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Abstract

Several enveloped RNA viruses of the arenavirus, bunyavirus, filovirus and flavivirus families are 

associated with a syndrome known as viral hemorrhagic fever (VHF). VHF is characterized by 

fever, vascular leakage, coagulation defects and multi organ system failure. VHF is currently 

viewed as a disease precipitated by viral suppression of innate immunity, which promotes 

systemic virus replication and excessive proinflammatory cytokine responses that trigger the 

manifestations of severe disease. However, the mechanisms by which immune dysregulation 

contributes to disease remain poorly understood. Infection of nonhuman primates closely 

recapitulates human VHF, notably Ebola and yellow fever, thereby providing excellent models to 

better define the immunological basis for this syndrome. Here we review the current state of our 

knowledge and suggest future directions that will better define the immunological mechanisms 

underlying VHF.

Introduction

Among the more well-known causes of VHF are the filoviruses Ebola virus (EBOV) and 

Marburg virus (MARV), the arenavirus Lassa virus, and the flaviviruses yellow fever (YFV) 

and dengue (DENV) virus. How diverse virus families with different replication strategies 

cause a similar clinical syndrome is incompletely understood, but several features typify 

these infections. The viruses effectively suppress innate antiviral defenses and replicate 

systemically to high titers; monocytes, macrophages and dendritic cells are targets of 

infection; a systemic cytokine storm occurs; and vascular leakage and hemorrhage may be 

seen. Nevertheless, specific details of the immunological underpinnings of VHF are lacking, 

and a unified view as to how the virus, the innate immune response and the adaptive 

immune response interact in the setting of VHF is also absent. Here, we argue that the 

availability of well-established nonhuman primate models of EBOV and YFV disease 

provide the necessary tools to define the immunological features common to VHFs, leading 

to a greater understanding of the syndrome and the suggestion of novel therapeutic 

approaches.
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Detailed look at EBOV

The ebolaviruses and marburgviruses are enveloped viruses with non-segmented negative-

sense single-stranded RNA genomes that belong to the family Filoviridae. There are 5 

species of ebolavirus: Zaire ebolavirus (EBOV), Sudan ebolavirus (SUDV), Bundibugyo 

ebolavirus (BDBV), Tai Forrest ebolavirus (TAFV) and Reston ebolavirus (RESTV) and a 

single species of marburgvirus, Marburg marburgvirus (MARV). Only EBOV, SUDV, 

BDBV and MARV have been associated with outbreaks of severe disease and high mortality 

in humans. The most detailed descriptions of filovirus disease come from studies of EBOV 

and will form the main basis for our discussion of filovirus hemorrhagic fever.

Filovirus genomes possess 7 genes that encode: nucleoprotein (NP), viral protein of 35 kDa 

(VP35), VP40, glycoprotein (GP; mediates viral attachment and entry), VP30, VP24 and 

Large protein (L; the enzymatic component of the viral RNA-dependent RNA polymerase). 

The EBOV replication cycle takes place in the cytoplasm. Virus release occurs by budding 

from the plasma membrane in a process directed by the matrix protein VP40 and enhanced 

by other viral proteins, including GP.

Pathophysiology

Infections occur due to direct contact with infectious material, such as bodily fluids 

containing infectious virus. Airborne transmission is not thought to be a significant route of 

human infection, but aerosolized virus does cause rapidly lethal disease in experimentally-

infected non-human primates (reviewed in [1]). Following exposure, an incubation period of 

2–21 days is followed by an abrupt but non-specific viral syndrome characterized by fever, 

chills and myalgia. As infection progresses, prostration, nausea, vomiting, abdominal pain 

and diarrhea appear. The final stages of disease are characterized by coagulopathy and 

vascular leakage resulting in hemorrhage and shock as reviewed in [2].

Many of the details of EBOV pathogenesis are derived from nonhuman primate studies, as 

they closely parallel severe human infections and are considered the “gold-standard” model 

of EBOV disease (EVD). The hallmarks of EVD are high levels of systemic virus 

replication, cytokine production, liver damage, coagulopathy and lymphopenia [2]. 

Although filoviruses productively infect a variety of cell types, dendritic cells (DCs), 

macrophages and monocytes appear to be the preferential targets [2–5]. This may be due to 

1) viral GP interaction with lectins, such as dendritic-cell-specific ICAM-3-grabbing non-

integrin (DC-SIGN) on the surface of these cells [6– 10], or 2) phosphatidylserine on the 

surface of virus particles interacting, either directly or through an intermediate, with 

molecules such as TIM-1, TAM or αVβ3 and αVβ5 integrins [11– 18]. Because these 

immune cells support productive viral infection and are capable of trafficking in vivo, their 

infection likely facilitates dissemination of the virus to lymph nodes and systemically 

[2,4,5,19].

The dissemination of EBOV to hepatocytes, adrenal cortical cells and endothelial cells likely 

contributes to coagulopathy, which can result in hemorrhage and shock [4]. Virus-induced 

liver damage reduces production of coagulation factors, while infection of the adrenal gland 

reduces production of hormones that regulate blood pressure [4]. In addition, infected 
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monocytes and macrophages produce proinflammatory mediators (IL-1β, IL-6, IL-8, IL-10, 

MIP-1β and TNFα), reactive oxygen species, nitric oxide, and tissue factor (TF) [20–27], 

which promote endothelial leakage and hypovolemia [28–31]. The cellular sensors and 

signaling pathways by which EBOV infection promotes production of cytokines and 

chemokines by monocytes are incompletely defined. In vitro studies demonstrate that 

extensive EBOV replication is not required to elicit cytokine production, but likely sustains 

the cytokine response.

Immune evasion

In contrast to monocytes/macrophages, EBOV infection of DCs is characterized by an 

inhibition of IFN-α/β and cytokine production, down-regulation of co-stimulatory 

molecules, and reduced ability to activate T cells [32–36]. The VP35 proteins target multiple 

innate immune signaling pathways to suppress IFN-α/β production and its antiviral effects 

[37–47]. X-ray crystal structures demonstrate that the EBOV and MARV VP35s bind the 

phosphodiester backbone of dsRNA and that EBOV VP35 also “caps” the ends of dsRNAs 

in a manner that could mask 5’-triphosphates [38,40–43,48,49]. EBOV VP35 can also 

interact with cellular protein PACT to prevent PACT-mediated activation of RIG-I. 

Mutations in VP35 that disrupt interactions with dsRNA and PACT abrogate VP35 

inhibition of IFN responses [36,38,40–43,48–54]. Furthermore, mutations in VP35 impair 

virus replication in IFN-α/β competent cells and attenuate the virus in vivo, demonstrating a 

critical role for innate immune suppression for pathogenesis [52–54].

In addition, EBOV and MARV block the Jak-STAT signaling pathways triggered when 

IFNs are added to cells, thereby disrupting the antiviral effects of these cytokines. EBOV 

VP24 blocks the nuclear accumulation of tyrosine phosphorylated STAT1 by binding to the 

NPI-1 subfamily of karyopherin alpha (KPNA) proteins [55–58], whereas MARV VP40 

blocks signaling by tyrosine kinase Jak1, preventing all the tyrosine phosphorylation events 

that typically occur after IFN addition to cells [59,60].

The impact of DC suppression on the adaptive immunity in vivo remains to be determined, 

as virus-specific T cell responses develop in both EBOV-infected mice and people who 

survive infection [61,62]. Moreover, lymphopenia is another common feature of EBOV 

infection, with loss of CD4 T cells, CD8 T cells and NK cells in mouse and nonhuman 

primate models [63,64] as well as human patients [65]. Cell loss occurs primarily via 

apoptosis and although the basis for this phenomenon is not yet clear, it is believed to be 

mediated by pro-inflammatory cytokines, NO and soluble FAS ligand produced by 

monocytes/macrophages [22,25,66–68].

Detailed look at YFV

Virus epidemiology, genetics and replication

YFV is endemic in central Africa and South America where it results in approximately 

200,000 cases and 30,000 deaths annually [69]. YFV is an arbovirus that is spread via 

mosquitoes belonging to the genera Haemagogus and Aedes. YFV is maintained through 

two life cycles: in the urban cycle, YFV is transmitted between humans via Aedes aegypti; 

and in the jungle cycle, YFV transmission occurs between non-human primates via 
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Hemagogus mosquitos in South America and Aedes africanus in Africa while humans can 

be infected by mosquitos that previously fed on an infected monkey [70,71].

Like other members of the Flaviviridae family, YFV is a single positive stranded RNA virus 

with an 11Kb genome composed of a 5’ non-coding region, a single open-reading frame 

(ORF), and a 3’ non-coding region. The ORF encodes 3 structural proteins (capsid (C), 

membrane (prM), and envelope (E)) and 7 nonstructural proteins (NS1, NS2a, NS2b, NS3, 

NS4a, NS4b, and NS5) [72]. Virus proteins are processed after translation of the entire 

polyprotein within the rough endoplasmic reticulum (ER). The main structural protein is 

envelope, which is anchored in the lipid bilayer of the viral envelope and plays an important 

role in viral entry [73]. Nonstructural proteins are mainly involved in RNA replication and 

post-translational cleavage of the virus polyprotein [74].

YFV cell entry is mediated by the surface E protein and is internalized via clathrin-

dependent endocytosis. The low-pH environment of endosomes induces un-coating of the 

virus, and the viral RNA genome is released into the cytoplasm, where replication can occur 

[73,75]. The positive sense RNA is translated to either synthesize complementary negative 

RNA strands, which serve as templates for progeny positive strands, or encode structural 

proteins for virion assembly and viral enzymes required for replication and post-translational 

processing [72].

Pathophysiology

YFV elicits two patterns of injury, viscerotropism and neurotropism. YFV primarily causes 

a viscerotropic disease in humans and nonhuman primates with lesions observed in multiple 

organs such as liver, spleen, heart and kidneys [76–78]. Golden hamsters and 

immunodeficient mice (AG129 mice) have been developed to study YFV infection [79–82]. 

However, there are limitations to these models. The hamster model requires a hamster-

adapted strain of YFV. Infection of immunodeficient mice with the vaccine strain YFV-17D 

results in encephalitis but not viscerotropic disease as observed in nonhuman primates and 

humans and hampers studies of host immune response to YFV [82]. In contrast, non-human 

primates are a robust model for studying YFV since they are a natural reservoir during the 

jungle cycle of transmission and the clinical manifestations following YFV challenge of 

rhesus macaques mimic human viscerotropic disease [83].

Approximately 103 YFV is first introduced into the epidermis via saliva from a blood-

feeding mosquito [84]. Previous studies suggest that dendritic cells residing in the epidermis 

are important early targets for flavivirus replication [85–87]. The virus then spreads via 

infected DCs through lymphatic channels to draining lymph nodes and subsequently into the 

bloodstream, eventually disseminating to the liver, spleen, additional lymph nodes, heart, 

and kidneys [84]. Yellow fever presents in three distinct stages: infection, remission and 

intoxication. Infection lasts 3–6 days after the initial mosquito bite and is characterized with 

the onset of fever, headache, malaise, photophobia, backache, myalgia, irritability and 

nausea with viremia peaking on 3 days after onset of symptoms [74,88]. During remission, 

which lasts between 12 to 48 hours, fever and symptoms subside [74]. Most patients 

recover, but approximately 15% of patients will become severely ill and enter the period of 

intoxication in which patients develop jaundice, oliguria or anuria, cardiovascular instability, 
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hemorrhagic fever and multi-organ dysfunction [74,89]. Case-fatality rates of patients that 

develop visceral disease with jaundice range from 20% to 50% [89].

Hepatic dysfunction is the hallmark of YFV and is characterized by eosinophilic 

degeneration of hepatocytes (known as Councilman bodies [90]) and Kupffer cells, Fas 

mediated midzonal hepatocellular apoptosis, absence of inflammation, and steatosis [91–

94]. The predominance of apoptotic versus necrotic liver injury may explain the minimal 

inflammation and infiltration [91,92,94]. Renal pathology is characterized by eosinophilic 

degeneration and fatty change of the renal tubular epithelium without inflammation [83].

Similar to Ebola hemorrhagic fever, cytokine dysregulation is thought to mediate endothelial 

damage, disseminated intravascular coagulation and circulatory shock observed in the 

terminal stage of YFV. Thrombocytopenia, prolonged clotting and prothrombin times have 

been observed in human patients and nonhuman primates due to diminished liver production 

of fibrinogen and clotting factors [74,95].

Immune evasion

Yellow Fever Virus employs strategies to evade host innate immunity by inhibiting type I 

interferon response. NS4B, whose function is conserved among flaviviruses, can block 

STAT1 activation and interferon stimulated gene expression in Vero cells after addition of 

IFNβ [96]. A recent study that characterized gene expression within peripheral blood 

mononuclear cells from rhesus macaques 3 days post YFV infection reported the down-

regulation of 43 genes associated with innate immunity, including interferon gamma 

receptor (IFNGR1), CD83 (a marker of DC maturation), and TNFSF11 (hypothesized to 

induce DCs to stimulate naïve T cell proliferation) [97,98]. The importance of evasion of 

innate immunity to the pathogenesis of YFV is highlighted by the reduced mortality in 

rhesus macaques treated with polyriboinosinicpolyribocytidylic acid, poly-L-lysine and 

carboxymethylcellulose, which are inducers of IFNα [99]. Similarly, administration of IFNγ 

reduced viremia and hepatitis severity in squirrel monkeys while prolonging survival time in 

rhesus macaques [100].

Similar to EBOV, YFV infection also results in profound lymphopenia. Depletion of 

lymphocytes in germinal centers of spleen, lymph nodes, tonsils and Peyer’s patches are 

observed [83,101,102]. In rhesus macaques infected with YFV strain DakH1279, circulating 

lymphocytes declined by 71% in animals that required euthanasia compared to a 23% 

decrease in animals that survived challenge, with a significant negative correlation between 

viral load and extent of lymphocyte loss [97]. The loss of lymphocytes is most likely due to 

the cytokine storm that accompanies YFV infection. Levels of pro-inflammatory modulators 

such as IL-6, MCP-1, IP-10, TNFα and anti-inflammatory cytokine IL-1RA were 

significantly higher in patients with fatal Yellow Fever compared to patients who survived 

[103]. Similarly, levels of IL-6, IFNy, MCP-1 and IL-15 were elevated in rhesus macaques 

infected with Yellow Fever strain DakH1279 [97].
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Remaining questions and future directions

The host response to infection plays prominent roles in EVD and YFV viscerotropic disease, 

but a direct demonstration of how specific interactions between virus and host immune 

response contribute to VHF in vivo is largely lacking. The availability of well-developed 

animal models provides the opportunity to address these gaps in knowledge and to use this 

information to develop new therapeutic approaches.

How does viral suppression of the IFN response influence viral pathogenesis?

Although we know a great deal about how filoviral VP35s regulate viral replication and 

suppress IFN response in vitro, the contribution of these functions to the pathogenesis of 

VHF in vivo remains poorly defined [32–36]. Recombinant EBOVs with point mutations in 

VP35 are attenuated in rodent models [52,53], however these models do not fully 

recapitulate human VHF [104]. Therefore to address the role of VP35 in VHF, primates 

must be infected with VP35 mutant viruses. Because the role of VP35 in innate immune 

evasion and viral replication are not easily separable, very early time points should be 

examined to uncover changes in DC and monocyte activation in draining lymph nodes.

A VP24 mutant EBOV was found to modestly impact DC maturation phenotypes in vitro 

[33]. However, this mutation may not completely inactivate VP24 IFN-antagonist function 

[105]. Recent structural and functional studies have defined new amino acid residues on 

EBOV VP24 critical for suppression of IFN signaling that should be investigated in vivo 

[58]. Finally, additional studies are required before we can define the contribution of MARV 

VP40 and to identify additional YFV proteins that contribute to suppression of innate 

immunity and impact pathogenesis in vivo.

What inflammatory pathways are activated by infection and in which cell types?

Excessive pro-inflammatory cytokine production is thought to be a major factor in 

pathogenesis of VHF [20,22]. Although the responses of infected monocytes and 

macrophages in vitro suggest these cells as a source of inflammatory cytokines, the cell 

types most relevant to the inflammatory response in vivo, the signaling pathways that 

contribute to this response, and the role of virus infection in triggering these responses 

remain to be defined. Depletion of specific immune cell subsets together with transcriptome 

and phenotype analysis of monocytes isolated from infected humans and nonhuman 

primates during acute infection would help address these questions.

What is the contribution of the immune responses in the vascular leakage and 
coagulopathy?

In vitro studies attribute EBOV-induced endothelial leakage to cytokines, TF and soluble 

GP, and in vivo studies suggest mechanisms other than destruction of the endothelium by 

virus replication [5,28,30]. Although complicated to address in NHPs, the use of cytokine-

neutralizing antibodies or specific inhibitors in EBOV or YFV-infected animals, could 

clarify disease mechanisms and suggest therapeutic approaches. Further, the contribution of 

liver damage or damage to the adrenal gland to coagulopathy or low blood pressure also 

need further examination [2].
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What is the status of the adaptive immune response?

The suppression of DC maturation in vitro suggests that EBOV may impair development of 

T cell responses. Fatal infections are associated with the absence of specific antibody 

responses and with the apoptotic loss of lymphocytes [25,63,64,106]. These findings suggest 

defects in adaptive immunity during the course of infection; however, survivors develop 

specific T cell responses [61,62]. Therefore, it is important to further characterize the status 

of the adaptive immune response in vivo. Important questions to be answered include 

mechanisms of lymphocyte apoptosis and dysregulation of lymphocyte activation and 

proliferation using careful examination of lymphocyte transcriptome and phenotype ex vivo 

using clinical samples and nonhuman primate models.

Tools to address these questions

The availability of well-developed animal models for both EBOV and YFV affords the 

opportunity to address these gaps in knowledge and to use this information to develop new 

therapeutic approaches. It should be possible to take advantage of different viruses from 

within the same family with different degrees of virulence. For example, whereas 

intramuscular injection of Zaire EBOV is nearly 100 percent lethal in macaques, a 

comparable injection of Bundibugyo EBOV is only 66 percent lethal [107]. Examination of 

host responses in survivors versus lethal infections with either virus could highlight those 

features that most determine the outcome of infection. Moreover, the similar pathogenic 

mechanisms employed by EBOV and YFV, suggest that YFV may serve as a model for 

Ebola hemorrhagic fever. One major advantage of YFV is the ability to study it under 

biosafety level 3 (BSL-3) conditions. In contrast, study of EBOV and other filoviruses 

requires biosafety level 4 (BSL-4) containment facilities, which are available to only a 

handful of researchers worldwide.
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Highlights

Several families of RNA viruses cause viral hemorrhagic fever in humans

Viral hemorrhagic fever (VHF) is characterized by fever, vascular leak and bleeding

Immunological mechanisms are thought to underlie the symptoms of VHF

Ebola virus and Yellow Fever virus provide two excellent models to study VHF
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Figure. 
Infection with EBOV or YFV occurs when virus breaches epithelial/mucosal barriers. This 

may occur following exposure of EBOV to breaks in skin or to the mucosal epithelium. For 

YFV, this occurs via mosquito bite. Macrophages and dendritic cells are important early 

targets of infection. These cells not only support productive replication but can also traffic to 

local lymph nodes and to other tissues and organs, thereby promoting systemic 

dissemination. Infection of and damage to different organs promotes the indicated 

pathologic processes. Infection of macrophages also results in prolific production of 
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cytokines, commonly referred to as cytokine storm. This can promote vascular leakage and 

hypotension and can activate coagulation pathways that ultimately lead to disseminated 

intravascular coagulation. Also, cytokines likely contribute to apoptosis of lymphocytes. 

Infection of dendritic cells leads to a dysregulated phenotype where interferon (IFN) 

responses are suppressed and maturation of the dendritic cells is impaired. This likely 

inhibits activation of T cells, further preventing control of the infection.
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