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Single-Nucleotide Polymorphisms on the RYD5
Gene in Nasal Polyposis
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Nasal polyposis (NP) is a chronic inflammatory disease. Several genes play major roles in the pathophysiology of the
disease. We analyzed RYDS5 gene polymorphisms to determine the effect of these variants or their genetic combi-
nations on NP. We genotyped the RYDS5 gene in 434 participants (196 patients with NP and 238 controls). Data were
analyzed with SPSS, SNPStats, and multifactor dimensionality reduction (MDR) software. We genotyped 10 single-
nucleotide polymorphisms (SNPs) in the RYD5 gene. RYDS5 (+152G>T) (p.Gly51Va) has not been reported
previously. The PolyPhen and PROVEAN predicted the missense mutation as deleterious, but sorting intolerant
from tolerant (SIFT) did not. In the genotype analysis, we found that four SNPs (RYDS5 [ -264A >G], [- 103G > A],
[+57-14C>T], and [ + 66A > G]) were significantly associated with NP. The individuals with combined genotypes
of six risk alleles (RYD5—-264G, —103A, +13C, +57-14T, +66G, and +279T) had significantly higher risks
for NP compared with the ones with one or four risk alleles. Haplotype analysis revealed that the two haplotypes
were associated with risk of NP. As indicated by MDR analysis, RYD5 (-264A >G and —103G > A) and RYD5
(—264A>G, -177C> A, and —103G > A) were the best predictive combinations and they had the highest synergistic
interaction on NP. In addition, RYDS5 (+13C>T) was significantly associated with increased risk of both NP with
asthma and NP with allergy and asthma. Some SNPs and their combinations in the RYD5 gene are associated with
increased probability for developing NP. We emphasize the importance of genetic factors on NP and NP-related

clinical phenotypes.

Introduction

NASAL poLYPOSIS (NP) appears as a result of chronic
inflammation of the sinonasal mucosa. The prevalence
of NP in the general population has been estimated as 1-4%,
although evidence is insufficient (Fokkens et al., 2012). NP
is a multifactorial disease and its etiopathogenesis has been
known to be associated with conditions such as allergic
rhinitis, allergy, asthma, and aspirin intolerance (Van Zele
et al., 2006; Stankovic et al., 2008).

Increased synthesis of proinflammatory leukotrienes and
decreased synthesis of anti-inflammatory prostaglandins
(PGE2) have been proposed as mechanisms not only for
aspirin-sensitive nasal polyps but also aspirin-tolerant chronic
rhinosinusitis (CRS) with nasal polyps (Fokkens et al., 2012).
Identifying the factors that affect the balance between proin-
flammatory leukotrienes and anti-inflammatory prostaglan-
dins would contribute significantly to the understanding of the
pathogenesis of NP.

Inheritance has been proposed as a possible etiology of NP
(Cohen et al., 2006). The human genome project has shown that

single-nucleotide polymorphisms (SNPs), microsatellite poly-
morphisms (particularly those within the regulatory regions of
genes), and their combinations have close relationships with
disease phenotypes and that genes can serve as disease modi-
fiers by altering expression levels (Collins et al., 1998).
Secretoglobins (SCGBs) represent an interesting family of
biologically active small proteins (~ 10kDa in humans) that
dimerize following their secretion (Taylor et al., 2006). They
have been indicated as candidates for a new cytokine family
owing to their anti-inflammatory and immunomodulatory
functions. The SCGB superfamily has been rapidly expanding
with the discovery of many new human genes (Mukherjee
etal., 1999; Jacksonetal.,2011; Luetal.,2011). Some SCGBs
have been associated with a number of disease states involving
airways, including asthma, cystic fibrosis, bronchopulmonary
dysplasia, and chronic obstructive pulmonary disease, either as
contributing agents or biomarkers (Reynolds et al., 2002).
The RYDS gene, also known as SCGBIC1 (secretoglobin,
family 1C, member 1), encodes a 95 amino acid secretory
protein that belongs to the SCGB family. The RYDS5 gene is
located on the human chromosome 11p15.5 (Taylor et al.,
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2006) and is expressed in Bowman’s glands in the rat nasal
olfactory mucosa (Dear et al., 1991). Bowman’s glands,
also known as olfactory glands, are branched tubuloalveolar
serous glands that secrete through ducts to the olfactory
surface and their serous secretion serves as a trap and sol-
vent for odoriferous substances (Hayran, 2013). In a study
conducted on CRS patients with or without NP, increased
RYDS5 expression was only observed in CRS patients with
NP. The authors concluded that increased expression of
RYD5 might contribute to the polyp formation (Lu er al.,
2011). Those findings indicated that RYDS5 could play a role
in NP formation.

The aim of this study was to analyze SNPs of the RYDS5
gene, and to determine the effects of those individual vari-
ants, or their genetic combinations on NP.

Materials and Methods

Study population, patient selection, radiological
imaging, and laboratory tests

Blood samples were obtained from 434 participants (196
patients with NP and 238 control subjects). There were 112
males and 84 females in the study group with a mean age of
40.99 £ 11.02 years (range: 21 and 65 years). The mean age of
the control subjects was 41.69+11.51 years (range: 17-66
years), and there were 140 males and 98 females (Table 1).
There were no differences between NP patients and the con-
trols for age or gender (p=0.180 and p=0.320, respectively).
The patients with NP were the consecutive patients who were
admitted to the Ankara Numune Education and Research
Hospital and Yenimahalle State Hospital Otorhinolaryngology
clinics due to nasal obstruction, diagnosed with having nasal
polyps, and agreed to participate in the study. NP was clinically
diagnosed according to the criteria of European Position Paper
on Rhinosinusitis and Nasal Polyps (EPOS), with the presence
of two or more symptoms, and the visualization of the polyps
bilaterally in the middle meatus on nasal endoscopic exami-
nation (Fokkens et al., 2012). Among 196 patients with NP, 67
had a history of previous surgery for nasal polyps.

The control subjects were healthy volunteers and they did
not have any history of sinonasal diseases, chronic peri-
odontal disease, inflammatory bowel disease, cancer, sepsis,
or any other chronic inflammatory disorders. Absence of NP
was considered when symptoms neither suggested rhinosi-
nusitis nor were nasal polyps seen on nasal endoscopy.
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The paranasal sinus CT scans were obtained and scored
according to the Lund-Mackay system (Lund and Mackay,
1993). This system scores the opacification of each paranasal
sinus as follows: 0: no abnormalities; 1: partial opacification;
or 2: total opacification. The ostiomeatal complex is scored as
0 (no occlusion) or 2 (occlusion).

The polyp size was classified following Lildholdt’s clas-
sification: 0: no polyps; 1: polyps only in the middle meatus
(small polyps not reaching the upper edge of the inferior
turbinate); 2: polyps that reached the upper surface of the
inferior turbinate; and 3: severe polyposis or polyps that
completely obstructed the nasal cavity (large polyps reach-
ing the lower edge of the inferior turbinate) (Lildhold et al.,
1997; Fokkens et al., 2012).

The patient was regarded as asthmatic in case of a positive
history for asthma or if he/she was diagnosed with having
asthma after consultation with the Pulmonology Department.

Skin prick tests to determine allergy were performed ac-
cording to the recommendations of the European Academy of
Allergy and Clinical Immunology (EAACI, 1993), using the
Quintest multiple skin prick test device (Hollister-Stier La-
boratories LLC, Spokane, United Kingdom) in all patients
diagnosed with having NP. The patients were tested for
sensitivity to 18 allergens (ALK Abello, Madrid, Spain)
commonly seen in our geographic area. Skin prick tests were
considered positive if at least one allergen elicited a wheal
reaction >3 mm in diameter after subtraction of the diameter
of the wheal produced by the negative control. The patient
was considered allergic if he/she had at least one positive skin
prick test result. Total serum immunoglobulin (Ig) E con-
centration was determined with the nephelometric assays
method (Dade Behring/Siemens) (Wittig et al., 1980).

The exclusion criteria were the presence of an antrochoanal
polyp, cystic fibrosis, inverted papilloma, and fungal sinusitis.

All participants were informed about the study and their
written and verbal informed consents were obtained. The
study was approved by the Ethics Committee of the Ankara
Numune Education and Research Hospital, Ankara, Turkey.

Genotyping

Genomic DNA was extracted from the blood samples
of 217 participants using the NucleoSpin blood DNA kit
(Macherey-Nagel GmbH & Co. Kg). For direct sequencing,
genomic DNA was amplified using polymerase chain reac-
tion (PCR) (SuperHot Master Mix; Bioron GmbH). The

TABLE 1. CLINICAL FEATURES OF SUBJECTS

Clinical features Patients with nasal polyposis (n=196) Controls (n=238) p
Age, years 40.99+11.02 41.69+11.51 0.180
Gender, M/F 112/84 140/98 0.320
IgE, ng/L 15.29+10.01 9.0550+6.33587 <0.001
Computed tomography score 9.49+£4.68 (3-19) — NA
Asthma (+), n (%) 70 (36) 0 (0) <0.001
Allergy (+), n (%) 74 (38) 0 (0) <0.001
Polyp size, n (%)

1 74 (38) 0 (0) <0.001

2 70 (36) 0 (0) <0.001

3 52 (27) 0 (0) <0.001

Boldface indicates p <0.05 was considered as statistically significant.

NA, not analyzed.
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TABLE 2. USED PRIMERS FOR POLYMERASE CHAIN REACTION AMPLIFICATION OF THE RYD5 GENE

Primers Nucleotide sequence (5'-3') Region Product size (bp)
F AAAGAAAGGCGTGGGACCAACC Exonl 542

R CAGGTGGAGTGTTCACTGCAGAGG

F GAGGAGAGGTGGGCATTGAAGG Exon2 446

R GTGCAATGTCTGTGGGTGGTGG

F CCACTGAGGGCCTTGCTTGC Exon3 264

R CAGAGACAGGAGCCTGAGCTGC

bp, base pairs; F, forward primer; R, reverse primer.

primers are summarized in Table 2. A commercial kit was
used for purification of PCR products (NucleoFast 96 PCR;
Macherey-Nagel GmbH & Co. Kg). The PCR products were
sequenced with an ABI PRISM 3130 genetic analyzer
(Applied Biosystems), and sequence data were analyzed
using SeqManlI software (Applied Biosystems).

In silico analyses

We selected an exonic variant that caused amino acid
alterations due to the important role of nonsynonymous
SNPs (nsSNPs) in protein function and to be able to predict
the functional role of the SNP by using a web-based soft-
ware. Sorting intolerant from tolerant (SIFT) (Ng and He-
nikoff, 2003) algorithm, Polymorphism Phenotyping
(PolyPhen) (Adzhubei et al., 2010), and the Protein Varia-
tion Effect Analyzer (PROVEAN) (Choi et al., 2012) pro-
grams were used to predict the functional effect of the
identified single-nucleotide change.

Since SNPs in the promoter region can affect promoter ac-
tivity as nucleotide change may alter the binding affinity of the
transcriptional factor involved in the regulation of gene ex-
pression (Garcia-Barcelo et al., 2005), in silico search for
putative transcription factor-binding elements harbored by the
RYDS5 promoter polymorphisms was done using the software
TFSEARCH (V1.3) as the in silico predictions program with a
default threshold score of 85.0 (http://www.cbrc.jp/research/
db/TFSEARCH.html) (Heinemeyer et al., 1998).

Statistical analyses

Statistical Package for Social Sciences, version 11.0 (SSPS,
Inc.), was used for statistical analysis. The frequency of each
RYD5 genotype was tested for concordance with Hardy-
Weinberg equilibrium (HWE) using %> (Trikalinos et al., 2006).

SNPStats (http://bioinfo.iconcologia.net/index.php?module
=Snpstats) was used to determine the degree of pairwise
linkage disequilibrium (LD) for SNPs and for haplotype
analysis (Sole et al., 2006). This software was regressed in a
logistic model, assuming the codominant (major homozy-
gotes versus heterozygotes versus minor homozygotes), the
dominant (major homozygotes versus heterozygotes plus
minor homozygotes), and the recessive (major homozygotes
plus heterozygotes versus minor homozygotes) models of
inheritance with covariates. Risk estimates were expressed as
the odds ratio (OR) and 95% confidence interval (95% CI).

A promising data mining analytical approach, the multi-
factor dimensionality reduction (MDR) software package
(version 1.0.0, available at www.epistasis.org), was em-
ployed in all possible interactions among RYDS5 genotypes

and adjusted for sex, allergy, IgE level, CT, asthma,
and polyp size as covariates. MDR has been applied for the
identification of gene—gene and SNP-SNP interactions that are
well recognized as playing important roles in understanding
complex traits, such as disease susceptibility (Yang et al., 2010;
Naushad et al., 2011). This software is a nonparametric (no
parameters are estimated) and model-free (no genetic model
is assumed) method designed to detect interactions in case—
control studies in the absence of significant main effects and
has emerged as one of the powerful methods for detecting
statistical interactions in genetic association studies (Ritchie
etal.,2001; Hahn et al., 2003). This approach aims to construct
all possible combinations of examined polymorphisms and
selects the overall best model. The accuracy of each model is
evaluated by a Bayes classifier in the context of 10-fold cross-
validation. A single best model simultaneously has the maxi-
mum testing accuracy and cross-validation consistency (CVC)
(ameasure of the number of times of 10 divisions of the data set
that the best model is extracted). Statistical significance was
evaluated using a 1000-fold permutation test to compare the
observed testing accuracy with the expected one under the null
hypothesis of null association. Permutation testing corrects for
multiple testing by repeating the entire analysis on 1000 data
sets that are consistent with the null hypothesis (Ritchie et al.,
2003). For all analyses, p <0.05 was considered as statistically
significant.

Results
Genetic analyses

We identified 10 polymorphisms, which are summarized
in Table 3. Five SNPs were identified at positions —264,
—177, —103, —49, and —35 in the promoter region of the
RYDS5 gene. The other SNPs were identified in the +13 po-
sition of the exonl region, +57-14 position of the intronl
region, +152 position of the exon2, +66 position of the exon2
region, and +279 position of the exon3 region of the RYD5
gene. These SNPs were previously reported and registered in
the dbSNP database (Short Genetic Variations Database,
http://www.ncbi.nlm.nih.gov/snp), except RYD5 (+152G>T).

Association between individual SNPs, genotypes,
and haplotypes of the RYD5 and risk of NP

The primary information and allele frequencies observed are
listed in Table 3. All genotype distributions of control subjects
were consistent with the ones expected from the HWE (all
p>0.05).

On individual SNP analysis, there were significant differ-
ences between NP patients and the controls for the genotype
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TABLE 3. RESULTS FROM GENOTYPING FOR THE RYD5 GENE
MAF

Allele  Amino acid p> for  Genotyped
Locus SNP ID Region change change Allele Case Control Database® HWE® (%)
-264 rs113795008 Promoter C[A/G]T — G 0.25 0.11 0.11 0.0051 72
-177 rs535294582 Promoter C[C/A]JA — A 0.01 0.4 0.0018 1 94
—-103 rs2280540 Promoter C[G/A]G — A 036 0.22 0.24 0.79 54
-49 rs144999256 Promoter G[G/A]C — A 001 0.00 0.0166 1 99
-35 rs148962288 Promoter G[G/A]JA — A 0.01 0.4 NA 1 95
+13 rs7951297 Exon 1 C[C/TIG  Arg5Cys T 0.46 0.53 0.2662  0.58 29
+57-14  1s2294083 Intron 1  T[C/T]G — T 0.32 0.22 0.24 0.79 57
+66 1rs2294082 Exon 2  C[A/G]G Thr22Thr G 029 0.2 0.24 0.39 61
+152 NA Exon 2 G[G/T]C  Gly51VIn T 0.025  0.00 NA 1 99
+279 rs61997072  Exon 3 A[C/T]IG  Asp93Asp T 0.21 0.16 0,12 0.16 69

*MAF from the HapMap databases (http://www.hapmap.org) or NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp).

"HWE p-value in the control.

HWE, Hardy—Weinberg equilibrium; MAF, minor allele frequencies; NA, not available; SNP ID, single-nucleotide polymorphism
accession number or NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp).

frequencies of four SNPs (RYD5 [-264A>G], [- 103G > A],
[+57-14C>T], and [+66A>G]) (p=0.001, p=0.002,
p=0.031, and p=0.023, respectively) (Table 4). The RYD5 —
264GG and AG genotypes were associated with a signifi-
cantly higher risk for NP (OR=3.65, 95% CI=1.21-11.04;
and OR=2.91, 95% CI=1.45-5.82). Similar associations
were found in the genotypes of RYD5—103AA, +57-14TT,
and +66GG (OR=5.14, 95% CI=1.91-13.83; OR=3.65,
95% CI=1.33-10.05; and OR=3.13, 95% CI=1.12-8.75,
respectively). We found that the dominant models of RYD5 —
264 (AG+GG/AA) and RYD5—-103 (GA + AA/GG) and the
recessive models of RYD5-103 (GG+GA/GG), +57-14
(CC+CT/TT), and +66 (AA+AG/GG) showed significant
associations with NP (OR=3.08, 95% CI=1.66-5.74; and
OR=1.87, 95% CI=1.09-3.21; OR=4.53, 95% CI=1.73—
11.85; OR=3.40, 95% CI=1.27-9.14; and OR=2.88, 95%
CI=1.05-7.89, respectively).

The frequencies of the RYD5 —264G (0.25 vs. 0.11), —103A
(0.36 vs. 0.22), +13C (0.54 vs. 0.47), +57-14T (0.32 vs. 0.22),
+66 G (0.29 vs. 0.20), and +279 T (0.21 vs. 0.16) alleles were
significantly different in NP patients when compared with the
controls, but other SNPs were not (p=0.001 for all) (Table 4).

Considering the potential interactions of these six SNPs
on the risk of NP, we combined them based on the numbers
of variant (risk) alleles (RYD5—264G, —103A, +13C, +57-
14T, +66G, and +279T). The combined genotypes with
these six variant (risk) alleles (GACTGT, respectively) had
high risks for NP (OR=17.63, 95% CI=17.10-19.16), the
ones with one variant (risk) allele (G—, respectively) and
four variant (risk) alleles (-ACTG-, respectively) had lower
risks for NP (OR=15.03, 95% CI=1.71-131.85; and
OR=3.06, 95% CI=1.17-8.02, respectively). In our study,
the distributions of these combined genotypes differed sig-
nificantly between the NP cases and controls (p=0.0001).

The analysis revealed that RYD5 — 103, +13, +57-14, +66,
and +279 had high pairwise LD (all D’ >0.75). A haplotype
analysis was performed, including 10 SNPs, and it was found
that there were >100 possible haplotypes derived from the
known genotypes. Haplotypes with a frequency of <0.01 in
the cases and the controls were pooled into a single group, and
the remaining 10 haplotypes were analyzed (Table 5). The

frequencies of GCAGGCTGGT and ACAGGCTGGC hap-
lotypes in NP cases and GCGGGTCAGC haplotype in con-
trols were significantly higher (p=0.0001, OR=30, 95%
CI=20.74-40.96; p=0.028, OR =3.06, 95% CI=1.13-8.27,
and p=0.021, OR=13.42, 95% CI=1.51-119.50) than the
common haplotype ACGGGTCAGC.

Association between genotypes and haplotypes
of the RYD5 and NP-related phenotypes

The frequencies of the RYDS5 — 103GA, +13CC genotype,
and ACAGGCTGGT haplotype were higher in asthmatic
patients compared with those without (OR=2.75, 95%
CI=1.06-7.15; OR=0.20, 95% CI=0.06-0.66; OR=3.19,
95% CI=1.23-8.27; p=0.002, respectively).

The frequencies of RYDS5—264AG, +279TT genotype, and
GCGGGTCAGC haplotype were significantly higher in aller-
gic patients compared with nonallergic patients (OR=10.43,
95% CI=1.18-92.15; OR=3.29, 95% CI=129-8.41;
OR=5.66, 95% CI=1.06-30.28; p=0.0046, respectively).

No significant association was shown between total IgE
levels, polyp size, CT, and RYDS genotypes and haplotypes
in NP cases (all p>0.05; data not shown).

SNP-SNP interactions

In light of the significant findings in the haplotype anal-
ysis, it is of great interest to explore the potential interaction
of 10 examined polymorphisms in the RYDS5 gene. To
achieve this goal, a promising data mining analytical ap-
proach, MDR, was employed. Each best model across all
possible combinations is assessed by the testing balanced
accuracy (TBA), CVC, and significance level.

MDR analysis found two predictive models for NP. A two-
SNP interaction between RYDS5S (—264A>G) and RYDS5
(—103G > A) was detected with a CVC of 10/10 and a TBA of
63.19%. The GG+GA and GG+ AA genotypes were more
common in patients with NP (OR=3.56, 95% CI=2.00-6.32,
p=0.001) (represented as dark gray boxes in Fig. 1). We
detected a three-SNP interaction between RYD5 (—264A > QG),
RYDS (-177C>A), and RYDS5 (-103G>A) (TBA=0.606,
CV=8/10, OR=3.85, 95% CI=2.16-6.85, p=0.001). The



TABLE 4. FREQUENCIES OF RYD5 SINGLE-NUCLEOTIDE POLYMORPHISM GENOTYPE AND ALLELES

Genotype/ Cases Controls

SNPs Allele (n=196), n (%) (n=238), n (%) Models OR (95 CI) p-Value
RYD5 (—264A>G) AA 118 (60) 196 (82) Codominant  1.00 (reference) 0.001

AG 56 (29) 32 (14) 2.91 (1.45-5.82)

GG 22 (11) 10 (4) 3.65 (1.21-11.04)

AA 118 (60) 196 (82) Dominant 1.00 (reference) 0.04

AG-GG 78 (40) 42 (18) 3.08 (1.66-5.74)

AA-AG 174 (89) 228 (96) Recessive 1.00 (reference) 0.048

GG 22 (11) 10 (4) 2.88 (0.97-8.60)

G* 0.25 0.11 0.001
RYD5 (—-177C>A) CcC 192 (98) 218 (92) Codominant  1.00 (reference) 0.070

CA 4 (2) 20 (8) 0.23 (0.05-1.06)

AA 0 () 0 (0)

A? 0.01 0.04 0.150
RYDS5 (-103G>A) GG 90 (46) 146 (61) Codominant  1.00 (reference) 0.002

GA 68 (35) 80 (34) 1.38 (0.77-2.49)

AA 38 (19) 12 (5) 5.14 (1.91-13.83)

GG 90 (46) 146 (61) Dominant 1.00 (reference) 0.023

GA-AA 106 (54) 94 (39) 1.87 (1.09-3.21)

GG-GA 158 (81) 226 (95) Recessive 1.00 (reference) 0.003

AA 38 (19) 12 (5) 4.53 (1.73-11.85)

A? 0.36 0.22 0.001
RYDS5 (—49G>A) GG 192 (98) 238 (100) Codominant  1.00 (reference) 0.74

GA 4 (2) 0 (0) 0.98 (0.01-4.01)

AA 0 () 0 (0)

A? 0.01 0 0.203
RYD5 (-35G>A) GG 192 (98) 220 (92) Codominant  1.00 (reference) 0.053

GA 4 (2) 18 (8) 0.25 (0.05-1.21)

AA 0 (0) 0 (0)

A? 0.01 0.04 0.073
RYDS5 (+13C>T) CC 68 (35) 56 (24) Codominant  1.00 (reference) 0.17

CT 74 (38) 112 (47) 0.54 (0.28-1.04)

TT 54 (28) 70 (29) 0.64 (0.31-1.29)

CcC 68 (35) 56 (24) Dominant 1.00 (reference) 0.07

CT-TT 128 (65) 182 (77) 0.58 (0.32-1.05)

CC-CT 142 (73) 168 (71) Recessive 1.00 (reference) 0.76

TT 54 (28) 70 (29) 0.91 (0.50-1.65

T 0.46 0.53 0.001
RYD5 (+57-14C>T) CC 100 (51) 146 (61) Codominant  1.00 (reference) 0.031

CT 66 (34) 80 (34) 1.20 (0.67-2.16)

TT 30 (15) 12 (5) 3.65 (1.33-10.05)

CC 100 (51) 146 (61) Dominant 1.00 (reference) 0.13

CT-TT 96 (49) 92 (39) 1.52 (0.89-2.62)

CC-CT 166 (85) 226 (95) Recessive 1.00 (reference) 0.01

TT 30 (15) 12 (5) 3.40 (1.27-9.14)

T 0.32 0.22 0.001
RYD5 (+66A >G) AA 108 (55) 156 (66) Codominant  1.00 (reference) 0. 023

AG 62 (32) 70 (29) 1.28 (0.71-2.32)

GG 26 (13) 12 (5) 3.13 (1.12-8.75)

AA 108 (55) 156 (65) Dominant 1.00 (reference) 0.12

AG-GG 88 (45) 82 (35) 1.55 (0.90-2.68)

AA-AG 170 (87) 226 (95) Recessive 1.00 (reference) 0.032

GG 26 (13) 12 (5) 2.88 (1.05-7.89)

G* 0.29 0.20 0.001
RYDS (+152G>T) GG 195 (99) 238 (100) 1.00 (reference) 0.21

GT 1 (1) 0 (0) Codominant  0.99 (0.01-4.5)

T 0.025 0 0.452
RYD5 (+279C>T) CcC 126 (64) 174 (73) 1.00 (reference) 0.34

CT 56 (29) 54 (23) Codominant  1.43 (0.77-2.66)

TT 14 (7) 10 (4) 1.93 (0.59-6.37)

CC 126 (64) 174 (73) Dominant 1.00 (reference) 0.16

CT-TT 70 (36) 64 (27) 1.51 (0.85-2.69)

CC-CT 182 (93) 228 (96) Recessive 1.00 (reference) 0.35

TT 14 (7) 10 (4) 1.75 (0.54-5.71)

T 0.21 0.16 0.001

Boldface indicates p <0.05 was considered as statistically significant.

#Assumed risk alleles.

CI, confidence interval; n (%), frequency; OR, odds ratio; SNP, single-nucleotide polymorphism.
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TABLE 5. ASSOCIATIONS BETWEEN RiISK OF NASAL POLYPOSIS AND FREQUENCIES OF HAPLOTYPES
ON THE BASIS OF THE OBSERVED RYD5 GENOTYPES AMONG CASES AND CONTROLS
Haplotype frequencies
Haplotypes® Cases Controls OR (95% CI)° p-Value
A-C-G-G-G-T-C-A-G-C 0.4282 0.4824 1.00 —
A-C-A-G-G-C-T-G-G-T 0.1573 0.1555 1.28 (0.73-2.24) 0.38
A-C-G-G-G—C-C-A-G-C 0.117 0.1602 0.45 (0.20-1.02) 0.057
G-C-G-G-G-C-C-A-G-C 0.1096 0.0919 1.52 (0.83-2.76) 0.17
A-C-A-G-G-C-T-G-G-C 0.0464 0.0297 3.06 (1.13-8.27) 0.028
G-C-G-G-G-T-C-A-G-C 0.0253 0.0378 13.42 (1.51-119.50) 0.021
A-A-G-G-A-T-C-A-G-C 0.025 0.005 0.00 (—Inf-Inf) 1
A-C-A-G-G-C-T-A-G-C 0.0204 0.021 1.32 (0.30-5.69) 0.71
G-C-A-G-G-C-T-G-G-T 0.0174 0.090 30 (20.74-40.96) <0.001
G-C-A-G-G-C-T-G-G-C 0.0161 0.0123 1.95 (0.26-14.75) 0.52

Boldface indicates p <0.05 was considered as statistically significant.
“The alleles of haplotypes were arrayed as the location of the SNPs in RYDS.

®In logistic regression model.
Inf, indefinite.

differences between cases and controls were significant in
RYDS5 GG+CC+AA, GG+AA+GG, and GG+AA+GG
genotypes.

MDR analyses showed that RYD5 +13CC and CT genotypes
were higher in asthmatic females with NP when compared
with NP patients without asthma and they were significantly
associated with the diagnosis of asthma (TBA =0.703, CVC =5/
10, OR=15.87, 95% CI=8.26-30.50, p=0.001). Additionally,
the patients with NP with the presence of RYD5+ 13CT and
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FIG. 1. The two-locus RYD5 (-264A>G) and RYDS5

(—103G> A) genotype combinations associated with high risk
and low risk for NP. The RYD5 GG+ GA* and GG+ AA**
genotypes had a 2.4-fold and 1.3-fold increased risk for NP.
For each genotype combination, the number of cases is dis-
played in the left bar, while the number of controls is displayed
in the right box. Darker shade indicates the high-risk group.
Note that the pattern of high and low risk for the RYD5
(—=103G>A) differs depending on the value of the RYDS5
(-264A>G) (TBA=0.631, CVC=10/10, p=0.001,
OR=3.52). CVC, cross-validation consistency; NP, nasal
polyposis; OR, odds ratio; TBA, testing balanced accuracy.

allergy were associated with asthma (TBA =0.686 and CVC =
8/10, OR=9.01, 95% CI1=4.88-16.64, p=0.001; Fig. 2).
There were no associations between the extra combina-
tions of other SNPs and gender, serum total IgE value, CT
score, or polyp size. The other SNP combinations had lesser
synergistic effects compared with their single main effects.

RYD5 (+152G> T) (pGly51Val) mutation analysis

In this study, direct sequencing of the RYD5 gene showed
a heterozygous point mutation RYD5 (+152G>T) in exon2
(using GenBank X60601 as reference sequence and starting
with +1 at the A of the ATG translation initiation codon),
which leads to an amino acid change, GGC(Gly) to GGT
(Val) at position 5: p.Gly51Val (the amino acid residues are
numbered starting with the amino-terminal glycine acid
residue of the mature RYDS5 as number +1), in 1 of 196 NP
patients (Fig. 3).

Allergy (-)

Allergy (+)

RYDS5 (+13C>T) genotypes

FIG. 2. The RYD5 (+13C>T) genotypes and allergy com-
binations associated with high risk and low risk for asthma. The
RYDS5 +13CT* genotype had a 3.2-fold increased risk of NP and
allergy and asthma. For each genotype combination, the number
of patients with asthma is displayed in the left bar, while the
number of patients without asthma is displayed in the right box.
Darker shade indicates the high-risk group. The pattern of high
and low risk for the RYD5 (-103G > A) differs depending on the
presence of the allergy (negative or positive skin prick test)
(TBA=0.686, CVC=28/10, p=0.001, OR=9.01).
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FIG. 3. Electropherogram of the direct sequence of the
exon2 RYDS5 gene. Heterozygous novel mutation (c.152 G>T)
in DNA from the patient’s blood sample (fop). Wild-type se-
quence corresponding to a healthy control DNA (bottom).

Clinical-pathological characteristic
of the NP Case with RYD5 mutation

The RYDS5 (+152G >T) (pGly51Val) variant was detected
in one 51-year-old NP patient and not detected in the 238
controls. The patient’s medical data showed that the patient
had a positive prick test, polyp size 3, and underwent two
operations (revision surgeries). This variant has not been
reported before in the open access mutation database or
literature, and the parents of the probands are not available
for mutation analysis.

In silico predictions of functional impact of RYD5 SNPs

The RYDS (+152G>T) polymorphism is a missense
mutation that causes a residue change in the RYD5 gene
product (pGly51VIn) and it might impair RYDS protein
function. The PolyPhen and PROVEAN analyses indicated
that this variant is a possibly damaging protein function, but
the SIFT analysis predicted this variant to be tolerant (score
0.08). In addition, the RYDS5 Gly51 position throughout the
orthologs was conserved.

Three of five SNPs were identified in the promoter region of
the RYDS5 gene and were located in sequences with high ho-
mology to transcription factor-binding motifs by TESEARCH,
and RYDS5 (-264A>G) (p300, score 85.1), (—=177C>A)
(MyoD, score 100), and (-103G>A) (Skn-1, score 86.3)
were suggested to form new binding sites. However, RYDS5
(=35G>A) and (—49G > A) had no predicted effect on tran-
scription factor-binding sites.

Discussion

NP is a chronic inflammatory disease (Van Zele et al., 2006;
Stankovic et al., 2008; Fokkens et al., 2012). It has been known
that the cytokine-driven regulation of expression in the SCGB
superfamily in the airways plays a role in the pathogenesis of
some diseases, such as asthma, rhinitis, and NP (Dear et al.,
1991; Mukherjee et al., 1999; Jackson et al., 2011; Lu et al.,
2011; Pala et al., 2014). Similar to other secretory proteins,
RYDS protein is a member of the SCGB superfamily and it has
a hydrophobic N-terminal region with a 14 amino acid signal
peptide sequence, which is required for its channeling into the
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target organelle (Dear et al., 1991; Luetal.,2011). Asitleads to
the signal peptide domain, it probably affects the function of the
signal peptide motifs of RYDS protein that is expressed in nasal
mucosa (Arg5Cys) (Dear et al., 1991). In addition, it was shown
that IFN-gamma downregulated and TH2 cytokines, namely
IL-4 and IL-13, upregulated mRNA expression of RYDS5 in
patients with CRS with NP, but not in CRS patients without NP
(Luetal.,2011). Therefore, it may be postulated that that RYDS5
may be a modifying factor for NP. Our study is the first one in
the literature that investigated SNPs of the RYD5 gene in pa-
tients with NP.

In this study, we found that the allele distributions of six
SNPs and genotype frequencies of four SNPs in the RYDS5
gene were significantly associated with NP. Moreover, we
observed associations of RYDS5 (+13C>T) in patients with
allergy, asthma, and NP.

Five polymorphisms were previously identified in the
promoter region of the RYDS5 gene. A>G, C>A, G>A,
G>A, and A>G substitutions were found at the base pair
(bp) positions =264, —177, —103, —49, and —35, respectively
(Kim et al., 2009; The 1000 Genome Consortium, 2010). We
found that no single RYDS5 SNP, (-177C > A), (-49G > A), or
(—35G > A) was associated with NP. The RYD5 —264 (AG,
GG, G-dominant) and —103 (AA and A-dominant or reces-
sive) genotypes were associated with NP. In addition,
RYDS5 —264G and —103A allele and the combined genotypes
with other four variant (risk) alleles increased the risk for NP.

SNPs in the coding regions of genes (cSNPs) or in the
regulatory regions are more likely to cause functional dif-
ferences when compared with SNPs in other regions.
Therefore, the potentially functional RYD5 promoter poly-
morphisms could alter transcriptional activity, affecting
susceptibility to develop NP (Garcia-Barcelo et al., 2005).
To date, no studies have investigated the RYDS5 promoter
SNPs for their functional roles or their contribution for de-
veloping NP or any other diseases. In this study, we reported
RYD5 promoter polymorphisms for the first time and showed
that the RYDS5 (-264A >G), (=177C>A), and (-103G>A) in
silico analysis identified prediction of putative transcription
factor-binding sites. Therefore, we suggested that these pro-
moter polymorphisms could alter the binding affinity and
affect promoter activity. Whether any of these or other tran-
scription factors/repressors bind and regulate the activity of
the RYD5 promoter in vivo needs further investigation.

We identified one polymorphism at position +57-14C>T
in intronl of the RYDS5 gene. We found that the RYD5 +57-
14 TT and +57-14 (CC+CT/TT) genotype in the recessive
model had an increased risk for NP. In addition, the fre-
quency of +57-14T allele and the combined genotypes with
other five variant (risk) alleles had increased risks for
NP. Approximately, 15% of disease-causing SNPs directly
affect pre-mRNA splicing. Single base substitutions local-
ized at the exon—intron boundaries can impair one of the cis-
transcriptional elements known as exonic splicing enhancers
and thereby affect normal pre-mRNA splicing. Splice site
nucleotide changes may also result in exon skipping, in the
activation of cryptic splice sites, in the creation of a pseu-
doexon within an intron, or in intron retention (Krawczak
et al., 1992). However, proper interpretation of the effects
of polymorphisms might be difficult, especially when they
result in noncoding variants (Hirschhorn and Daly, 2005). We
suggest that the RYD5 +57-14 located in the exon—intron
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boundaries may affect the exon splicing ability and mRNA
transcription and contribute to the risk of NP. Further func-
tional analysis with RNA splicing assay should be carried out
to verify the effect of the variants at the mRNA level.

In exonl of the RYD5 gene, we identified an nsSNP at
position +13C>T (p.Arg5Cys). This polymorphism corre-
sponds to the residue 5 of the RYDS protein’s sequence and
leads to an arginine—cysteine substitution (PolyPhen score:
0.093 and SIFT score: 0.18) (Wheeler, 2008). We found that
RYD5 +13C allele and the combined genotypes with other
five variant (risk) alleles increased the risk for NP, and
RYD5—103GA and +13CC genotypes had risk for asthma.
On the other hand, RYD5—264AG and +279TT genotypes
were found to be associated with allergy in patients with NP.
This association was also detected in the haplotype analysis.

It was previously reported that allergy and asthma affect
upper and lower airways where mucosa shows similarities,
they might share a common genetic background, and the
phenotypes of NP are well documented in both diseases
(Barnes, 2000; Ober and Hoffjan, 2006; Fokkens et al., 2012).
In our study, we found that some SNPs in the regulatory re-
gions of RYDS increased risk of NP, asthma, and allergies and
they may be responsible for the molecular mechanisms un-
derlying these phenotypes. The MDR analysis showed that
RYDS5 (+13C>T) and its combinations had close relationships
with NP and asthma or allergies. The patients with NP carrying
RYDS5 +13CC or CT genotypes were associated with a o -fold
increased risk for asthma and this association was stronger in
females. In addition, the RYDS5 +13CT genotype and allergy
had a 3.2-fold increased risk of asthma. It also seemed that the
association between RYD5 +13CT and asthma with NP re-
sulted from the allergic component in these patients. This
finding indicates that the effect of RYD5 (+13C>T) genotype
on allergic inflammation may show different patterns based on
gender and allergic status in asthmatic patients with NP.

In exon2 and exon3 of the RYDS5 gene, the A>G and C>T
substitutions were found at +66 and +279bp positions, re-
spectively. RYD5 (+66A>G) (p.Thr22Thr) polymorphism
alters the 22nd codon from CAG to CGG, both of which code
for the amino acid, threonine. In addition, RYD5 (+279C>T)
(p-Asp93Asp) causes a change in the 93rd codon from ACG
to ATG, both of which code for the amino acid, aspartate
(Kim et al., 2009). We found that the frequency of RYDS5 +66
(AA and G-recessive) genotypes was higher in patients with
NP, but the +279 genotype did not differ between the study
and the control groups +66G and +279T, and the combined
genotypes with other four variant (risk) alleles may be at
higher risk for NP. These polymorphisms are synonymous
SNPs, which do not change the amino acid sequence or mis-
sense, and they may alter the RYD5 mRNA folding, mRNA
stability, and translation ([p.Thr22Thr] [p.Asp93Asp]) (Duan
et al., 2003). Those SNPs located in the functional domain of
the RYD5 gene may influence the function of RYDS5 protein
in the pathogenesis of NP and allergy.

Rare variants often have functional effects on protein—
protein interactions (Duan et al., 2003). Furthermore, rare
variants that have been reported in several diseases might
confer a stronger increase in disease risk compared with
common variants and may make a substantial contribution
to the multifactorial inheritance of common chronic diseases
(Stenson et al., 2003; Bodmer and Bonilla, 2008). In our
study, the sequencing of exon2 of the RYD5 gene revealed a
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heterozygous missense mutation +152G>T (p.Gly51VIn).
This variant changes glycine to valine at position 51 and it
was only identified in a 51-year-old patient with NP who
had a positive prick test, polyp size 3, and had two previous
surgeries. We are not certain whether it is a de novo mu-
tation since the parents of the probands are not available for
mutation analysis. This variant seems to be a rare variant
with an allele frequency of 0.02% among NP patients as it
has been detected in only one patient with NP in our study.
However, the variants observed in a particular ethnicity may
vary significantly, just as it may vary from one population to
the other. Certain changes identified as mutations with high
allele frequencies in a given population (or considered as high
nucleotide polymorphism changes) may have very low fre-
quencies in other populations or may not be detected at all.

A number of missense mutations alter the amino acid se-
quence of expressed proteins and have been associated with
disease states, such as cancer, diabetes, and cystic fibrosis
(Stenson et al., 2003). According to in silico analysis, the
PolyPhen and PROVEAN predicted these exonic variants as
deleterious, but the SIFT predicted it as being tolerant. In our
study, the amino acid glycine at position 51 is important and
has been conserved throughout the orthologs. The RYDS5
dimer forms an internal hydrophobic cavity; therefore, this
residue may be critical to conserve this form and cannot be
replaced by a branched-chain amino acid. Consequently, this
amino acid change is likely to affect the ligand activity of
RYDS5 through the modification of the protein structure and
may contribute to the susceptibility for NP. These bioinfor-
matic tools are useful to narrow down the candidate muta-
tions. PolyPhen-PROVEAN (63%) and SIFT (79%) have
correct prediction rates (Choi et al., 2012; Gray et al., 2012).
On the other hand, the low frequency of this variant suggests
that this may be due to the small number of patients enrolled
in the current study. Therefore, further in vitro functional
analyses should be conducted to elucidate the pathogenic role
of this polymorphism in larger study cohorts.

Haplotype analysis may be more informative regarding
the effect of a genetic interaction on a disease phenotype
when compared with SNP analysis (Collins et al., 1998). In
the current study, we found that two haplotypes carrying
mutant alleles of RYD5—-264, —103, +13, +66, +57-14, and
+279 might account for susceptibility to NP. However, the
GCGGGTCAGC haplotype carrying the —264G allele may
have the potential to protect against NP. Haplotypes carrying
RYD5-103A, +13C, +57-14T, and +66G alleles were found
to have significantly increased risks for NP. In addition, these
findings are consistent with our LD and genotype analysis.

In this study, we found that complex allelic interaction in
haplotypes and haplotype analysis can reveal relevant but
simple interactions between SNPs; therefore, we used a data
mining approach, MDR, for detecting and characterizing
combinations of attributes that interact to influence NP and
phenotypes (the 1+ 1=3 principle). Moreover, this method
may be able to detect interactions in the absence of main
effects where LD and other approaches cannot (Ritchie et al.,
2001; Hahn et al., 2003). According to MDR, we analyzed the
best two (—264 and —103) and three (-264, —177 and —103)
locus models, which were both significant at p=0.001, and
they were regarded as the overall best MDR models in this
study. The combinations of RYDS5—-264GG and —103 A-
dominant genotypes had increased risk for NP (2.4-fold and
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1.3-fold). The RYD5 —264, —177, and —103 (GG + AA+ AA,
GG +AA+GG, and GG+ CC+ AA) genotypes had a 2-, 1.5-,
and o -fold increased risk for NP. Analyzed by MDR, these
findings are consistent with our genotype analysis. Individual
SNPs or the interactions of SNPs were not associated with
serum total IgE, polyp size, or CT scores.

On the other hand, our association analyses and MDR
provide important additional information on more specific
NP and NP-related phenotypes. Furthermore, literature on
RYD5 is somewhat scarce, and the RYD5 SNP potential
relationship with NP and NP-related clinical phenotypes has
been studied for the first time in the current study. Our
results support previously reported association between
RYDS5 and NP formation and the polygenic etiology of this
common and complex disease.

Our study has some limitations. Histopathological clas-
sification of polyps as eosinophilic and neutrophilic and in-
vestigation of allele frequencies in those populations could
have yielded more clear results. Our sample size might not
be large enough, and the findings may be aleatoric and
should be interpreted with caution. In addition, a lack of
association between RYD5 SNPs and some of the NP-related
phenotypes may be due to the small number of our patients.
As reported before, since the allele and genotype frequen-
cies in small samples might be notably affected, large study
cohorts are important to find genetic risk factors (B-Rao,
2001). Moreover, replicating the findings is difficult in dif-
ferent populations in association studies, and thus using phe-
notypic classifications is important. There may be possible
extensions of this study, and we intend to collect represen-
tative data and consider using them in our future work.

In conclusion, our study demonstrated that the presence of
some SNPs and their combinations in the RYD5 gene might
increase and/or contribute to the susceptibility of develop-
ing NP, NP with allergic asthma, and asthma in a Turkish
population. Furthermore, in silico analyses have shown that
arare variant nsSNP in RYD5 (+152G > T) might potentially
alter the RYDS5 protein structure. However, functional
studies are needed to elucidate the role of RYDS5 SNPs in the
molecular mechanisms underlying NP, allergic asthma, and
asthma with NP, and more detailed environmental exposure
data are needed to confirm the effect of the genetic basis
of NP pathogenesis. In addition, environmental effects may
be crucial factors in the progression of NP and NP-related
clinical phenotypes, and there is need for further studies
focusing on the gene—environment interactions in NP, al-
lergies, and asthma.
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