Table 1. Best classification accuracies for diverse situations (two different feature selection approaches, four different kinship filtered sets, and three classifiers).
Approach 1 | Approach 2 | ||||
---|---|---|---|---|---|
Kinship | Algorithm | # of Features | Mean ± Variance | # of Features | Mean ± Variance |
LogitBoost | 83 | 0.652 ± 0.002 | 81 | 0.661 ± 0.004 | |
≥ 0.00 | KNN (IBk) | 80 | 0.557 ± 0.006 | 90 | 0.549 ± 0.001 |
SVM (SMO) | 86 | 0.588 ± 0.004 | 87 | 0.578 ± 0.001 | |
LogitBoost | 72 | 0.878 ± 0.002 | 85 | 0.868 ± 0.005 | |
≥ 0.05 | KNN (IBk) | 88 | 0.720 ± 0.015 | 81 | 0.726 ± 0.010 |
SVM (SMO) | 88 | 0.784 ± 0.004 | 90 | 0.747 ± 0.009 | |
LogitBoost | 47 | 0.950 ± 0.002 | 64 | 0.942 ± 0.003 | |
≥ 0.10 | KNN (IBk) | 24 | 0.833 ± 0.013 | 28 | 0.850 ± 0.005 |
SVM (SMO) | 73 | 0.792 ± 0.009 | 50 | 0.790 ± 0.008 | |
LogitBoost | 53 | 0.992 ± 0.001 | 4 | 0.992 ± 0.001 | |
≥ 0.15 | KNN (IBk) | 82 | 0.983 ± 0.003 | 20 | 0.992 ± 0.001 |
SVM (SMO) | 73 | 0.967 ± 0.005 | 72 | 0.909 ± 0.007 |