Table 4. The best optimal theoretical fractional volumes and related parameters in the cortex for the combined “wire min + spine max” principle with control parameter f = 0.1.
The optimal fractions correspond to the minimal Mahalanobis distance (MD) between theory and data.
Principle type/spine distr. | Optimal parameters | MD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
x | y | s | g | c | P | r | γ 2 | |||
Wire length min + spine max (γ 1 = 2/3) | ||||||||||
Exponential | 0.399 | 0.396 | 0.097 | 0.098 | 0.010 | 0.655 | 0.612 | 0.99 | 1.00 | 5.885 |
Gamma (n = 1) | 0.395 | 0.377 | 0.107 | 0.110 | 0.012 | 0.612 | 0.717 | 0.90 | 0.95 | 3.558 |
Gamma (n = 2) | 0.393 | 0.368 | 0.110 | 0.117 | 0.013 | 0.569 | 0.759 | 0.85 | 0.95 | 2.416 |
Rayleigh | 0.395 | 0.362 | 0.110 | 0.120 | 0.013 | 0.553 | 0.768 | 0.80 | 0.90 | 2.117 |
Log-logistic | 0.400 | 0.344 | 0.116 | 0.126 | 0.015 | 0.544 | 0.844 | 0.65 | 0.90 | 1.277 |
Log-normal | 0.386 | 0.353 | 0.112 | 0.134 | 0.015 | 0.480 | 0.825 | 0.80 | 0.80 | 1.565 |
Wire surface min + spine max (γ 1 = 1/3) | ||||||||||
Exponential | 0.402 | 0.393 | 0.100 | 0.096 | 0.010 | 0.696 | 0.631 | 0.95 | 0.70 | 5.903 |
Gamma (n = 1) | 0.394 | 0.377 | 0.108 | 0.109 | 0.012 | 0.629 | 0.728 | 0.90 | 0.70 | 3.549 |
Gamma (n = 2) | 0.396 | 0.364 | 0.111 | 0.116 | 0.013 | 0.589 | 0.774 | 0.80 | 0.70 | 2.375 |
Rayleigh | 0.399 | 0.358 | 0.111 | 0.118 | 0.013 | 0.576 | 0.784 | 0.75 | 0.65 | 2.105 |
Log-logistic | 0.398 | 0.346 | 0.117 | 0.125 | 0.015 | 0.550 | 0.850 | 0.65 | 0.70 | 1.280 |
Log-normal | 0.396 | 0.347 | 0.104 | 0.138 | 0.014 | 0.423 | 0.759 | 0.65 | 0.80 | 1.741 |
Wire volume min + spine max (γ 1 = 0) | ||||||||||
Exponential | 0.399 | 0.396 | 0.099 | 0.096 | 0.010 | 0.692 | 0.629 | 0.98 | 0.45 | 5.898 |
Gamma (n = 1) | 0.398 | 0.374 | 0.107 | 0.110 | 0.012 | 0.617 | 0.721 | 0.85 | 0.50 | 3.553 |
Gamma (n = 2) | 0.395 | 0.365 | 0.112 | 0.115 | 0.013 | 0.598 | 0.781 | 0.80 | 0.50 | 2.371 |
Rayleigh | 0.397 | 0.359 | 0.113 | 0.117 | 0.013 | 0.590 | 0.792 | 0.75 | 0.45 | 2.111 |
Log-logistic | 0.399 | 0.345 | 0.117 | 0.125 | 0.015 | 0.548 | 0.848 | 0.60 | 0.55 | 1.277 |
Log-normal | 0.400 | 0.343 | 0.110 | 0.133 | 0.015 | 0.474 | 0.798 | 0.60 | 0.45 | 1.409 |
Delays min + spine max (γ 1 = 5/6) | ||||||||||
Exponential | 0.398 | 0.398 | 0.096 | 0.099 | 0.010 | 0.642 | 0.606 | 1.00 | 1.15 | 5.887 |
Gamma (n = 1) | 0.390 | 0.382 | 0.106 | 0.111 | 0.012 | 0.597 | 0.708 | 0.95 | 1.10 | 3.588 |
Gamma (n = 2) | 0.393 | 0.367 | 0.111 | 0.117 | 0.013 | 0.580 | 0.768 | 0.85 | 1.05 | 2.393 |
Rayleigh | 0.392 | 0.366 | 0.108 | 0.121 | 0.013 | 0.537 | 0.755 | 0.85 | 1.05 | 2.164 |
Log-logistic | 0.396 | 0.348 | 0.114 | 0.127 | 0.014 | 0.530 | 0.830 | 0.70 | 1.05 | 1.295 |
Log-normal | 0.390 | 0.356 | 0.108 | 0.132 | 0.014 | 0.469 | 0.775 | 0.80 | 1.00 | 1.553 |
All the results correspond to θ = 0.321.