Skip to main content
. 2015 Oct 5;10(10):e0139685. doi: 10.1371/journal.pone.0139685

Table 2. Evaluation of predicted performance according to balanced accuracy.

The balanced accuracies were calculated by 10-fold cross-validation. Values represent the mean ± 10-fold variance. Figures written in bold represent a higher level of balanced accuracy than those of the other classifiers in each class. Figures given in parentheses represent the number of features used in classifiers.

Kinship ≥ 0.00
Approach 1 Approach 2
Class LogitBoost (83) KNN (IBk) (80) SVM (SMO) (86) LogitBoost (81) KNN (IBk) (90) SVM (SMO) (87)
D1 0.387 ± 0.124 0.050 ± 0.025 0.000 ± 0.000 0.446 ± 0.146 0.133 ± 0.104 0.017 ± 0.003
D2 0.683 ± 0.057 0.729 ± 0.039 0.810 ± 0.035 0.829 ± 0.026 0.808 ± 0.044 0.742 ± 0.030
D10 0.422 ± 0.068 0.421 ± 0.088 0.701 ± 0.039 0.513 ± 0.061 0.389 ± 0.114 0.612 ± 0.032
D11 0.713 ± 0.033 0.676 ± 0.107 0.695 ± 0.042 0.735 ± 0.036 0.624 ± 0.100 0.625 ± 0.108
D13 0.751 ± 0.039 0.823 ± 0.024 0.905 ± 0.011 0.703 ± 0.025 0.810 ± 0.027 0.913 ± 0.018
D18 0.418 ± 0.041 0.245 ± 0.071 0.277 ± 0.117 0.547 ± 0.048 0.254 ± 0.032 0.291 ± 0.109
D27 0.540 ± 0.067 0.532 ± 0.065 0.513 ± 0.076 0.585 ± 0.083 0.416 ± 0.051 0.521 ± 0.062
D38 0.774 ± 0.045 0.712 ± 0.074 0.682 ± 0.064 0.857 ± 0.057 0.685 ± 0.051 0.697 ± 0.074
D59 0.797 ± 0.060 0.642 ± 0.069 0.648 ± 0.098 0.768 ± 0.050 0.698 ± 0.047 0.677 ± 0.063
D60 0.755 ± 0.091 0.067 ± 0.044 0.145 ± 0.038 0.611 ± 0.114 0.108 ± 0.034 0.361 ± 0.118
D61 0.605 ± 0.150 0.462 ± 0.160 0.150 ± 0.114 0.185 ± 0.082 0.273 ± 0.044 0.000 ± 0.000
D62 0.923 ± 0.017 0.469 ± 0.064 0.475 ± 0.131 0.840 ± 0.040 0.608 ± 0.062 0.486 ± 0.066
D66 0.655 ± 0.082 0.448 ± 0.170 0.340 ± 0.062 0.463 ± 0.115 0.407 ± 0.038 0.411 ± 0.145
D89 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
D90 0.693 ± 0.080 0.827 ± 0.038 0.527 ± 0.132 0.708 ± 0.104 0.717 ± 0.068 0.689 ± 0.133
D100 0.638 ± 0.082 0.889 ± 0.035 0.663 ± 0.094 0.705 ± 0.110 0.833 ± 0.125 0.746 ± 0.048
D102 0.770 ± 0.037 0.355 ± 0.055 0.683 ± 0.120 0.862 ± 0.030 0.364 ± 0.038 0.702 ± 0.049
D103 0.452 ± 0.031 0.607 ± 0.095 0.492 ± 0.045 0.418 ± 0.100 0.517 ± 0.081 0.468 ± 0.100
D107 0.733 ± 0.063 0.787 ± 0.045 0.757 ± 0.040 0.818 ± 0.076 0.718 ± 0.080 0.795 ± 0.024
D114 0.766 ± 0.056 0.630 ± 0.077 0.678 ± 0.050 0.683 ± 0.102 0.628 ± 0.055 0.747 ± 0.040
Balanced Accuracy 0.624 ± 0.061 0.518 ± 0.067 0.507 ± 0.065 0.614 ± 0.070 0.500 ± 0.060 0.525 ± 0.061
Kinship ≥ 0.05
Approach 1 Approach 2
Class LogitBoost (72) KNN (IBk) (88) SVM (SMO) (88) LogitBoost (85) KNN (IBk) (81) SVM (SMO) (90)
D11 0.975 ± 0.006 0.940 ± 0.018 0.933 ± 0.028 0.975 ± 0.006 0.980 ± 0.004 0.933 ± 0.012
D59 0.793 ± 0.103 0.904 ± 0.029 0.832 ± 0.032 0.938 ± 0.010 0.848 ± 0.032 0.751 ± 0.057
D60 0.843 ± 0.029 0.150 ± 0.065 0.597 ± 0.142 0.717 ± 0.073 0.204 ± 0.045 0.575 ± 0.132
D62 0.955 ± 0.009 0.767 ± 0.063 0.727 ± 0.052 0.963 ± 0.006 0.693 ± 0.066 0.718 ± 0.100
D66 0.900 ± 0.024 0.661 ± 0.061 0.696 ± 0.080 0.795 ± 0.116 0.591 ± 0.081 0.623 ± 0.090
D89 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
D90 0.838 ± 0.035 0.802 ± 0.076 0.947 ± 0.014 0.875 ± 0.045 0.806 ± 0.106 0.944 ± 0.014
D100 0.900 ± 0.044 0.941 ± 0.015 0.867 ± 0.048 0.967 ± 0.011 0.889 ± 0.111 0.817 ± 0.114
Balanced Accuracy 0.776 ± 0.031 0.646 ± 0.041 0.700 ± 0.049 0.779 ± 0.033 0.626 ± 0.056 0.670 ± 0.065
Kinship ≥ 0.10
Approach 1 Approach 2
Class LogitBoost (47) KNN (IBk) (24) SVM (SMO) (73) LogitBoost (64) KNN (IBk) (28) SVM (SMO) (50)
D59 1.000 ± 0.000 0.896 ± 0.022 0.947 ± 0.007 1.000 ± 0.000 0.925 ± 0.016 0.950 ± 0.013
D62 1.000 ± 0.000 0.917 ± 0.031 0.745 ± 0.051 1.000 ± 0.000 0.942 ± 0.016 0.922 ± 0.017
D66 0.942 ± 0.016 0.785 ± 0.060 0.847 ± 0.046 0.930 ± 0.027 0.848 ± 0.028 0.677 ± 0.108
D89 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
D100 0.950 ± 0.025 0.933 ± 0.020 0.811 ± 0.050 0.963 ± 0.012 0.900 ± 0.026 0.622 ± 0.129
Balanced Accuracy 0.778 ± 0.008 0.706 ± 0.026 0.670 ± 0.031 0.779 ± 0.008 0.723 ± 0.017 0.634 ± 0.053
Kinship ≥ 0.15
Approach 1 Approach 2
Class LogitBoost (72) KNN (IBk) (88) SVM (SMO) (88) LogitBoost (85) KNN (IBk) (81) SVM (SMO) (90)
D59 0.950 ± 0.025 0.989 ± 0.001 0.988 ± 0.002 1.000 ± 0.000 1.000 ± 0.000 0.975 ± 0.006
D100 0.852 ± 0.031 0.933 ± 0.020 0.858 ± 0.037 0.950 ± 0.025 0.875 ± 0.051 0.775 ± 0.068
Balanced Accuracy 0.901 ± 0.028 0.961 ± 0.010 0.923 ± 0.019 0.975 ± 0.013 0.938 ± 0.026 0.875 ± 0.037