)

In equation 1, λaq is a step function which equals to 1 when atom a is ≤ 4.5 Å from q and 0 

otherwise. Q is the set of query binding site residues where q∈Q and Wq is the weight 

assigned to query binding site residue, and is defined as:

(2)
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In equation 2, Cq is the number of potential interactions that can be made by residue q, δqt is 

a step function which is equal to 1 when target residue q is structurally aligned and 

chemically similar to template binding site residue t and is 0 otherwise. Iat is also a step 

function which is equal to 1 when template ligand atom a is at a distance ≤ 4.5Å from 

residue t.

Scoring of database molecules using template ligands—PoLi uses a combination 

of 2D and 3D chemical similarity metrics to score the ligand database molecules. 3D 

chemical and shape similarity is calculated using a variant of the LIGSIFT algorithm16, 

which uses different molecular overlay techniques to find the best volume overlap between 

template ligand T and database molecule D. Structural superpositions are scored as a shape-

density overlap volume (VTD), calculated as the sum of the overlaps of individual atom's 

Gaussian functions (with similar chemical nature), defined as:

(3)

i and j are the heavy atom indices, ρi and ρj are the atomic Gaussian distributions of each 

atom and dij is the distance between atom i and j, αi is the decay factor, φi = 2√2 is the 

amplitude, Ri is the atomic coordinate for the ith atom, σi is its van der Waals radius and hi 

is the hot spot weighting term to reward the overlap near the hot-spot regions in the target. 

Once the maximum overlap (VTD) is attained, similarity between two molecules is 

calculated using a ligand size independent scaled Tanimoto Coefficient (sTC), defined as:

(4)

Here, TC3D is the Tanimoto coefficient (TC) of the 3D shape/chemical similarity, VT and 

VD are the chemical density volume of template molecule T and database molecule D 

calculated using the Gaussian model, VTD is the molecular volume overlap between 

molecules T and D, and s0 is the scaling factor to ensure that the similarity scores of the 

same statistical significance are size-independent. A combination of shape and chemical 

similarity in the ratio 1:1 is used for measuring 3D similarity in PoLi.

2D chemical similarity between molecules is generally evaluated using the TC of bit 

fingerprints, defined as:

(5)

where a is the count of bits on the 1st string, b is the count of bits on the 2nd string and c is 

the count of bits in both strings. In PoLi, we use an average Tanimoto Coefficient (aveTC) 

of 1024 bit Daylight-fingerprints generated using OpenBabel 25 API, which is defined as:

(6)
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where TC' is Tanimoto coefficient calculated for bits that are set off rather than on in the 

fingerprints.

Ranking of database molecules—It is a challenging problem to rank database 

molecules using multiple seed ligands and two different scoring functions without any 

supervised initial training on the dataset. Therefore, in PoLi we adopted an unsupervised 

data fusion technique, where a fused similarity score Fsim of the yth database molecule is 

defined as:

(7)

In Eq. 7, Z-scorely (2D/3D) is the Z-score of similarity between template ligand l and 

database molecule y, N represents the set of all selected template ligands, dl is the density of 

the cluster to which template ligand l belongs, Nc is the number of template ligands in that 

cluster, w is a weight parameter (defined as w=0.3), and Sim is the 2D (Eq. 6) or 3D (Eq. 4) 

similarity score between template ligand (T) and database molecule (D).

Benchmarking sets and evaluation

We have used two types of benchmarking to evaluate PoLi. In the first, in-silico VS 

predictions were done on DUD and DUD-E database targets. The DUD database contains 40 

target proteins with active and decoys molecules in the ratio of 1:36; while DUD-E database 

contains a list of 102 targets with an average of 224 active molecules and 50 decoys for each 

active molecule. For validation, we have used 40 proteins listed in the DUD database and 65 

targets of DUD-E database. 37 proteins of DUD-E set that were already included in DUD 

set were not included to avoid redundancy. Moreover, both experimental and modeled 

receptor structures of these proteins have been used to objectively evaluate the effect of 

model quality on virtual screening performance.

The performance of PoLi in these in-silico virtual screening runs is evaluated using standard 

evaluation metrics: (a) The Receiver Operating Characteristic (ROC) curve and (b) The 

Enrichment Factor of the screened database and (c) The Hit Rate (HR). The ROC curve 

depicts the true positive rate as a function of false positive rate, and the area under the curve 

(AUC) is used to quantify the shape of the ROC curve. AUC values range between [0–1], 

where an AUC below 0.5 is equivalent to random performance. Much more important 

metrics for practical purposes are measures like the Enrichment Factor (EF) and Hit Rate 

(HR) that are used to evaluate the performance in the top x% of the screened library, where 

the EF is defined as:

(8)
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where x represents fraction of screened library and is set to 1%, 5% and 10% to analyze the 

performance for a broad range of screened molecules in the database. We have also used HR 

as an evaluation metric, which defined as:

(9)

The second set of experiments simulates the real world scenario, where we use the PoLi 

pipeline to generate ligand binding predictions for E. coli DHFR, while excluding all 

template proteins with >30% sequence identity to the target protein. Top ranked predictions 

in our small molecule library are then experimentally validated using high-throughput 

differential scanning fluorimetry (described below).

Experimental validation using differential scanning fluorimetry

Reagents—All reagents and chemicals, unless mentioned otherwise, were procured from 

Sigma-Aldrich (St. Louis, MO) with the following exceptions: HEPES, pH 7.3 buffer was 

obtained from Fischer Bioreagents and dimethyl sulfoxide (DMSO) from MP Biomedicals 

LLC. Sypro orange dye was obtained from Invitrogen (Carlsbad, CA). 96-well PCR-plates 

and plate seals were from Eppendorf (Eppendorf, NY, USA). E. coli dihydrofolate 

reductase, DHFR, was provided by Prof. Eugene Shakhnovich, Harvard University. The 

library of small molecules and drugs containing oncology drug set III (97 compounds), 

mechanistic set II (816 compounds) diversity set III (synthetic) (1597 compounds) and 

natural product set (118 compounds) were provided by the open chemical repository of 

Developmental Therapeutics Program (DTP) of the National Cancer Institute (NCI), 

National Institutes of Health (NIH) (http://dtp.cancer.gov). Furthermore, a set of 400 diverse 

drug-like and probe-like compounds was provided as 10 mM stock solutions in dimethyl 

sulfoxide by Medicines for Malaria Venture (MMV) (http://www.mmv.org/malariabox). All 

provided compounds had been demonstrated to possess antimalarial activity against the 

blood-stage of P. falciparum and were selected to represent structural diversity, ease of oral 

absorption and minimum toxicity.

Acquisition and quantification of thermal shift assays—High-throughput thermal 

shift assays were carried out following established guidelines48, 49. Briefly, samples were 

aliquoted in 96-well PCR plates and protein melting curves were obtained by heating the 

samples from 25 °C to 74 °C using a 1 °C/min heating ramp in a RealPlex quantitative PCR 

instrument (Eppendorf, NY, USA), with Sypro orange dye (Invitrogen) as the extrinsic 

fluorescent reporter. A uniform final concentration of 5X was used in all experiments. The 

dye was excited at 465 nm and emission recorded at 580 nm using the instrument's filters. 

One data point was acquired for each degree increment. Unfolding was carried out in a total 

reaction volume of 20 μl, with 100 mM HEPES pH 7.3, 150 mM NaCl and 5 μM E. coli 

DHFR. Appropriate dye and protein controls were included in each plate as an internal 

reference. All experiments were done with experimental replicates, with the mean value 

considered for further analysis. Furthermore, the curves obtained were processed to subtract 

the background signal from dye alone or dye-small molecule controls.
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Each melting curve was assigned a quality score (Q), the ratio of the melting-associated 

increase in fluorescence (ΔFmelt) to the total fluorescence range (ΔFtotal). Q = 1 is a high-

quality curve, while Q = 0 indicates no thermal transition49.

Data analysis—The validity of the PoLi's top 90 predictions on E. coli dihydrofolate 

reductase was assessed by the thermal melt assay methodology. Protein unfolding curves 

showing a single sigmoidal thermal transition were selected and normalized for further 

analysis. Initially, the curves were fit to Boltzmann's equation (Eq. 10) to obtain the melting 

temperature, Tm, from the observed fluorescence intensity, I by:

(10)

where Imin and Imax are the minimum and maximum intensities; a denotes the slope of the 

curve at the unfolding transition midpoint temperature, Tm. However, due to unfolding-

associated aggregation of the protein that resulted in decreasing SO fluorescence at higher 

temperatures, the fits were unconvincing giving wide margins of error (Fig. 4A–D). To 

overcome this problem and to estimate the melting temperature more accurately, the first 

derivative of each melting curve was derived and fit to a Gaussian whose mean gave an 

accurate estimate of the Tm (Fig 4E–H). The fluorescence intensity was used to compute the 

fraction unfolded (fu) and approximate thermodynamic parameters were estimated by van't 

Hoff 50 and Gibbs-Helmholtz analyses51. Further, rough estimates of ligand-binding affinity 

at Tm were computed by employing Equation 1052, with slight modifications.

(11)

where KL(Tm)is the ligand association constant and [L] is the free ligand concentration at Tm 

([LTm] ~ [L]total, when [L]total >> the total concentration of protein. KD is the inverse of 

KL(Tm).
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Refer to Web version on PubMed Central for supplementary material.
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VS Virtual screening

HTS High Throughput Screening
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DSF Differential Scanning Fluorimetry

DHFR Dihydrofolate reductase
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Figure 1. 
Schematic flowchart of the PoLi virtual screening pipeline.
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Figure 2. 
Comparison of a pocket based method (APoc) with global structure alignment and 

homology based approaches to detect similar ligands. The benchmark shows the ability of 

different approaches to recognize 30,000 pairs of similar ligands from 35,000 pairs of 

chemically dissimilar ligands.
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Figure 3. 
Structure quality and binding site prediction accuracy for DUD and DUD-E proteins. Box 

and whiskers plot of (A) TM-score and (B) ligand binding pocket Cα RMSD of TASSER 

models to the experimentally determined structures. (C) Distance between the geometric 

center of the ligand in the co-crystallized complex and the center of the best predicted 

ligand-binding pocket in the 40 DUD and 65 DUD-E protein targets.
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Figure 4. 
Thermal unfolding curves of E. coli DHFR A) Primary unfolding curves for hits belonging 

to the 1,3,5 triazine-2, 4-diamine group B) Primary unfolding curves for hits belonging to 

the quinazoline-1, 3-diamine group C) Primary unfolding curves for hits belonging to the 

pyrimidinediamine and aminopteridine group D) Primary unfolding curves for hits 

belonging to chemical classes distinct from any reported DHFR inhibitors E) Gaussian fit of 

first-derivative for curves in (A) F) Gaussian fit of first-derivative for curves in (B) G) 
Gaussian fit of first-derivative for curves in (C) H) Gaussian fit of first-derivative for curves 

in (D). On the plots A-D, the y-axis represents the normalized fluorescence and the x-axis 

represents the temperature in degrees Celsius. The experimental data points were fit to the 

respective equations using the nonlinear curve-fitting algorithm of GraphPad Prism v 6.0e.
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Figure 5. 
Structures of small molecules showing binding to E. coli DHFR as assessed by the thermal 

shift assay methodology A) 1,3,5-triazine-2,4-diamine derivatives B) quinazoline-1,3-

diamine derivatives C) Pyrimidinediamine and diaminopetridine derivatives D) 2,4 

dihydroxyphenyl derivatives. The SDF files for the small molecules were downloaded from 

Pubchem (http://pubchem.ncbi.nlm.nih.gov) and the figure was generated using 

ChemBioDraw 14.0.
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Table 1

Virtual screening performance of PoLi on 40 DUD targets and 65 DUD-E targets using experimental and 

modeled structures.

Target receptor
AUC EF1% EF5% EF10% HR1% HR5% HR10%

av | sd av | sd av | sd av | sd av | sd av | sd av | sd

DUD-E (LIGSIFT) 0.73±0.20 18.7±18.1 6.6±4.4 4.2±2.3 29.2±25.7 20.0±14.1 25.3±14.6

DUD-E (exp.) 0.72±0.16 9.6±13.5 4.8±4.4 3.4±2.3 14.6±19.1 14.0±13.9 20.1±15.1

DUD-E (model TM> 0.5) 0.74±0.16 9.9±13.5 4.9±4.3 3.6±2.3 14.9±18.8 14.5±13.4 21.4±15.3

DUD-E(model pdist<5 Å) 0.76±0.16 11.0±14.3 5.4±4.4 3.9±2.3 16.6±19.9 15.9±13.9 23.4±15.6

DUD-E (model) 0.73±0.16 9.6±12.7 4.7±4.2 3.6±2.3 14.3±17.0 13.9±13.2 21.1±15.3

DUD (LIGSIFT) 0.77±0.20 17.4±11.1 7.8±5.4 4.7±2.7 49.4±31.5 39.2±27.1 47.2±27.5

DUD (exp.) 0.78±0.19 15.2±11.4 7.2±5.2 4.7±2.7 43.3±32.4 31.9±24.4 41.3±26.0

DUD (model TM> 0.5) 0.78±0.18 14.1±10.1 7.2±4.7 4.6±2.7 40.1±28.8 31.8±22.1 40.7±25.5

DUD (model pdist< 5Å) 0.80±0.19 15.9±9.9 8.1±4.7 5.1±2.7 45.2±28.3 34.9±21.8 44.1±25.4

DUD (model) 0.78±0.18 13.4±10.3 7.0±4.8 4.6±2.9 38.0±29.3 30.7±22.3 39.5±26.1

av: average; sd: standard deviation; exp: experimentally determined structure; TM: TM-score of model to experimental structure; pdist: distance 
between predicted pocket and center of mass of ligand in crystal structure
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Table 2

Analysis of molecular similarity scores between database molecules and template ligands to understand the 

decrease in performance of PoLi on DUD-E database.

Database Receptor structure

3D similarity 2D similarity

Actives Decoys Actives Decoys

av | sd av | sd av | sd av | sd

DUD-E
Experimental 0.52±0.06 0.50±0.04 0.61±0.09 0.57±0.06

Model 0.52±0.06 0.50±0.04 0.61±0.09 0.56±0.06

DUD
Experimental 0.58±0.09 0.53±0.05 0.62±0.09 0.58±0.06

Model 0.57±0.06 0.53±0.04 0.62±0.09 0.57±0.06

av: average; sd: standard deviation

J Chem Inf Model. Author manuscript; available in PMC 2015 October 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Roy et al. Page 29

Table 3

Performance of PoLi, LIGSIFT, FINDSITEfilt and AutoDock Vina on DUD and 65 DUD-E targets using 

modeled structures. PoLiunbiased performance is obtained without performing biased structural overlap in hot-

spot regions.

Method
AUC EF1% EF5% EF10% HR1% HR5% HR10%

av | sd av | sd av | sd av | sd av | sd av | sd av | sd

DUD-E database

AutoDockVina 0.60±0.13 3.0±2.8 2.1±1.5 1.8±1.0 4.9±4.7 6.3±4.8 11.1±6.9

FINDSITEfilt 0.69±0.16 7.9±11.3 3.9±3.8 2.9±2.2 12.1±17.0 11.2±11.6 16.8±13.1

LIGSIFT 0.67±0.14 5.9±8.7 3.5±3.4 2.7±1.9 8.9±11.1 10.3±10.1 15.8±12.3

PoLi unbiased 0.72±0.17 9.7±13.5 4.8±4.2 3.5±2.3 14.4±17.4 14.0±13.0 21.0±15.3

PoLi 0.73±0.16 9.6±12.7 4.7±4.2 3.6±2.3 14.3±17.0 13.9±13.2 21.1±15.3

DUD database

AutoDockVina 0.50±0.16 1.6±2.2 1.5±1.3 1.3±1.0 4.6±6.1 6.7±5.9 11.6±9.3

FINDSITEfilt 0.70±0.20 9.0±10.3 4.4±4.5 3.1±2.5 25.8±29.4 20.8±22.5 28.8±25.4

LIGSIFT 0.71±0.20 11.8±11.5 5.4±4.6 3.7±2.6 33.3±32.9 23.0±19.9 31.3±21.9

PoLi unbiased 0.77±0.19 12.3±10.4 6.6±4.8 4.5±2.9 35.0±29.8 29.0±22.2 39.3±26.9

PoLi 0.78±0.18 13.4±10.3 7.0±4.8 4.6±2.9 38.0±29.3 30.7±22.3 39.5±26.1

av: average; sd: standard deviation

J Chem Inf Model. Author manuscript; available in PMC 2015 October 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Roy et al. Page 30

Table 4

Performance of PoLi on DUD-E and DUD database using templates with similar fold and those with random 

structure similarity (TM-score < 0.4).

Templates
AUC EF1% EF5% EF10% HR1% HR5% HR10%

av | sd av | sd av | sd av | sd av | sd av | sd av | sd

DUD-E database

Same fold 0.71±0.17 8.7±13.3 4.3±4.2 3.2±2.5 12.9±17.4 12.7±12.5 19.0±15.6

Unrelated fold 0.62±0.15 2.7±4.1 2.1±2.2 1.9±1.6 4.3±6.6 6.2±6.5 11.4±10.3

Same fold* 0.75±0.16 10.5±14.0 5.2±4.2 3.8±2.3 15.6±18.0 15.3±12.2 22.9±14.4

Combined* 0.74±0.16 10.0±13.1 4.8±4.0 3.7±2.3 14.7±16.5 14.1±11.4 21.7±14.2

Failed(combined) 0.69±0.25 7.3±10.4 4.1±5.3 3.0±2.8 12.5±19.4 12.7±19.9 18.0±20.5

DUD database

Same fold 0.74±0.21 12.0±11.0 6.3±5.3 4.2±3.3 33.9±31.0 27.5±23.5 35.9±29.5

Unrelated fold 0.68±0.20 7.1±8.7 4.3±4.3 3.1±2.5 20.0±25.0 19.2±20.6 27.9±24.1

Same fold
# 0.80±0.20 15.0±10.4 7.9±4.8 5.2±2.9 42.3±29.4 34.4±21.6 44.9±26.7

Combined
# 0.80±0.16 15.9±10.0 7.7±4.7 5.0±2.6 44.9±28.5 33.5±22.2 43.3±25.3

Failed(combined) 0.70±0.27 4.0±4.6 3.8±3.9 3.1±2.4 11.1±12.7 18.2±19.0 29.3±23.7

av: average; sd: standard deviation;

*
average over 54 DUD-E targets with predictions generated using similar fold template;

#
average over 32 DUD targets with predictions generated using similar fold template; Combined: Predictions generated using both similar and 

unrelated fold templates; Failed: Proteins targets where no predictions could be generated due to lack of similar pockets in similar fold templates.
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Table 5

Pocket specific predictions by PoLi on DUD-E and DUD database.

Pocket (# protein)
AUC EF1% EF5% EF10% HR1% HR5% HR10%

av | sd av | sd av | sd av | sd av | sd av | sd av | sd

DUD-E database

Pocket 1 (65) 0.74±0.13 9.4±13.1 4.7±4.1 3.5±2.3 14.2±17.0 14.0±4.8 20.9±15.3

Pocket 2 (45) 0.64±0.13 2.5±3.1 2.1±2.1 1.9±1.4 4.1±5.5 6.4±7.9 11.6±10.2

Pocket 3 (27) 0.60±0.16 2.5±3.5 2.2±1.9 1.9±1.6 3.8±5.2 6.2±5.6 11.1±9.4

Pocket 4 (12) 0.66±0.13 2.4±2.9 2.5±1.8 2.4±1.5 3.9±5.0 7.5±6.4 14.1±10.1

Pocket 5 (6) 0.60±0.18 3.5±5.3 2.6±4.3 2.0±2.5 5.0±7.1 7.7±13.2 12.0±15.5

DUD database

Pocket 1 (40) 0.77±0.15 13.3±9.1 6.8±4.4 4.5±2.7 37.7±26.1 30.0±21.8 38.8±25.5

Pocket 2 (36) 0.64±0.18 2.3±4.0 2.4±3.0 2.2±2.2 6.5±11.6 11.8±15.2 21.3±22.5

Pocket 3 (23) 0.63±0.21 4.1±5.7 2.8±3.3 2.3±2.3 11.6±16.0 13.2±16.0 22.0±22.9

Pocket 4 (14) 0.65±0.22 3.3±9.7 2.8±3.6 2.5±2.1 9.1±26.9 13.3±17.9 24.2±21.8

Pocket 5 (8) 0.74±0.13 4.9±5.9 3.9±3.1 3.3±2.1 14.3±17.4 18.7±16.0 31.5±21.4
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Table 6

Summary of virtual ligand screening, thermal shift assay and binding parameters for the hits obtained on E. 

coli DHFR.

Identity Rank Rank2D
Q

# Tm (° C) ΔTm (° C) KD (μM)c

Protein NA NA 1.00 51.9 NA NA

NSC339578* 6 777 0.35 69.5 17.6 02.4 ± 0.6

NSC71669 75 863 0.32 66.9 15.0 05.2 ± 1.3

NSC305782 46 1485 0.20 66.3 14.4 06.2 ± 1.2

NSC740* 18 674 0.34 66.3 14.4 06.2 ± 1.6

NSC133071 25 119 0.41 66.2 14.3 06.4 ± 1.5

NSC7364* 5 1303 0.43 64.4 12.5 10.8 ± 2.1

NSC309401* 7 129 0.31 63.6 11.7 13.7 ± 1.8

CHEMBL597262 1 41 0.42 62.6 10.7 18.4 ± 2.7

NSC168184 3 109 0.23 62.4 10.5 19.5 ± 3.5

CHEMBL333873 2 90 0.31 61.5 9.6 25.6 ± 3.8

NSC117268 60 254 0.43 60.4 8.5 35.7 ± 6.3

NSC11150 77 69 0.50 58.4 6.5 65.6 ± 11.1

NSC104129 10 80 0.32 57.3 5.4 91.9 ± 14.0

NSC89759 51 66 0.30 55.1 3.2 182.1± 21.6

*
Indicates reported inhibitors of DHFR independently picked up by PoLi and validated experimentally. Rank2D is the rank of identified inhibitors 

using 2D fingerprint similarity (TC) using same set of templates as used by PoLi,

#
quality score (Q) is the ratio of the melting-associated increase in fluorescence (ΔFmelt) and total range in fluorescence (ΔFtotal). A Q value of 1 

represents a high-quality curve, while a value of 0 shows an absence of melting as described earlier49. KDC is the dissociation constant computed 

from the magnitude thermal shifts obtained relative to the protein alone.
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