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Abstract

The innate immune system mediates protection against neurotropic viruses that replicate in the 

central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation 

of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-

inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and 

cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how 

cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses.

INTRODUCTION

The central nervous system (CNS) coordinates autonomic functions, cognition, and higher-

order learning, and is essential for propagation and survival. Accordingly, the CNS must be 

protected against invasion by microorganisms including viruses. However, the host carefully 

regulates access of immune cells to the brain and spinal cord to prevent excessive 

inflammation, swelling, and damage to specialized cells with limited capacity for 

regeneration. Beyond infiltration of immune cells from peripheral tissues, the CNS utilizes 

cell-intrinsic and cell-extrinsic innate immune responses to defend against viral infections.

Members of at least 11 virus families including DNA viruses, retroviruses and RNA viruses 

can infect cells in the CNS [1], and cause direct injury, bystander injury, or trigger immune-

mediated encephalitis, all of which results in morbidity and mortality. In this review, we 

discuss recent discoveries of the intrinsic antiviral pathways in the CNS against different 
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neurotropic viruses that are mediated by type I interferon (IFN), the inflammasome, 

microRNA, and autophagy signaling pathways.

Virus entry into the CNS is modulated by innate immunity

One of the major paths of viral entry into the CNS is hematogenous transport across the 

blood-brain barrier (BBB). The BBB is a multicellular structure that protects the CNS from 

toxic solutes or pathogens that accumulate or become present in circulation. The BBB is 

composed of specialized endothelial cells attached to each other via tight and adherens 

junctions. Astrocytes, microglia, and pericytes provide structural and molecular support to 

form a functional neurovascular unit. Among viruses that enter the CNS across the BBB, 

three routes have been described: (a) “Trojan horse” model; intracellular transport within 

infected myeloid cells [2,3]; (b) paracellular entry due to loss of integrity of the BBB [4–6]; 

(c) infection of endothelial cells with basolateral virus spread [4]. Viruses also can gain 

access to the CNS by axonal retrograde transport along peripheral neurons into the spinal 

cord [7–9] and infection of olfactory neurons adjacent to the cribriform plate [10–12] or 

choroid plexus epithelial cells [10,13].

BBB permeability can be altered by cytokines that accumulate in the bloodstream as a result 

of systemic inflammation or as a consequence of matrix metalloproteinases that disrupt tight 

junctions and basement membranes. As an example, tumor necrosis factor (TNF)-α, 

interleukin (IL)-6 and IL-1β increase BBB permeability to viruses [14,15]. However, other 

inflammatory stimuli tighten the BBB. Endothelial cells can respond to type I and type III 

IFNs to stabilize the barrier [15–17] and limit the flux of viruses into the brain. A complete 

breakdown of the BBB was observed in mice lacking the type I IFN receptor (Ifnar−/−) that 

were challenged with different encephalitic flaviviruses [15,18].

Viral recognition in the CNS

Our understanding of innate antiviral mechanisms that function in the CNS has expanded 

greatly (Fig 1). This includes insight as to how viruses are recognized by specific cells in the 

CNS, the differences in responsiveness among neuronal cell subtypes, the particular pattern 

recognition pathways that are activated, and the antiviral genes that inhibit infection of 

individual or groups of viruses.

The innate immune system is defined in part by a network of pattern recognition receptors 

(e.g., Toll-like receptor (TLR), Retinoic acid-inducible gene (RIG)-I-like receptors, and 

DNA sensors) that detect conserved pathogen-associated molecular patterns on microbes. 

Pattern recognition receptors activate signaling cascades that promote nuclear translocation 

of latent transcription factors (e.g., IFN regulatory factor (IRF)-3 and nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB)) and induce transcriptional activation of 

genes that direct and mediate cell immunity against viruses, including secretion of antiviral 

cytokines (IFN-α and IFN-β) and expression of antiviral IFN-stimulated genes. Recent 

studies have elucidated specific innate immune signaling and effector pathways that restrict 

or contribute to pathogenesis of different viruses in the CNS:
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(a) Toll-like receptors

TLR signaling can have protective or pathogenic effects in the CNS. Infection of poliovirus, 

a picornavirus, was restricted in the brain and spinal cord by the TLR3–TIR-domain-

containing adapter-inducing IFN-β (TRIF) signaling pathway [19]. TLR signaling against 

Rhabdoviridae family members showed distinct effects. Mice lacking TLR3 had reduced 

viral load and improved survival after rabies virus infection, suggesting that TLR3 

contributes to pathogenesis. The role of TLR3 in response to West Nile virus (WNV) 

infection also is complex. One study showed that TLR3 signaling restricted WNV infection 

in neurons [20] whereas as second showed it altered BBB permeability and enhanced viral 

neuroinvasion [14].

Analysis of humans with primary immunodeficiencies has revealed protective effects of the 

TLR3 signaling pathway against encephalitic herpesviruses. Single-gene mutations in the 

TLR3-TRIF signaling pathway (TLR3, TRIF, TNF receptor-associated factor (TRAF)3), 

and TANK-binding kinase (TBK)1) exist in children with susceptibility to herpes simplex 

virus (HSV) encephalitis [21–24]. Correspondingly, mice lacking TLR3 or TRIF had 

increased viral burden in the CNS [25]. Although HSV replication in the CNS primarily 

targets neurons, mice lacking TLR3 acquired a broader tropism, with infection observed in 

astrocytes [25].

The TLR7-Myeloid differentiation primary response gene 88 (MyD88) signaling axis 

protected against vesicular stomatitis virus (VSV) infection as mice lacking MyD88 mice 

exhibited reduced survival with increased viral burden in the CNS [26]. Again for WNV, the 

net function of TLR7 varied: one study demonstrated a protective role [27], whereas a 

second suggested that TLR7 contributed to neuroinvasion [28].

(b) RIG-I-like receptors

Several neurotropic RNA viruses engage RLRs to generate antiviral responses. Type I IFN 

production in response to rabies virus is mediated preferentially by RLR signaling as mice 

lacking the downstream adaptor molecule mitochondrial antiviral signaling protein (MAVS) 

developed worse limb paralysis upon infection [29]. RLR signaling also limits WNV 

replication in the brain and spinal cord, particularly in neurons [30]. Similarly, other positive 

stranded RNA viruses (e.g., Japanese encephalitis (JEV) and Sindbis (SINV) viruses) are 

restricted by MAVS signaling in the CNS [31,32]. Nonetheless, RLR signaling in the CNS 

has been implicated in neuronal pathology. La Crosse virus (LACV), an Orthobunyavirus, 

triggered RIG-I-MAVS signaling to upregulate the sterile alpha and TIR-containing motif 1 

(SARM1), an adaptor molecule involved in oxidative stress, mitochondrial damage, and cell 

death in neurons [33].

(c) DNA sensors

Most studies describing DNA sensor mediated antiviral effects with neurotropic viruses 

have been performed with HSV. One cytoplasmic viral DNA sensor is cGAMP synthase 

(cGAS), which signals through an adaptor molecule, stimulator of IFN genes (STING). 

STING recruits TBK1, which results in the activation and nuclear translocation of IRF-3 and 

induction of type I IFN and proinflammatory cytokines. STING-deficient mice sustained 
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higher HSV-1 infection in the brain and greater death [34]. Consistent with this, mice 

lacking cGAS mice were more vulnerable to HSV-1 and failed to produce type I IFN [35].

(d) IRF transcription factors

Induction of type I IFN and ISGs are regulated by IRF family transcription factors that are 

activated by pathogen recognition receptor signaling. Although the role of IRF-3 and IRF-7 

in mediating antiviral responses in myeloid cells is established, their function in resident 

cells of the CNS is less well characterized. IRF-3−/− neurons from the cerebral cortex 

showed blunted type I IFN responses and were more susceptible to WNV infection [36]. 

Analogously, IFN-α gene expression was reduced and WNV titers were increased in 

IRF-7−/− neurons [37]. In studies with lymphocytic chlorimeningitis virus (LCMV), type I 

IFN responses in the brain were regulated by the concerted actions of IRF-3 and IRF-7 [38]. 

Similarly, IRF-3 and IRF-7 signaling in the CNS protected against HSV infections; 

increased viral replication and inflammatory cytokine production were observed in brains of 

IRF-3−/− or IRF-7−/− mice with a concomitant deficit in production of type I IFN [39,40].

Type I IFN responses in the brain

Neurons and other CNS cells actively respond to virus infection by producing and 

responding to type I IFN [41]. Intranasal infection of mice with cell type-specific IFNAR 

deletion in neuroectodermal cells (IFNARfl/fl NesCre+) with VSV identified the olfactory 

bulb as a primary site of type I IFN production in the CNS [42]. IFN produced from the 

olfactory bulb primed antiviral responses in other regions of the brain [43]. The use of cell 

type-specific IFN-β reporter mice revealed that astrocytes and neurons both produce IFN-β 

in the olfactory bulb in response to viral infection [11]. In comparison, in vitro studies 

describe neurons as poor producers yet good responders of type I IFN to VSV and HSV 

[44,45]. Some of the disparity in results may reflect the specific neuronal subtypes studied, 

as a differential innate immune response program in distinct neuronal subtypes was 

identified by microarray analysis that determined susceptibility to infection within specific 

regions of the brain by different positive-stranded RNA viruses [46]. Thus, neurons from 

distinct regions of the brain respond uniquely to antiviral cytokines and infectious 

challenges.

Antiviral actions of Interferon-stimulated genes in the CNS

Binding of type I IFN to its receptor (IFNAR) results in a Janus kinase (JAK)-Signal 

transducer and activator of transcription (STAT) signaling cascade that induces expression 

hundreds of IFN-stimulated genes, subsets of which inhibit replication and infection of 

different families of viruses. IFN-stimulated genes can inhibit viruses at different stages of 

their lifecycles including entry, translation, replication, and egress [47]. Although inhibitory 

IFN-stimulated genes have been identified in cell culture, few have confirmed activities in 

vivo in the CNS. Among those known to contribute to restricting virus infection in the CNS, 

the mechanism of action remains uncertain. In vivo studies in Ifit2−/− mice revealed that Ifit2 

protects neurons from infection by VSV and WNV [43,48]. Viperin, protein kinase R 

(PKR), and RNAse L-deficient mice also showed reduced survival after WNV infection and 

increased viral burden specifically in the CNS [49,50]. Other IFN-stimulated genes (Irg1 
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and Ifi27l2a) reportedly have antiviral activity in neurons against multiple viruses including 

WNV, JEV, and mouse hepatitis viruses [46], although these have not yet been validated in 

vivo.

Antiviral actions of the inflammasome in the CNS

Inflammasomes are multiprotein complexes that respond to pathogens and induce 

expression and processing of proinflammatory cytokine, including IL-1β and IL-18. The 

inflammasome-signaling complex is comprised of NOD like receptors (NLRs, e.g., Nlrp3 or 

AIM2), adaptor molecules (Apoptosis-associated speck-like protein containing a CARD 

(ASC)) and an effector caspase protein. A pathogen associated stimulus (signal 1) 

transcriptionally upregulates expression of pro-IL-1β and pro-IL-18. In a second step (signal 

2), pro-IL-1β/IL-18 is processed to its mature form by caspase 1 or caspase 11 within the 

cytosol. Mice lacking Nlrp3, ASC, caspase 1, or the IL-1 receptor showed reduced survival 

after WNV infection [51–54]. Inflammasome activation and IL-1β signaling appear to 

mediate antiviral responses in the CNS directly against flaviviruses [51,55], perhaps as a 

second wave after type I IFN signaling. Analogously, control of VSV infection in the CNS 

also occurs in two waves: the first by type I IFN and the second mediated by IRF-1 signaling 

[56]. Since IL-1β can induce expression of IRF-1 [57] and IRF-1 can mediate antiviral 

actions in the CNS by type I IFN independent pathways [56], it will be interesting to assess 

whether the protective IL-1β response is mediated in part by a set of IRF-1 regulated genes.

MicroRNA in the CNS

MicroRNAs (miRs) are ~22 nucleotide-long RNA that target sequences in mRNA to 

regulate their expression. Several groups have identified miRs that regulate viral infection or 

pro-inflammatory responses in cells of the CNS. Neuron specific miR-138 promoted HSV 

latency and neuronal survival by repressing expression of the viral lytic gene, ICP0 [58]. 

Other miRs indirectly impact viral pathogenesis in the CNS by regulating immune 

responses. miR-155 and miR-29b promoted the neuroinflammation that occurs downstream 

of NF-κB signaling during JEV infection [59,60]. Viruses also exploit cellular miRs to 

create more permissive environments. JEV infection induces miR-146a in microglia, which 

then targets proteins (TRAF6, interleukin-1 receptor-associated kinase (IRAK)1, IRAK2, 

and STAT1) required for NF-κB activation and JAK-STAT antiviral signaling. Differences 

in antiviral programs between different neuronal subsets may be explained in part, by miR 

expression. miR-132 targets the p300 co-activator of STAT1, which regulated basal IFN-

stimulated gene expression level within different neuronal subsets [46].

Autophagy as a defense mechanism in neurons

Autophagy targets foreign molecules for degradation in autophagosomes and has emerged as 

an independent antiviral defense mechanism in neurons. As neurons are post-mitotic cells 

with limited regenerative capacity, apoptosis of infected neurons is not a desirable antiviral 

defense as it is in dividing cells, and thus the upregulation of classical autophagy genes may 

be a particularly important means of protecting neurons from viral infections.
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Over-expression of the autophagy related genes Atg6 or Beclin-1 resulted in decreased cell 

death and increased survival of neonatal mice injected with SINV [61]. Administration of 

the peptide tat-beclin-1, a potent inducer of the autophagy pathway in CNS, resulted in 

increased survival of mice in the context of WNV infection [62]. Analogously, deletion of 

Atg genes in the CNS resulted in a failure to clear SINV infection and increased virus-

induced cell death [63]. PKR, a previously described ISG also promotes autophagy by 

phosphorylating eiF2α, which leads to the development of autophagosomes that target 

viruses for degradation [64]. However, viruses have developed strategies to evade 

autophagy-mediated immune responses. For example, the ability of HSV-1 ICP34.5 protein 

to target beclin-1 and PKR, both of which stimulate autophagy, determines its 

neurovirulence [64,65]. Atg5 deficient neurons infected with ICP34.5 mutant HSV-1 

sustained higher viral replication, suggesting that autophagy directly or indirectly mediates 

an antiviral response in neurons [44].

Concluding remarks

Resident cells of the CNS have unique innate immune antiviral strategies to defend against 

neurotropic viruses. Neurons are primary targets of replication for many viruses and can use 

different mechanisms, from IFN-stimulated gene mediated antiviral action to autophagy-

mediated pathways, as defense strategies. However, more insight is needed as to the role of 

other CNS resident cells (e.g., astrocytes, microglia, oligodendrocytes) in generating 

immune responses via cellular communication events in response to viral infections. For 

example, the mechanism by which glial cells contribute to immune responses such as type I 

IFN and proinflammatory cytokine production, despite not being targets of replication 

remains poorly characterized. Use of genetic tools such as Cre-flox mice to generate cell 

specific deletions of immune signaling pathways in the CNS may begin to elucidate how 

individual cell types can orchestrate a rapidly protective antiviral response.
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HIGHLIGHTS

• CNS cells defend against viruses by several different innate immune 

mechanisms

• Type I IFN, inflammasome signaling, and autophagy have antiviral roles in 

neurons

• Micro-RNA expression in neurons can inhibit virus infection or promote 

pathogenesis
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Figure 1. Antiviral signaling pathways in the CNS
Viruses can be detected by one of four classes of pathogen recognition receptors in 

cytoplasm or endosome of CNS cells: TLRs (e.g., TLR3 and TLR7), RLRs (e.g., RIG-I and 

MDA5), NLRs (e.g., NLRP3), or DNA sensors (e.g., cGAS). Engagement of dsRNA and 

ssRNA by TLR3 or TLR7 results in the respective activation of TRIF and MyD88 

dependent signaling pathways to induce expression of proinflammatory cytokines and type I 

IFNs. RLR activation by viruses triggers MAVS-dependent signaling to activate the 

transcription factors IRF-3, IRF-7, and NF-κB to trigger expression of type I IFNs and 
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immunomodulatory cytokines. Type I IFN binds to its receptor in an autocrine and paracrine 

manner and induces expression of hundreds of IFN-stimulated genes (ISGs) that inhibit 

different viral infections by a variety of mechanisms. As an example, PKR, RNase L, IFIT2, 

and viperin inhibit WNV infection in the CNS. PKR also confers antiviral effects via the 

autophagy pathway. SARM-1, which is activated by MAVS signaling, can induce neuronal 

apoptosis. cGAS detects DNA viruses and activates STING signaling pathways that lead to 

induction of IRF-3-dependent genes. Several miRNA can augment (miR-155/29b) or inhibit 

antiviral/inflammatory signaling (miR-132/146) or promote neuronal survival (miR-135). 

Finally, virus infection can activate the NLRP3 inflammasome through undefined pathogen 

associated molecular patterns, to trigger caspase-1 activation. This protease cleaves pro-IL-β 

generated by NF-κB signaling to its mature form, which is then secreted. Some of the IL-β 

antiviral signaling may be mediated by an IRF-1 transcriptional response.
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