Skip to main content
. 2015 Oct 5;11(10):e1004532. doi: 10.1371/journal.pcbi.1004532

Table 4. The best optimal theoretical fractional volumes and related parameters in the cortex for the combined “wire min + spine max” principle with control parameter f = 0.1.

The optimal fractions correspond to the minimal Mahalanobis distance (MD) between theory and data.

Principle type/spine distr. Optimal parameters MD
x y s g c u¯ P r γ 2
Wire length min + spine max (γ 1 = 2/3)
 Exponential 0.399 0.396 0.097 0.098 0.010 0.655 0.612 0.99 1.00 5.885
 Gamma (n = 1) 0.395 0.377 0.107 0.110 0.012 0.612 0.717 0.90 0.95 3.558
 Gamma (n = 2) 0.393 0.368 0.110 0.117 0.013 0.569 0.759 0.85 0.95 2.416
 Rayleigh 0.395 0.362 0.110 0.120 0.013 0.553 0.768 0.80 0.90 2.117
 Log-logistic 0.400 0.344 0.116 0.126 0.015 0.544 0.844 0.65 0.90 1.277
 Log-normal 0.386 0.353 0.112 0.134 0.015 0.480 0.825 0.80 0.80 1.565
Wire surface min + spine max (γ 1 = 1/3)
 Exponential 0.402 0.393 0.100 0.096 0.010 0.696 0.631 0.95 0.70 5.903
 Gamma (n = 1) 0.394 0.377 0.108 0.109 0.012 0.629 0.728 0.90 0.70 3.549
 Gamma (n = 2) 0.396 0.364 0.111 0.116 0.013 0.589 0.774 0.80 0.70 2.375
 Rayleigh 0.399 0.358 0.111 0.118 0.013 0.576 0.784 0.75 0.65 2.105
 Log-logistic 0.398 0.346 0.117 0.125 0.015 0.550 0.850 0.65 0.70 1.280
 Log-normal 0.396 0.347 0.104 0.138 0.014 0.423 0.759 0.65 0.80 1.741
Wire volume min + spine max (γ 1 = 0)
 Exponential 0.399 0.396 0.099 0.096 0.010 0.692 0.629 0.98 0.45 5.898
 Gamma (n = 1) 0.398 0.374 0.107 0.110 0.012 0.617 0.721 0.85 0.50 3.553
 Gamma (n = 2) 0.395 0.365 0.112 0.115 0.013 0.598 0.781 0.80 0.50 2.371
 Rayleigh 0.397 0.359 0.113 0.117 0.013 0.590 0.792 0.75 0.45 2.111
 Log-logistic 0.399 0.345 0.117 0.125 0.015 0.548 0.848 0.60 0.55 1.277
 Log-normal 0.400 0.343 0.110 0.133 0.015 0.474 0.798 0.60 0.45 1.409
Delays min + spine max (γ 1 = 5/6)
 Exponential 0.398 0.398 0.096 0.099 0.010 0.642 0.606 1.00 1.15 5.887
 Gamma (n = 1) 0.390 0.382 0.106 0.111 0.012 0.597 0.708 0.95 1.10 3.588
 Gamma (n = 2) 0.393 0.367 0.111 0.117 0.013 0.580 0.768 0.85 1.05 2.393
 Rayleigh 0.392 0.366 0.108 0.121 0.013 0.537 0.755 0.85 1.05 2.164
 Log-logistic 0.396 0.348 0.114 0.127 0.014 0.530 0.830 0.70 1.05 1.295
 Log-normal 0.390 0.356 0.108 0.132 0.014 0.469 0.775 0.80 1.00 1.553

All the results correspond to θ = 0.321.