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Type 1 Diabetes (T1D) is charac-
terized by the immune mediated 

destruction of β cells. Clinical studies 
have focused on drug therapies to mod-
ulate autoimmunity, yet none of these 
interventions has resulted in durable 
preservation of β-cell function. These 
findings raise the possibility that initiat-
ing or propagating events outside of the 
immune system should be considered 
in future efforts to prevent or reverse 
T1D. An emerging concept suggests that 
defects inherent to the β cell may trigger 
autoimmunity. A study by Engin et al. in 
type 1 diabetic NOD mice suggests that 
excessive β-cell endoplasmic reticulum 
stress arising from environmental insults 
results in abnormal protein synthesis, 
folding, and/or processing. Adminis-
tration of the chemical protein folding 
chaperone TUDCA resulted in recovery 
of β-cell endoplasmic reticulum function 
and a diminished incidence of diabetes in 
NOD mice. We propose here that these 
data and others support a model whereby 
an inadequate or defective β-cell endo-
plasmic reticulum response results in the 
release of β-cell antigens and neoanti-
gens that initiate autoimmunity. Phar-
macologic therapies that either mitigate 
these early β-cell stressors or enhance 
the ability of β cells to cope with such 
stressors may prove to be effective in the 
prevention or treatment of T1D.

Type 1 diabetes (T1D) arises when loss 
of islet β-cell function or mass results in 
the absolute deficiency of insulin. T1D 
is thought to occur from a breakdown in 

immune tolerance, resulting in the infil-
tration into the islet of auto-reactive T 
cells that target β cells.1 The immunobiol-
ogy of T1D has been studied most exten-
sively in the non-obese diabetic (NOD) 
mouse, which exhibits early and gradual 
infiltration of immune cell types into the 
pancreas (“insulitis”) with accompany-
ing loss of β-cell mass.2 In the setting of a 
dysregulated immune system, it has been 
proposed that externalization of β-cell 
antigens activates autoreactive T cells and 
give rise to invasive insulitis.3

Although insulitis of the extent 
observed in NOD mice has not been as 
uniformly documented in human autopsy 
studies, a similar failure of immune tol-
erance is thought to occur in humans.4 
Several immune modulatory drugs with 
well characterized responses in other auto-
immune diseases have been attempted in 
clinical trials of new-onset T1D subjects. 
Whereas administration of some of these 
drugs (such as anti-CD3, anti-CD20, 
CTLA4-Ig) have led to the preservation of 
β-cell function (as assessed by C-peptide 
secretion) for periods of months, subse-
quent declines in β-cell function paral-
leled those of placebo.5-8 In no case has 
true remission, as defined by insulin inde-
pendence, been observed. These outcomes 
could be explained by the low replicative 
capacity of human β cells,9,10 coupled with 
the possibility that interventions were ini-
tiated too late in the disease—at a time 
in which molecular stress pathways in β 
cells were so aggressively activated that 
even a respite from autoimmunity could 
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not prevent β-cell decline. If true, what 
remains unanswered is the cause and 
nature of these intrinsic β cell stress path-
ways, and whether therapies that target 
these pathways might substantially alter 
outcomes. It should be noted that these 
outcomes in humans differ substantially 
from those seen in NOD mice, in which a 
number of interventions have been shown 
to prevent or even lead to remission of 
T1D.2 Collectively, these considerations 
have sparked a new perspective in the 
field, in which greater emphasis has been 
placed on elucidating the molecular mech-
anisms within β cells that might initiate 
or perpetuate autoimmunity and eventual 
β cell demise.

By all accounts, β cells are a vulnerable 
cell type with little reserve. Notably, β cell 
mass is relatively small—less than 1 g in 
most humans,11 and possibly even lower 
in individuals susceptible to T1D.12,13 To 
compound the low mass reserve, β cells 
have a low proliferative rate. In humans, 
β cell replication falls exponentially in 
the immediate postnatal period, to virtu-
ally zero by adulthood.9,10 In addition to 
limited mass and proliferation, β cells also 
have limited functional reserve. As profes-
sional producers and secretors of insulin, 
β cells rely heavily upon the endoplasmic 
reticulum (ER) to ensure that proteins are 
produced robustly and folded efficiently. 
As such, even minor perturbations in cal-
cium homeostasis, oxidative stress, and 
peripheral insulin demand can impose 
stresses that can cause the β-cell ER to 
decompensate (“ER stress”) and fail to 
efficiently produce, fold, and process rel-
evant proteins.14 Unfolded or improperly 
processed proteins that exit the β cell have 
the potential to trigger autoimmunity.15 
Dysfunction of the β cell—as judged by 
an impaired insulin secretory response to 
glucose—appears to precede the devel-
opment of frank T1D in both mice and 
humans.16-19 Only recently have studies 
correlated the decline in β-cell function 
with the appearance of ER stress,16,20 thus 
raising the question of whether ER stress is 
a cause or consequence of β-cell dysfunc-
tion in T1D.

In a recent study, Engin, et al.21 engaged 
2 mouse models of autoimmune diabe-
tes and a chemical chaperone of protein 
folding to address if ER stress is causative 

of β-cell dysfunction and subsequent 
T1D. Both models, the NOD mouse and 
the RIP-LCMV-GP mouse (rat insulin 
promoter-lymphocytic choriomeningi-
tis virus–glycoprotein, in which diabetes 
is induced by viral infection), exhibited 
invasive insulitis and β-cell destruction. 
The authors first studied the 3 major arms 
of the unfolded protein response (UPR) 
cascade—PERK (protein kinase R-like 
endoplasmic reticulum kinase), ATF6 
(activating transcription factor 6), and 
IRE1α (inositol requiring 1α)—as they 
became activated in an attempt to resolve 
ER stress. These arms collectively result 
in global inhibition of mRNA translation 
initiation, increased production of pro-
tein folding chaperones, and ER biogen-
esis. Specifically, PERK phosphorylates 
the translation initiation factor eIF2α, 
resulting in inhibition of CAP-dependent 
mRNA translation. ATF6, upon cleavage 
by S1P and S2P proteases, is translocated 
to the nucleus to activate gene transcrip-
tion. IRE1α is an endoribonuclease that 
splices Xbp1 mRNA to produce sXBP1 
protein. Both ATF6 and sXBP1 enhance 
the transcription of genes encoding ER 
chaperones and other UPR intermediates 
(for reviews, see refs. 22 and 23). By pan-
creas tissue immunofluorescence, Engin, 
et al. showed that both NOD and RIP-
LCMV-GP mice exhibit age-dependent 
loss of ATF6 and sXBP1 in the weeks pre-
ceding the development of T1D, a finding 
suggestive of a failure of the “proresolu-
tion” functions of the UPR. To correlate 
these findings to human T1D, the authors 
then studied tissue sections from human 
subjects. Interestingly, when compared 
with controls, T1D subjects exhibited 
reduced ATF6 and sXBP1 staining inten-
sity in residual β cells, a finding more 
striking in females with diabetes for 8–20 
y duration (for unclear reasons).

To address more directly whether fail-
ure of the proresolution function of the 
UPR contributes to β-cell dysfunction 
and frank T1D, the authors next admin-
istered the chemical protein folding chap-
erone taurine-conjugated ursodeoxycholic 
acid (TUDCA).24 In both mouse models, 
TUDCA treatment reduced β cell death, 
restored insulin secretion, and reduced 
substantially the incidence of T1D. The 
molecular mechanism linking TUDCA 

to its effect appeared to be via stimulation 
of ATF6 and sXBP1 expressions in β cells. 
Consistent with this possibility, TUDCA 
had no effect in preventing T1D in a 
mouse model of RIP-LCMV-GP lacking 
ATF6 protein in β cells. Taken together, 
these data support the notion that ER 
stress is an important contributor to β-cell 
dysfunction and eventual T1D in mice, 
and that β cells in these mouse strains 
appear to have defective adaptive UPRs.

Whereas prior studies suggested a 
role for ER stress in the pathogenesis of 
T1D,16,20 the study by Engin, et al.21 is 
the first to provide a direct link between 
ER stress, β-cell dysfunction, and T1D 
development. Nevertheless, important 
questions still remain. First, does this 
study rule out a role for immune cells in 
triggering β-cell destruction? Because 
TUDCA was administered systemically, 
some uncertainty still exists as to whether 
the drug might have affected immune 
cells directly. In this regard, immune cells 
undergo rapid protein production and ER 
expansion upon antigenic stimulation,25 
and therefore it remains possible that 
systemic TUDCA administration has 
combined and synergistic effects on both 
β cells and immune cells. Although the 
ineffectiveness of TUDCA in the β-cell-
specific ATF6-deficient mouse model 
seemingly discounts this possibility, it 
is unclear whether the RIP-LCMV-GP 
mouse model can be used interchangeably 
with the NOD model, as the viral etiology 
of T1D remains controversial.26 Therefore, 
it would seem important to study NOD 
mice in which ATF6 is either specifically 
deleted or overexpressed in islet β cells to 
directly test a role for protein folding in 
diabetes pathogenesis. Nonetheless, from a 
β-cell perspective, it is tempting to specu-
late that the reduced insulitis in TUDCA-
treated animals arose from reduced β-cell 
auto-antigen exposure.

Second, if not autoimmunity, what 
are the factors that initiate β-cell ER 
stress in the setting of T1D, and third, 
are these findings relevant to human 
Type 1 diabetes? Considerable work has 
been performed to address triggers of 
ER stress, which has been shown to be 
induced by hyperglycemia and resultant 
oxidative stress, saturated free fatty acids, 
pro-inflammatory cytokines, proinsulin 
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mutations, and double-stranded RNA, 
among others.14 Using a bioassay with 
peripheral blood mononuclear cells in 
vitro, Wang, et al.27 noted that serum of 
pre- and recent-onset T1D individuals 
induce a strong transcriptional signature 
of innate immunity. Similar findings 
were noted in the biobreeding rat model 
of T1D.28-30 These findings suggest that 
systemic inflammation is present in 
individuals destined to develop T1D, 
and that sustained inflammation could 
lead to ER stress in β cells. The source 
of this systemic inflammation remains 
vague, but environmental factors such as 
viruses or other infections, components 
of the gut microbiome, prenatal factors, 
insulin resistance, and diet remain pos-
sible candidates.31-33 Observational stud-
ies such as TEDDY (The Environmental 
Determinants of Diabetes in the Young) 
are focusing on correlation of T1D with 
such factors.

The observation by Engin, et al.21 that 
human β cells exhibit similar expression 
profiles to the mouse models, is reassur-
ing, but by no means definitive that these 
findings can be extended to human dis-
ease. A number of monogenic disorders 
have been described that lead to β-cell ER 
stress and death, resulting in early onset of 
diabetes without apparent autoimmunity. 
For example, mutations in the WFS1 gene 
lead to Wolfram syndrome, which is char-
acterized by childhood-onset diabetes, 
hypoinsulinemia, diabetes insipidus, optic 
atrophy, and deafness.34,35 Mutations in the 
gene encoding PERK results in Wolcott-
Rallison syndrome, which includes neo-
natal or early onset diabetes, skeletal 
dysplasia, and growth retardation.36 At 
present, genome-wide association stud-
ies have not uncovered polymorphisms or 
T1D risk alleles associated with the UPR. 
However, studies are beginning to iden-
tify UPR genes associated with a number 
of neurodegenerative disorders includ-
ing progressive supranuclear palsy and 
Alzheimer disease.37 Interestingly, while 
GWAS studies have primarily identified 
polymorphisms in genes thought to solely 
impact immune function, over 60% of 
T1D candidate genes are also expressed 
in human islets exposed to proinflam-
matory cytokines.38 Similar to prevailing 
theories regarding the development of 

type 2 diabetes, the idea of T1D emerg-
ing in the context of a β cell that is inher-
ently susceptible to UPR activation and/or 
ER stress is intriguing and one that bears 
further testing. In support of this notion, 
Donath and colleagues identified a family 
with T1D stemming from a point muta-
tion in the histone deacetylase SIRT-1 that 
resulted in increased β-cell nitric oxide 
synthesis and cytokine production in the 
context of inflammation.39

Taken together, the study of Engin, 
et al.21 and an emerging body of work 
from others suggests a model of T1D 
pathogenesis that shifts the focus from 
immunobiology to β-cell biology. The 
accompanying figure (Fig. 1) depicts a 
process in which systemic inflammation 
arising from the environment leads to 
inflammatory signaling in islet β cells. 
When inflammation is sustained or in the 
context of a susceptible islet β cell, there 
is activation of the UPR and triggering of 
ER stress that can result in either β-cell 
death or dysfunction, with the release of 
β-cell antigens and endogenous “neo-
antigens” (i.e., in this case an antigenic 
determinant emanating from misfolded 
or misprocessed β-cell proteins), which 
secondarily induce autoimmunity. As 
noted previously, many of the autoanti-
gens described in T1D, including proin-
sulin, ZnT8, chromogranin, GAD65, and 
IA-2, are channeled through the ER.15,40,41 
In this hypothetical model, several factors 
can increase the susceptibility to β-cell 
dysfunction, such as reductions in starting 

β-cell mass and genetic factors that may 
diminish and/or enhance β cell to ER 
stress-responsiveness.

We acknowledge that many aspects 
of this model remain controversial. Most 
importantly, several reports suggest a dis-
connect between β-cell apoptosis and/
or death and activation of ER stress. A 
study by Satoh, et al.42 demonstrated that 
CHOP is dispensable in the development 
of type 1 diabetes. There is also disagree-
ment with regard to how cytokines induce 
β cell death. At least 2 reports suggest that 
death is independent of ER stress in cell 
lines43 and the NOD mouse.44 By con-
trast, a study in INS-1 cells suggests that 
pro-inflammatory cytokines and classi-
cal ER stress inducers like thapsigargin 
are both capable of inducing death and 
ER stress, but differ significantly in how 
they activate specific components of UPR 
signaling.45

Whereas β-cell death may not be suf-
ficient or necessary for induction of an 
autoimmune response,46 these studies 
do not rule out the important possibility 
that secretion or liberation of neo-anti-
gens in the context of ER stress leads to 
the loss of immune tolerance. Based on 
our understanding of rare disorders such 
as Wolfram and Wolcott-Rallison syn-
dromes, hyperactivation of ER stress alone 
is unlikely as well to completely drive this 
process, as individuals with these disor-
ders lack detectable β-cell autoantibod-
ies. Notwithstanding these controversies, 
this model should serve as a framework 

Figure 1. the β cell-centric model of t1D pathogenesis. the model proposes that sustained sys-
temic inflammation arising from environmental factors (e.g., viral infections, gut microbiome, diet) 
leads to development of er stress in β cells. Irremediable er stress, as a result of failed compensa-
tory responses by atF6 and sXBP1, leads to the dysfunction and death of β cells. the subsequent 
release of β-cell antigens and endogenous neoantigens triggers secondary autoimmunity. a 
vicious cycle then ensues, leading to destruction of β-cell mass and development of t1D. the fig-
ure shows the potential stages in pathogenesis where intervention with tUDCa might allow for er 
stress remediation.
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for further refinement using humans and 
human model systems. Recent applica-
tion requests from the Juvenile Diabetes 
Research Foundation (JDRF) and the 
National Institutes of Health (NIH) 
increasingly emphasize the need to trans-
late studies from rodent diabetes models 
to humans and, in this respect, utiliza-
tion of clinically-approved drugs in rodent 
models is an important first step in that 
translation process. As noted by the Engin, 
et al.,21 TUDCA has been approved in 
certain cases of liver disease,47,48 and there-
fore has potential to move into clinical 
trials of T1D. These strategies will need 
to be tested in individuals in whom T1D 
risk is high enough to justify initiation of 
the drug for prevention studies. Assuming 
that appropriate biomarkers can be iden-
tified that predict—with reasonable cer-
tainty—the development of T1D, the 
opportunity may exist to prevent diabetes 
using drugs that target β-cell ER function 
and protein folding. At the very least, this 
study informs the growing dialog suggest-
ing that intrinsic β-cell stress pathways 
play important role in T1D progression. 
This dialog is increasingly important as 
results from recent large clinical trials 
in subjects with new onset T1D using 
drugs that solely impact immune func-
tion have met with limited success.7,8,49,50 
As such, rational combinations of drugs 
that address aspects of both T1D immu-
nobiology and β-cell biology are urgently 
needed.
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