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Plasmodium parasites, unicellular alveolates in the Phylum Apicomplexa, are the causative 

agents of malaria. Their development is a complex interplay among multiple, distinct 

parasite life stages and host cells in humans and mosquitoes, organisms that are separated by 

more than 200 million years of evolution. Despite this vast biological divide, malaria 

parasites have adapted to a life that is dictated by networks of host signaling pathways and 

mitochondrial physiology that are remarkably conserved in humans and mosquitoes. Among 

the most important and most well-studied of the malaria parasites affecting humans is 

Plasmodium falciparum, which causes significant pathology in humans and more modest, 

although biologically important, pathology in the mosquito host. Rather than a coincidence 

of convergent host responses, we would suggest that these fundamental malaria parasite-host 

interactions reflect Apicomplexan radiation and adaptation to parasitism of invertebrate 

hosts, which preceded the appearance of bloodfeeding and parasitism of vertebrate hosts [1]. 

In these divergent hosts, the parasite has adapted to patterns of insulin/insulin-like growth 

factor signaling (IIS), regulation by conserved host protein kinases, and changes in host 

mitochondrial function that can alter parasite development. Accordingly, we suggest that 

parasite survival in the invertebrate host depended on the adaptation of parasites to pathways 

that were similar enough in vertebrate hosts to facilitate survival in these additional hosts 

over the course of evolutionary time. Further, we argue that a closer examination of malaria 

parasites within their primeval insect hosts can reveal the most fundamental aspects of host-

pathogen interactions in malaria and, hence, provide the key to the development of novel 

therapeutics that can both cure human disease and block transmission to the mosquito host. 

To this end, we discuss host-malaria parasite interactions in the context of networked 

processes of IIS, activation of mitogen-activated protein kinases (MAPKs) and protein 

kinase C (PKC) isoforms, and bioenergetics.
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Insulin/insulin-like growth factor signaling (IIS) in malaria

The highly conserved IIS pathway is comprised of MAPK- and a phosphatidylinositol 3-

kinase/Akt-dependent branches that play critical roles in the regulation of growth, longevity, 

and immunity in vertebrates and invertebrates [2 and 3]. Indeed, the majority of IIS proteins 

and their interactions are conserved between humans and mosquitoes [4–11, 12•, 13, 14•• 

and 15••]. In humans, IIS can be induced by members of the insulin superfamily of peptide 

hormones, which include insulin and insulin-like growth factors (IGF) I and II, and seven 

relaxin family insulin-like peptides (ILPs) [16]. ILPs have also been identified in Anopheles 

gambiae 17] and in Anopheles stephensi 7], key mosquito vectors of malaria in sub-Saharan 

African and in India and parts of Asia, respectively.

IGF-1 is abundant in human blood (0.11–0.13 μM) and its bioavailability is tightly regulated 

by IGF binding proteins [18] due to its pleiotropic effects on apoptosis, autophagy, and stem 

cell renewal [19 and 20]. During malaria parasite infection, serum IGF-1 levels decrease 

significantly in humans and correlate with disease severity and anemia [21]. Ingestion of 

low serum concentrations of IGF-1 by A. stephensi extends lifespan by inhibiting apoptosis 

and decreasing damage to the midgut, while simultaneously enhancing mitochondrial 

function [15••]. This is similar to observations made in mice, where repression of IGF-1 

signaling induces resistance to apoptosis by oxidative stress and extends lifespan [19]. Low 

levels of human IGF-1 in ingested serum also repress the phosphorylation of the MAPK 

extracellular signal-regulated kinase (ERK) in the mosquito midgut, thereby enhancing 

midgut synthesis of reactive nitrogen and oxygen species (RNOS) and resistance of A. 

stephensi to P. falciparum 15••]. In contrast, physiological concentrations of IGF-1 lead to 

sustained RNOS production and enhanced resistance of A. stephensi to P. falciparum, but 

also cause damage leading to midgut epithelial dysplasia [15••].

In contrast to IGF-1, insulin levels in healthy humans are significantly lower (17–590 pM), 

but can rise by as much as 10–35-fold during malaria parasite infection [22 and 23]. This 

may be due, in part, to the presence of insulin-mimetic P. falciparum-derived 

glycosylphosphatidylinositols (PfGPIs). PfGPIs tether parasite cell surface proteins, but are 

produced in vast excess of this need [24], presumably to act as signaling mediators to 

manipulate host biology. PfGPIs induce hypoglycemia [25] and can reverse much of the 

pathology associated with type 2 diabetes [26, 27 and 28]. However, PfGPIs synergize with 

insulin signaling [29], which can also inhibit nuclear factor (NF)-κB-dependent innate 

immune responses [30, 31 and 32]. The inhibition of innate immunity is responsible, in part, 

for the increased susceptibility of diabetics to opportunistic infections and malaria [33, 34• 

and 35]. As in humans, activation of IIS in A. stephensi by insulin results in the inhibition of 

NF-κB-dependent immunity and increased susceptibility to malaria parasite infection [4, 6 

and 12•]. Human insulin and parasite-derived products also induce endogenous A. stephensi 

ILP production [7], which can further dampen NF-κB-mediated immunity [36]. In sum, 

these studies highlight the conserved nature of IIS between humans and mosquitoes and 

suggest that Plasmodium parasites may have evolved to manipulate, and benefit from, this 

conservation.
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Protein kinase-dependent regulation of host-parasite interactions

In addition to IIS activation by PfGPIs, these parasite molecules along with parasite 

hemozoin act as pathogen-associated molecular patterns (PAMPs) to activate MAPK 

signaling in both mammalian and mosquito hosts. While activation of IIS by PfGPIs may 

benefit the parasite through subversion of host cell signaling [25, 26, 27, 28, 37, 38, 39, 40 

and 41], activation of Toll-like receptor signaling in mammalian immune cells by PfGPIs 

also precipitates a protective host response [37 and 38]. In particular, triacylated PfGPIs are 

recognized by Toll-like receptor 1 (TLR1) and TLR2, while diacylated PfGPIs are 

recognized by TLR2/TLR6 heterodimers [38]. TLR ligation recruits adapter proteins 

including myeloid differentiation factor 88 (MyD88), TIR-domain-containing adaptor 

protein-inducing IFN-β (TRIF), and TRIF-related adaptor molecule (TRAM [42]), which 

collectively activate NF-κB-dependent activation via ERK, c-Jun N-terminal kinase (JNK), 

and p38 MAPK [43]. In this context, PfGPIs-mediated TLR-dependent signaling induces 

proinflammatory cytokine production by macrophages [44] and dendritic cells [45].

In an analogous fashion, PfGPIs function as an early signal of parasite infection in A. 

gambiae and in A. stephensi. In A. stephensi, PfGPIs induce ERK phosphorylation in the 

midgut within minutes of ingestion [8]. From studies with A. gambiae, this signaling may be 

Toll-initiated to activate NF-κB-dependent anti-parasite responses, including synthesis 

RNOS and antimicrobial peptides [8 and 46]. Hence, in both mammals and mosquitoes 

innate immunity to parasite infection appears to depend on PAMP-mediated ERK activation 

of NF-κB-dependent signaling. Hemozoin is a by-product of parasite degradation of 

hemoglobin that accumulates in the parasite digestive vacuole and induces activation of p38 

MAPK-, ERK-, and NF-κB-dependent signaling, but not JNK signaling in murine 

macrophages and monocytes [47, 48, 49, 50 and 51]. In human monocytes, hemozoin 

activates p38 MAPK- and NF-κB-dependent signaling [52 and 53]. In contrast to ERK 

signaling, which is more typically associated with cell survival, both JNK and p38 MAPK 

signaling induce stress responses that can contribute to host pathology. Consequences of 

increased p38 MAPK activation in response to P. falciparum include endothelial 

dysfunction, heightened TLR2 responsiveness, elevated plasma lysozyme levels, and 

overproduction of inflammatory cytokines [52, 53, 54• and 55]. In A. stephensi, P. 

falciparum infection rapidly activates p38 MAPK signaling in the mosquito midgut, which 

precipitates decreased transcription of a variety of NF-κB-dependent innate immune genes 

[56]. Conversely, delivery of small molecule inhibitors (SMIs) of p38 MAPK via the 

bloodmeal significantly enhances immune gene expression and reduces P. falciparum 

development in A. stephensi 56]. While p38 MAPK-dependent signaling increases parasite 

burden in the mosquito host, resulting pathology from this burden appears to be offset by 

p38 MAPK-enhanced host survival during infection [56], a situation that may attest to the 

relatively longer evolutionary relationship of malaria parasites with their invertebrate hosts. 

Collectively, these observations suggest that therapeutic use of p38 MAPK inhibitors could 

reduce disease pathology in human hosts and reduce parasite development and transmission 

by mosquitoes that feed on treated patients1.

In A. stephensi cells, hemozoin activates not only ERK but also atypical PKCζ, which likely 

regulates the synthesis of RNOS in the mosquito midgut [9]. The genomes of A. stephensi 
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and A. gambiae encode six PKC genes – PKCδ, PKCε, PKCζ, PKD, PKN, and an 

indeterminate conventional PKC [57]. Pan-inhibition of PKCs in A. stephensi via provision 

of SMIs in the bloodmeal had no effect on expression of immune genes, but significantly 

increased midgut barrier integrity and decreased development of P. falciparum 57]. These 

data suggest that PKC-dependent signaling during infection negatively regulates epithelial 

barrier function in the mosquito to promote parasite development. Intriguingly, PKC 

signaling also regulates barrier function in human malaria. In particular, PKCθ- and JNK-

dependent signaling are required for the development of microvascular and neuronal 

pathology, respectively, through disruption of the blood-brain barrier in an experimental 

murine model of cerebral malaria [58 and 59]. This pathology can be reduced, increasing 

mouse survivorship, through treatment of parasite-infected mice with SMIs that block p38 

MAPK, PKC or JNK signaling [60• and 61]. Together with our data from the mosquito host 

[56], these observations suggest that protein kinase SMIs could be leveraged for drug 

treatment to reduce disease pathology in humans and to block parasite transmission in 

mosquitoes that feed on treated patients.

Mitochondrial physiology during malaria parasite growth and development

Mitochondria reside at the center of cell signaling, immunity and basic intermediary 

metabolism and control stress responses [62••] as well as the degree of the proinflammatory 

immune responses fueled by the balance between glycolysis and mitochondria-derived ATP 

(oxidative phosphorylation or OXPHOS) [63, 64, 65•• and 66]. Most studies of PAMP 

signaling during infection have focused on the phosphorylation of mitochondria-associated 

apoptotic proteins [67, 68, 69 and 70]. However, mitochondria are involved in the host 

response to infection or tissue damage not only via apoptosis, but also through bioenergetics 

[63, 64, 65••, 71, 72•• and 73] and these latter effects have been ascribed to the translocation 

and/or activation of critical protein kinases [74, 75, 76 and 77]. For instance, activation and 

translocation of PKCε to mitochondria (in the presence of redox active cofactors) inhibits 

the pyruvate dehydrogenase complex (PDHC) and decreases OXPHOS [78]. In addition to 

PKCε, the MAPKs ERK, JNK, and p38 MAPK can modulate mitochondria function in 

response to diverse stimuli [79] including infection [80] in a variety of biological models 

[69, 81, 82 and 83]. Collectively, these data suggest that conserved host protein kinases can 

regulate parasite development and disease severity in malaria by altering mitochondria-

dependent host immunity.

Analogous networking between immunity and mitochondrial biology is evident in the 

mosquito host from our studies. Following infection with P. falciparum, A. stephensi midgut 

PKCε and PKCδ exhibited reciprocal expression [57] a pattern similar to that reported for 

the reciprocal mitochondrial regulation of PHDC by PKCε and PKCδ [78]. Hence, an 

infection-driven mosquito “signalosome” of PKCε, PKCδ, JNK and p38 MAPK may 
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transduce information between mitochondria and other cellular compartments to modulate 

not only mitochondrial homeostasis but also host immunity. In A. stephensi, inhibition of 

p38 MAPK signaling with SMIs significantly enhanced RNOS and an array of anti-parasite 

immune genes and reduced protein synthesis machinery and OXPHOS [56]. Hence, P. 

falciparum-induced activation of p38 MAPK signaling in the mosquito midgut appears to 

facilitate parasite infection through reduced anti-parasite immune defenses and enhanced 

host protein synthesis and bioenergetics to improve both host and parasite survival, and 

ultimately, transmission. In contrast, sustained midgut activation of IIS-associated Akt in 

transgenic A. stephensi resulted in decreased OXPHOS with decreased mitophagy and 

accumulation of dysfunctional mitochondria – analogous to over-activation of Akt in 

mammals [84 and 85] – with increased resistance to P. falciparum infection and reduced 

lifespan [14••]. Given that sustained activation of Akt inhibits autophagy and mitochondrial 

biogenesis [84 and 85], we predicted that overexpression of phosphatase and tensin homolog 

(PTEN), which opposes Akt signaling, would upregulate mitochondrial biogenesis to 

improve both resistance and fitness. Indeed, midgut overexpression of PTEN in transgenic 

A. stephensi resulted in enhanced resistance to P. falciparum infection with increased 

midgut barrier integrity and lifespan relative to non-transgenic controls [11]. Similarly, 

inhibition of PKC-dependent signaling in A. stephensi increased midgut barrier integrity and 

decreased P. falciparum infection in the absence of any change in NF-κB-dependent anti-

parasite defense genes [57], consistent with a role of NF-κB in energy homeostasis [86•]. 

Notably, PKCs regulate mitochondrial biogenesis via IIS, suggesting that PKC inhibition 

through IIS leads to increased mitochondrial biogenesis and/or function to enhance the 

midgut barrier for resistance to P. falciparum infection in A. stephensi.

Conclusions

Collectively, these observations suggest that the relationship between mitochondria and the 

immune response to Plasmodium infection is conserved in human and mosquito hosts 

(Figure 1). Hence, targeting conserved protein kinase signaling pathways that regulate the 

balance between immunity and mitochondrial genes [63, 64, 65•• and 73] may influence 

host-pathogen interactions with potential to (i) minimize disease severity and/or parasitemia, 

(ii) decrease gametocytogenesis, and (iii) block malaria parasite transmission to mosquitoes. 

Furthermore, this same balance can impact genotype by environment interactions. In 

particular, insecticide resistance in a wide variety of insects, including mosquitoes, has been 

associated with higher expression of mitochondrial gene products related to mitochondrial 

respiratory chain and ATP production [87, 88 and 89], mitochondrial NADPH-dependent 

xenobiotic catabolism [90, 91 and 92], and glutathione S-transferases (GSTs) [93]. GST 

isoforms can function as activators or inhibitors of JNK and ERK/p38 MAPK/IKK 

pathways in D. melanogaster 94], suggesting that protein kinase targeting could be 

leveraged to generate therapeutics for treatment of malaria in the human host that can 

directly modulate insecticide resistance, immune response, and bioenergetics in mosquitoes 

that feed on treated patients.
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Highlights

• Mosquitoes and humans share many responses to malaria parasite infection.

• Conserved signaling regulates barrier and mitochondrial function during 

infection.

• Parasite success in both insect and human hosts likely depends on this 

conservation.

• This biology can be translated to novel drugs with transmission blocking 

activity.
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Figure 1. 
Host-pathogen interactions in malaria. During infection with P. falciparum, both human and 

mosquito hosts exhibit responses that reflect physiological changes to infection (insulin/

IGF-1) and to parasite PAMPs (PfGPIs, hemozoin). In particular, remarkably conserved 

protein kinase signaling pathways are networked to regulate epithelial and endothelial 

barrier function, which can dictate infection success and pathology, as well as mitochondrial 

biogenesis and function to control immunity through NF-κB-dependent and -independent 

responses.
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