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SUMMARY

Over a century of scientific work has focused on defining the factors motivating behavioral 

learning. Observations in animals and humans trained on a wide range of tasks support 

reinforcement learning (RL) algorithms as accounting for the learning. Still unknown, however, 

are the signals that drive learning in naïve, untrained subjects. Here, we capitalized on a sequential 

saccade task in which macaque monkeys acquired repetitive scanning sequences without 

instruction. We found that spike activity in the caudate nucleus after each trial corresponded to an 

integrated cost-benefit signal that was highly correlated with the degree of naturalistic untutored 

learning by the monkeys. Across learning, neurons encoding both cost and outcome gradually 

acquired increasingly sharp phasic trial-end responses that paralleled the development of the habit-

like, repetitive saccade sequences. Our findings demonstrate a novel integrated cost-benefit signal 

by which RL and its neural correlates could drive naturalistic behaviors in freely behaving 

primates.

INTRODUCTION

Habits, in the form of sequential actions that are performed repeatedly, seemingly without 

thought, are a ubiquitous part of our lives. Despite their importance in the structure of daily 

life, little is known about how habits and stereotyped action sequences are formed and about 

the neural systems supporting their formation, particularly in naturalistic situations in 
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primates. In rodents, chronic, long-term recordings have been made in the striatum during 

the acquisition of instructed habitual tasks (Barnes et al., 2005; Costa et al., 2004; Jin et al., 

2014; Jog et al., 1999; Kimchi and Laubach, 2009; Smith and Graybiel, 2013). An 

observation from this prior work was that neural activity in the striatum at the end of the 

task, when the animal has completed its decision and before it reaches reward, evolves 

through the course of learning. It has further been shown that these end signals become 

impervious to reward devaluation, indicating that they likely are part of the neural signature 

of acquired habits (Smith and Graybiel, 2013). The precise function of these acquired neural 

task-end signals is an open question. Because this activity occurs at the completion of the 

task, i.e., when the decisions and actions necessary to obtain reward are complete, it is likely 

that they could mark such completion by setting or resetting neural circuits mediating the 

behavior, thereby facilitating the learning of habitual, repetitive action sequences. Similar 

task-end signals have been observed in well-trained primates performing sequences of 

saccades; brief peaks of activity occur just after completion of the last saccade of an 

instructed saccade sequence and before reward delivery (Fujii and Graybiel, 2003, 2005). 

The course of development of such end-related activity in the primate is still unknown. Nor 

is it known whether such signals would develop in primates never instructed to learn 

specific action-sequences. We addressed these issues in the experiments reported here.

Many mechanisms have been proposed to drive the formation of such sequential actions and 

habits (Dezfouli and Balleine, 2012; Graybiel, 2008; Smith and Graybiel, 2014), one of 

which is reinforcement learning (RL). RL algorithms gradually converge on which actions 

to take in different situations (states) so as to minimize the difference between predicted 

outcomes and obtained outcomes (Sutton and Barto, 1998). RL models have been 

extensively applied to model the acquisition of both simple and complex behaviors 

(Barraclough et al., 2004; Chukoskie et al., 2013; Daw et al., 2005, 2006), including 

movement sequences (Amemori et al., 2011; Desrochers et al., 2010; Dezfouli and Balleine, 

2012), but the nature of the feedback error signal used in the uninstructed development of 

sequential, habit-like behaviors remains unclear.

With RL theory as a foundation, there are at least three candidate driving forces that could 

compose the neural task-end signal and drive subsequent learning behavior: reward, cost, 

and combinations of reward and cost. First, conventional RL algorithms use a learning rule 

to maximize the total amount of expected reward, and RL agents (animals, people, or 

machines) use information about the value of each state. Neurons in the striatum represent 

both values and rewards (Cai et al., 2011; Histed et al., 2009; Lau and Glimcher, 2007; 

Yamada et al., 2011, 2013; Yanike and Ferrera, 2014). Additionally, the specific coding of 

the difference between the actual and expected reward, reward prediction error (RPE), has 

been found in the striatum of humans (Daw et al., 2006; O'Doherty et al., 2004; Tanaka et 

al., 2004), monkeys (Asaad and Eskandar, 2011), and rodents (Stalnaker et al., 2012).

A second RL strategy is to minimize the total amount of effort to perform the behavior by 

locally adjusting the behavior according to the difference between the actual and expected 

effort to complete movements in each trial. Such performance prediction errors (PPEs) could 

be quantified as the effortful cost of the movements. The field of machine learning has often 

used such values to drive control systems (Harris et al., 1999; Zhao et al., 2010), but little is 
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known about cost signals in the brain. Studies in humans and rats have suggested that cost 

variables may be represented in the striatum, as they relate to the effort of responding 

quickly (Mazzoni et al., 2007; Niv, 2007), the costs of the movements themselves 

(Gepshtein et al., 2014), and cognitive effort (Schouppe et al., 2014). Yet to be studied is the 

potential role of cost signals in acquisition of naturalistic sequential behaviors. Only recently 

has a third strategy using RL been emphasized, in which elements involving both reward 

and cost are explicitly considered as driving forces (Collins and Frank, 2014). Whether 

variables related to reward or cost, or to both, are employed as the feedback error signals in 

spontaneous, untutored formation of action sequences in naïve primates has been unclear. 

Previous studies have examined the short-term acquisition of new stimulus-response 

associations (Asaad and Eskandar, 2011; Histed et al., 2009; Kawagoe et al., 1998; 

Pasupathy and Miller, 2005; Samejima et al., 2005; Watanabe and Hikosaka, 2005; 

Williams and Eskandar, 2006), but none have examined the composition of neural learning 

signals starting from the naïve state and extending for months of behavioral experience.

Taking as a clue the appearance of end signals in the striatum following learning, we tracked 

neural activity in the caudate nucleus (CN) to determine how such signals develop during 

naturalistic learning as naïve monkeys developed stereotyped scanning sequences without 

instruction. We then tested how these signals related to the potential RL drivers of reward, 

cost, and combined reward and cost. We capitalized on the use of an uninstructed free scan 

task in which naïve monkeys naturally form habitual eye movement patterns without explicit 

supervision (Desrochers et al., 2010). In this scan task, monkeys, without instruction, 

generated eye movements to scan a grid of dots presented to them, eventually found a 

pseudorandomly placed baited target and received reward. We found that in an RL model, 

the cost, defined as the difference between the actual and expected distance that the eyes 

traveled in a trial (PPE), could both generate and account for the evolution of the monkeys’ 

eye movement patterns. Here, we used this same cost variable along with the outcome of 

each trial (reward/no reward) to probe the activity of striatal neurons during the task-end 

period (scan-end in this paradigm). We asked whether such signals would emerge in striatal 

neurons during the spontaneous acquisition of stereotyped action sequences; how, if so, such 

signals might relate to the progression of natural sequence learning; and on finding them, 

how they were related to the candidate RL model driving forces. We demonstrate that phasic 

scan-end activity of striatal neurons representing both cost and outcome parallels the gradual 

changes in the saccade patterns performed as they became more refined and habitual. We 

propose that these scan-end signals could provide a mechanism by which the natural 

formation of habit-like stereotyped action sequences can occur in naïve primates.

RESULTS

We recorded from arrays of approximately 100 chronically implanted, independently 

moveable electrodes (Feingold et al., 2012) in the CN of two monkeys, G and Y, throughout 

up to 202 days of acquisition and performance of the free-viewing scan task (Figures 1A, 
1B and S1A). Each monkey freely scanned a presented grid of four or nine green target dots 

(Targ-On). After a variable delay to prevent the monkey from immediately completing the 

trial (Delay Scan, mean 1.5 s), one of the target dots was baited according to a 

pseudorandom schedule (Find Scan). When the monkey's gaze entered the baited target, the 
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green target grid was immediately extinguished (Targ-Off), and the gray target grid 

reappeared. After a variable delay (Reward Delay, 0.4-0.8 s), a reward was delivered, the 

inter-trial interval (ITI) began, and a trial considered as “correct” was completed. While the 

green targets were on, the only requirement was that the monkey's gaze remained in the area 

defined by the green target grid; trials in which the monkey looked away from the green 

target grid before finding the baited target were considered as error trials. As soon as the 

monkey committed an error, the green target grid was extinguished (Targ-Off), and the trial 

proceeded directly to the ITI. Therefore, error trials contained the same events as correct 

trials, with the exception of the onset (Rwd-On) and offset (Rwd-Off) of reward delivery, 

and Find Scan if the monkey made an error before the Delay Scan time had elapsed.

We previously reported the behavioral results from this task (Desrochers et al., 2010). In 

brief, both monkeys performed the task well, at ~70% correct across sessions. Despite the 

complete lack of instruction, both monkeys spontaneously formed their own repetitive, 

stereotyped eye-movement patterns as they scanned the target grid for the baited target. We 

found potential driving forces of these saccade patterns on two time scales. First, we defined 

the cost, or PPE, as the difference between the total distance that the monkeys’ eyes traveled 

while scanning the target grid in each trial (actual distance) and the mean distance across 

trials (expected distance). The mean total distance that the monkeys’ eyes traveled either did 

not significantly change or reached asymptote very rapidly across sessions (first non-

significant line slope G9: session 1, Y9: session 34; Figures 1C and S1B). By definition, the 

mean cost values also did not change across sessions; they always varied around zero. When 

we minimized this cost-related variable in an RL algorithm, it captured gradual transitions in 

the saccade patterns towards those that were more efficient, i.e., the specific pattern that was 

repeated within the trial traversed shorter distances to cover all the targets. Thus the 

algorithm mimicked the behavior of the monkeys, wherein the mean total distance did not 

change, but the monkeys more efficiently visited the targets within each trial. Here, we 

updated previous results relating the trial-by-trial change in the total distance to how 

frequently individual patterns were selected for performance, and found that this same cost 

variable could drive the selection of stereotyped saccade sequences in the following trials 

(Desrochers et al., 2010). If the monkeys performed a short (or low-cost) trial, then they 

tended to perform that same sequence again with few or no intervening trials. Conversely, if 

they performed a long (or high-cost) trial, then they waited a greater number of trials before 

performing that sequence again (Supplemental Information, Figures 1D and S1C). Thus, the 

cost variable was capable of driving both the trial-by-trial selection of stereotyped action 

sequences and the overall progression towards efficiency in how the sequences covered the 

targets.

Second, we found across-session increases in the repetitiveness of the saccade patterns, 

regardless of which pattern was being performed. We measured the repetitiveness of the 

saccade patterns by converting the eye movements for each session to transition 

probabilities between each pair of targets and then by calculating the entropy of this 

transition matrix. This increase in repetitiveness was reflected in both correct and error trials 

by the steady decline in the entropy across sessions (see Supplemental Information; Figures 
1E and S1D). Here we show the results of recordings made during learning, focusing on the 
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9-target task during which the behavior was more consistent across the two monkeys (see 

Supplemental Information for all 4-target analyses in monkeys G and Y).

Across all sessions, we isolated 1,641 striatal units for study, 574 units from the CN of 

monkey G in the 9-target task (G9) and 1,067 units from the CN of monkey Y in the 9-target 

task (Y9). To determine the most relevant task period for units in the striatum of this free 

scan task, we generated histograms (20 ms bins) for all of the 400 ms windows before or 

after each event for each unit in each session. If the firing rate of a unit in a 400 ms event 

window was greater than two standard deviations above the mean firing rate (calculated 

across all trial time, not just in 400 ms windows) for four or more consecutive bins, then that 

unit was defined as significantly responsive in that event window.

We found that different proportions of units in the CN exhibited significant responses to the 

seven examined event windows (G9: F6,280 = 62, Y9: F6,910 = 66; p's < 0.0001; Figures 1F 
and S1E). Those units with significant responses specifically in one or more of the Targ-On, 

Targ-Off, Rwd-On, and Rwd-Off event windows we defined as task responsive (TR); this 

group comprised ~50% of all recorded CN units. Across all event windows and sessions, the 

greatest proportion of units (G9: 49%, Y9: 32%) responded significantly in the 400 ms after 

Targ-Off event window (p < 0.05, post hoc Tukey test).

To examine the activity of the CN units across behavioral learning, we normalized each 

unit's firing in peri-event windows so that zero was the minimum and one was the maximum 

firing rate of that unit. Because later sessions often had fewer well isolated units than earlier 

sessions, and because we did not want to bias the analysis toward sessions with fewer cells, 

we then binned sessions together until there were at least 10 units in each bin, and we 

calculated the mean firing rate for each group of binned sessions (Figures 2A, 2B, S2A and 

S2B; binned by single sessions: Figures S2C and S2F). In addition to confirming the 

predominance of Targ-Off responses, we observed the gradual development of Targ-On 

(Supplemental Information; Figures S2K-S2P) and Targ-Off (Figures 2C-2F, S2D, S2E, 
S2G and S2H) activity through learning. Such task-bracketing activity has been previously 

observed in the striatum of rodents and monkeys performing instructed tasks (e.g., Fujii and 

Graybiel, 2005; Jog et al., 1999, see Discussion). Our observation of this task-bracketing 

pattern provides the first demonstration of the development of this activity pattern in naïve 

non-human primates freely acquiring their own idiosyncratic stereotyped action sequences. 

Strikingly, there was a commonality to this patterning across the different scan patterns that 

the monkeys performed as they continued over months of training. We focused on the Targ-

Off window for the subsequent analyses because units with Targ-Off responses, the most 

abundant subtype, fired at the time that crucial RL variables, namely trial outcome and cost, 

could first be evaluated.

CN Units Represent Trial-by-Trial Outcome and Cost

To determine whether the scan-end signal could be composed of neuronal activity 

representing the RL variables of trial outcome and/or cost, we examined the trial-by-trial 

neuronal activity in the Targ-Off window. Importantly, although the outcome of the trial 

(correct/error) was simply associated with receipt of reward (reward/no-reward), the Targ-

Off window occurred before the earliest possible time that the animal could receive reward 
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and was temporally dissociated from the randomized timing of reward delivery. Thus, the 

spike activity at Targ-Off could not be attributed to reward delivery itself. We estimated the 

cost (PPE) as the difference between the actual and expected eye movement distance, the 

measure that we previously found to be a driving force in an RL model of the monkeys’ 

scanning behavior (Desrochers et al., 2010) and that we found to be superior as a driving 

force to other potential driving forces including distance, reward rate, the number of 

fixation/saccades, and saccade entropy. The RL models using these alternate factors took 

longer to reach steady-state and did not converge on the optimal path as did the RL model 

using cost. Distance was simplified to be the geometric distance: one unit was the horizontal 

or vertical distance between adjacent targets.

With outcome and cost as potential driving forces of behavioral acquisition, we adopted a 

multivariate regression approach to find the best variable to account for the activity of each 

neuron. We found that the regressors were correlated with one another, but we found that 

there was no multicollinearity problem as determined by Belsley collinearity diagnostics (all 

condition indices < 18, see Supplemental Information). We performed a stepwise linear 

regression to predict the trial-by-trial firing rate in the 400 ms after Targ-Off using terms for 

outcome, cost, and the interaction of the two variables (see Experimental Procedures).

Because the monkeys were free to move their eyes, we wanted to eliminate the possibility 

that changes in firing could be related to changes in the timing of the monkeys’ saccades. 

Thus, for this and subsequent analyses, we excluded the approximately 15% of units in the 

Targ-Off window (Eye category; Figures 3A, 3B, S3A and S3B) for which we found a 

significant correlation (Pearson's, p < 0.05) between saccade and spike onset times 

(Supplemental Information, Figures S2I-S2P). As a further control, we tested for and 

verified the fact that the distribution and variability of the final eye position at Targ-Off did 

not change across sessions (t39's < 2, p's > 0.05, Supplemental Information).

We found units with significant coefficients (p < 0.05), both positive and negative, in the 

linear regression for different combinations of the outcome, cost, and interaction terms. 

These units were physically distributed throughout the head and body of the CN (Figure 4). 

We defined as Outcome units those units for which the regression contained only a 

significant term for outcome (i.e., not for cost or the interaction of outcome and cost). 

Outcome units with positive coefficients responded with higher firing rates for correct trials 

(Outcome-positive units; Figure 5A); negative coefficients indicated greater firing for error 

trials (Outcome-negative units; Figure 5B). Cost units were defined as those for which only 

the cost term was significant. Cost-positive units fired more when the actual trial distance 

was greater than the expected mean distance (Figure 5C); conversely, Cost-negative units 

fired more when the trial distance was less than the expected distance (Figure 5D).

There were two different ways that a unit's regression could simultaneously contain 

significant terms for both outcome and cost variables. Units with significant terms for 

outcome and cost without a significant interaction term were defined as Both-Additive units 

(Figure 5E). Those units with a significant interaction term were defined as Both-

Interaction units (Figure 5F). Both-Additive and Both-Interaction unit types could be 

divided into four subtypes according to the sign of the coefficient for the Outcome and Cost 
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terms: Outcome and Cost positive, Outcome and Cost negative, Outcome positive and Cost 

negative (Both-Additive example: Figure 5E), and Outcome negative and Cost positive 

(negative Both-Interaction example: Figure 5F). For subsequent analyses, we collected all 

units that simultaneously represented outcome and cost into a single category (Both), which 

contained the Both-Additive and Both-Interaction subtypes.

We found that each of these unit categories consisted of ~15% of recorded units across 

sessions, with ~60% of units representing some combination of the outcome or cost 

variables (Figures 3A, 3B, S3A and S3B). The fraction found for each unit type did not 

change significantly across sessions: no unit-type fractions exhibited significant correlations 

with session number across either animal (Pearson's p's > 0.05). This stability supports the 

general finding that cost (and outcome) are constant driving forces towards optimality 

throughout training (Figure 1C, see also Desrochers et al., 2010). Outcome, Cost, and other 

TR units formed separate but overlapping distributions; more than 60% of the TR units were 

also categorized as being either Outcome or Cost types (Figures 3C, 3D, S3C and S3D).

We validated the distinctions among Outcome, Cost and Both units by examining the mean 

peri-event time histogram in the Targ-Off window of each category separately during 

correct (rewarded) and error (no reward) trials. Outcome units exhibited a clear separation of 

responses in correct and error trials, confirming their classification as such (Figures S3E 
and S3F). Conversely, Cost units showed little or no separation between responses in correct 

and error trials, consistent with their coding a performance variable and not the outcome 

(Figure S3G). Units classified as Both did show a difference in mean response to correct 

and error trials (Figure S3H). Further, as shown by the pseudocolor plots illustrating the 

mean firing across trial events across sessions (Figures S3I and S3J), activity at Targ-Off 

sharpens in both correct and error trials. In the period during and after reward delivery, there 

is very little, if any, response of the Both units to reward itself, as was similarly observed 

across all units (Figures 2A and 2B). These findings demonstrate that these unit classes 

exhibit separable physiological responses.

To verify the robustness of the unit classifications, we performed additional, separate 

regressions employing variations in the calculation of the cost variable as well as alternative 

regression methods. Variations in the calculation of the cost variable were created by 

sampling different trials to estimate the mean distance (Supplemental Information). With 

these alternative cost variables, separate regressions were found to have distributions of unit 

types nearly identical to the distribution of unit types found with the original definition of 

cost presented above (two-sample Kolmogorov-Smirnov test, p's > 0.9, Figures S4A and 

S5A). To test the validity of the stepwise regression approach, we further performed four 

additional linear regressions using All Possible Subset and Ridge regression with Akaike 

and Bayesian information criteria for model selection (Supplemental Experimental 

Procedures, Amemori et al., 2015). The resulting distributions of unit types again did not 

differ from the distributions obtained with stepwise regression as presented above 

(Kolmogorov-Smirnov test p's > 0.3, Figures S4B and S5B). The finding that the 

classification of units used here was not changed with alternative calculations of the cost 

variable or regression methods provided further evidence for the distinctions among units 

with these response types in the CN.
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It is not surprising that units in the CN responded to the outcome of the trial (Cai et al., 

2011; Histed et al., 2009; Lau and Glimcher, 2007; Yamada et al., 2011, 2013; Yanike and 

Ferrera, 2014), but our findings additionally demonstrate a novel striatal representation of 

cost. Approximately half of the CN units represented behavioral cost in some manner, and 

this cost variable was the same variable that we previously found to drive the uninstructed 

formation of habitual eye movement patterns in these naïve monkeys (Figure 1D; 

Desrochers et al., 2010). Taken together, these results suggested that the CN units 

representing one or both of the outcome and cost variables could contribute to driving the 

acquisition of repetitive behavioral sequences resembling habitual behaviors.

We classified each unit as belonging to one of three putative neuronal types in the striatum 

(see Supplemental Experimental Procedures; Figures 6A, 6B and S3K): high-firing neurons 

(HFNs; Figure 6C), tonically active neurons (TANs; Figure 6D), and medium spiny 

neurons (MSNs; Figure 6E). Outcome, Cost, Eye and combinations of these categories were 

all included within each of these putative neuronal types (Figures 6F-6H). The distribution 

of units in each category for each putative neuronal type was not significantly different from 

the overall distribution (Figures 5A and 5B; two-sample Kolmogorov-Smirnov test, p's > 

0.05). Because there were similar distributions of Outcome and Cost units for each putative 

neuronal type, to analyze the maximum number of units possible in each session across 

learning, we grouped together all three neuronal types (putative HFN, TAN, and MSN) in 

subsequent analyses. We note that we do not assume that the identification of the putative 

neuronal types is fully accurate, or that the activity patterns and computations of these 

putative neuronal types are the same under all conditions. Rather, we report that in the 

context of activity in the Targ-Off window, the putative striatal neuronal types represented 

the relevant variables in concert and so could be grouped by response type.

CN Units Exhibit Changes across Learning

Because the predominant Targ-Off activity (Figure 2) was not constant across sessions, but 

rather, appeared to evolve across learning, we next asked how the neural cost and outcome 

feedback representations that we found in the Targ-Off period developed across task 

performance sessions. We found that trial-by-trial cost not only could contribute to an 

adaptive behavioral shift and selection of sub-optimal action sequences (Figures 1D and 

S1C), but also could be correlated with behavioral changes across sessions as measured by 

the entropy and efficiency of the saccade patterns (Figures 1C, 1E, S1B and S1D) 

(Desrochers et al., 2010). We therefore asked whether there were neural changes that were 

correlated with these behavioral changes across sessions. Unit responses, normalized for the 

population analyses shown in Figures 2, 7A and 7B, were not normalized in the analyses 

that follow.

To quantify a property of the neural activity that might reflect neural efficiency in encoding 

learning-related variables, we measured the sharpness of the activity in the Targ-Off window 

(Barnes et al., 2005; Jog et al., 1999). We used the inter-quartile range (IQR) of the spiking 

activity for the estimate of sharpness. For each unit in each session, we determined the IQR 

first by creating a histogram across all trials of the spike activity in the 400 ms Targ-Off 

window, and then by dividing the total number of spikes into four time bins (quartiles) so 
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that each quartile contained the same number of spikes (but could have a varying width in 

time). Examples of time-bin boundaries that resulted from this procedure are shown as gray 

vertical lines on the sample histograms in Figures 7A and 7B. Then, by definition, the time 

boundary between the second and third quartiles (dashed gray line) is the median spike time, 

and the time between the first and fourth quartiles is the IQR. If the spike rate were greater 

in the middle of the 400-ms Targ-Off window, then the IQR would be shorter, as less time 

would be needed to bin a greater number of spikes. Thus IQR provided a measure of the 

sharpness of dispersion of the spike activity in the scan-end time window (Figures 7A and 

7B).

To measure how the Targ-Off IQR of spike activity changed across sessions, we correlated 

for each unit the IQR and the session number in which the unit was recorded. Correlations 

were calculated for all units within each category over all sessions without any binning (gray 

points and black line fits in Figures 7C-7H), but for display purposes, we binned sessions 

together until there were at least 10 units of that category in each bin and plotted the mean 

IQR across those units in each bin (colored lines; Figures 7C-7H). We found that only the 

IQR of those units in the Both category showed significant correlations with steady 

decreases in IQR across sessions in G9 (Pearson's rho = −0.29, p < 0.001; Figure 7C) and 

Y9 (rho = −0.26, p < 0.0001; Figure 7F) and a significant interaction between session and 

category for both animals (ANCOVA, F2,321; 615's > 3, p's < 0.05). Further, these changes in 

IQR, the measure of dispersion of the Targ-Off window spiking, were not due to overall 

changes in firing time or rate as there were no consistent changes across sessions and across 

unit categories in either the median spike times or non-normalized firing rates of units 

(Figure S6). The IQR of Outcome and Cost units did not exhibit correlations across sessions 

for either monkey (rho's > −0.18, p's > 0.05; Figures 7E-7H).

Because the chronic electrodes were gradually lowered across training sessions, it was 

essential to dissociate the effects of training and electrode depth on IQR. We compared units 

in the Both category recorded earlier in training to those recorded at the same relative depth 

later in training, and found a significant decrease in the IQR of those units, even though they 

were recorded at the same depth (t17 = 2.3, p < 0.05). Further, there were no differences 

across sessions among the recorded depths in the different unit categories (Outcome, Cost, 

and Both; F's < 1.4, p's > 0.5). Therefore, differences in IQR could not be due to differences 

in depth (see Supplemental Information for further details). In addition, these across-session 

dynamics were not solely a feature of categories derived from stepwise regression; nearly all 

of the results obtained with the stepwise regression model were replicated with the four 

alternative regression models (Figures S4C and S5C).

At the single-trial level, the decrease in the IQR of the Both units could have been due to 

more precisely aligned responses or narrowing of these responses, or to a combination of 

these variables. To test these potential underlying activity patterns, we employed two 

measures for each unit in each trial: the median spike time and the IQR of the spike times in 

the Targ-Off window. Then, as a measure of variability of those measures, we calculated the 

IQR of the trial-by-trial IQRs and the IQR of the trial-by-trial median spike times. We 

performed this analysis on each unit on each session. Changes in the variability of these 

measures tell us whether, in each trial, the units exhibited narrower responses (decrease in 
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IQR of IQR) or more precisely aligned responses (decrease in IQR of median). We found, 

that the sharpening effect in Both units was associated with more tightly aligned responses, 

as there was a significant decrease in the IQR of the median spike times across sessions (G9: 

rho = −0.36, p < 0.001; Y9: rho = −0.19, p < 0.001), but no decrease in the IQR of the IQRs 

across sessions (G9: rho = 0.03, p > 0.7; Y9: rho = 0.14, p < 0.01). The difference in the 

slopes of these two measures was significant across sessions, with a significant measure × 

session interaction (G9: F1,266 = 10.8, p < 0.01; Y9: F1,630 = 18.4, p < 0.001).

In sum, we found a gradual sharpening of the neural responses in the Targ-Off window 

across training only in the CN units that were the most highly dimensional, i.e., the Both 

units that concurrently represented the outcome and cost variables. The finding that it is the 

alignment of responses across trials that produces the decrease in IQR of the Both units 

across sessions suggests that the firing of the population of units would also be more 

precisely aligned within a single trial. This alignment could serve as a predictor of efficacy 

and as a factor favoring spike-timing-dependent plasticity.

We next searched for a link between this neural activity and the behavioral acquisition 

observed across sessions. A candidate correlate for the changes in the efficiency of the 

saccade patterns across sessions was the distance measure (total distance the monkey's eyes 

traveled while scanning) from which the cost variable was calculated. However, the 

fluctuations in scan distance due to the efficiency of the saccade patterns executed were 

relatively small in comparison to the fluctuations due to the random trial to trial placement 

of the baited target, and therefore the mean distance did not change across sessions (Figure 
1C). Moreover, because the cost variable was defined as a fluctuation around this mean 

distance, cost itself always had a mean around zero across sessions. The behavioral measure 

that we did previously find to reflect the shift towards optimality across sessions was the 

repetitiveness of the saccade patterns (Desrochers et al., 2010). Repetitiveness was measured 

by saccade pattern entropy (see Supplemental Experimental Procedures, Figure 1E). 

Increases in repetitiveness indicated decreases in entropy, as there was less variability in the 

probability of moving (making saccades) from one target to any other target. We therefore 

calculated the correlation of each unit's Targ-Off IQR with the saccade pattern entropy in the 

session during which it was recorded (Figures S7 and S8). For display purposes, units were 

binned across sessions so that there were at least 10 units per bin, and the mean entropy was 

calculated for each bin across the sessions included in that bin (Figure 8).

The responses of the Both units (Figures 8A and 8D) exhibited highly significant 

correlations between the neural scan-end activity sharpness (IQR) and the entropy of the 

behavioral saccade behavior (G9: Spearman's rho = 0.35, p < 0.0001; Y9: rho = 0.16, p < 

0.01). By contrast, neither Outcome unit responses alone nor Cost unit responses alone were 

significantly correlated with entropy in either monkey (Spearman's rho's < 0.1, p's > 0.1), 

and there was a significant interaction between unit category and saccade pattern entropy for 

both animals (ANCOVA, F2,321; 615's > 3, p's < 0.05).

These results were reinforced by analyses with the alternative regression methods employed 

using All Possible Subset and Ridge regression with Akaike and Bayesian information 

criteria for model selection (Figures S4D and S5D). Further, we attempted to determine 
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whether the effects of the number of sessions could be separated from the effects of entropy 

on these correlations. Although there was some evidence for an independent correlation 

between entropy and IQR with the effects of session number removed, the results indicated 

that session number, reflecting length of exposure to the task, and entropy are both 

important learning-related variables not clearly separable in this context (Supplemental 

Information). Finally, these changes were not driven by overall changes in firing peak or 

rate, as there was no consistent relationship between median firing time or firing rate and 

entropy across the unit types (Figures S7 and S8), further emphasizing the sharpening of the 

Targ-Off responses as a critical parameter related to the gradual refinement of the saccade 

patterns as naïve monkeys perform a free-viewing scan task, without explicit instruction.

DISCUSSION

Here we have shown that as naïve monkeys learn without explicit training to scan target 

arrays effectively to receive rewards, subsets of neurons in the striatum acquire 

representations of key learning variables: trial outcome and behavioral cost. Over the many 

sessions of this untutored behavioral learning, populations of striatal neurons developed 

accentuated firing at the beginning and end of the stereotyped scans, and their end-responses 

became progressively sharpened in close relation to the increases in the habitual 

repetitiveness of the scanning behaviors. Notably, only those neurons with both outcome 

and cost representations exhibited such across-session sharpening of the scan-end responses. 

The conjunction of these learning variables in the same neurons in the striatum could 

provide precisely the update signal necessary for the monkeys to improve in the efficacy of 

their saccade patterns, narrowing the scan-end signaling temporally to provide signals 

compatible with spike-timing dependent plasticity. These findings suggest a novel 

mechanism by which the striatum could participate in the formation of natural, untutored 

habitual behaviors.

Pronounced Scan-End Activity Develops in the Primate Striatum during Natural, Untutored 
Learning

In each monkey, without explicit behavioral training and across the performance of different 

scan patterns during behavioral learning, the activity of many neurons in the striatum 

developed phasic responses at the beginning and end of the saccade sequences. This 

‘beginning-and-end’ pattern resembles the task-bracketing patterns found in rodents given 

explicit training on cued and goal-directed sequential tasks (Barnes et al., 2005; Jog et al., 

1999) and the enhanced phasic responses of units in the prefrontal cortex and striatum 

neurons at the beginning and end of instructed sequences of saccades (Fujii and Graybiel, 

2003, 2005). These parallel findings suggest that self-initiated, untutored learning can be 

accompanied by re-patterning of striatal firing resembling that found in instructed learning. 

By focusing on striatal activity at the end of each scanning period, when feedback error 

signals could be used in the uninstructed development of habitual behaviors, we found that 

this scan-end activity could represent key RL variables including PPE (cost), RPE 

(outcome), or both. The activity of striatal neurons that encoded both outcome and cost was 

highly correlated with the degree to which the scan patterns performed were repetitive, 
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raising the possibility that the end signals could be a biomarker of the degree of learning or 

habit formation.

Dynamic Cost and Outcome Representation in the Striatum

We have shown that the activity of populations of striatal neurons dynamically correlates 

with measures of learning on two time scales: behavioral adaptation on a trial-by-trial basis 

and an across-session acquisition of optimal behavioral sequence production. We found that 

the PPE derived for each trial affects the subsequent selection of the most frequent patterns 

performed. This finding was not specific to particular most-frequent saccade patterns, 

suggesting that this influence represents an overall mechanism by which sub-optimal pattern 

selection could be signaled in the striatum. Further, even though the patterns’ changes can 

appear rather abrupt on a macro scale (across sessions) (Desrochers et al., 2010), we have 

shown that they can be driven by relatively small trial-by-trial changes that nudge the 

behavior in the direction of optimality, thus producing a gradual shift with less efficient 

patterns being performed less frequently and more efficient patterns being performed more 

frequently. The activity of many striatal neurons exhibited correlations with this same cost 

variable, and thus these activities were correlated with trial-by-trial changes in behavioral 

learning.

The sharpening of the end signals, as evidenced by decreases in IQR of the Both units, was 

produced by a more precise alignment of responses trial-by-trial. This finding suggests that 

the population firing of the striatal neurons recorded could become more aligned within a 

single trial, potentially enabling Hebbian mechanisms to link these neurons together in 

networks. These mechanisms potentially could produce greater efficacy, on a trial-by-trial 

basis, of communicating signals to downstream targets of the striatal neurons. Given that we 

have shown that the cost variable is a driving force in both optimal habit-like formation 

across sessions and trial-by-trial basis adaptation, and that the outcome of trials (presence or 

absence of reward) is generally accepted as a driving force in trial-by-trial basis adaptation, 

we hypothesize that the dynamics of the response of these neurons across sessions could 

also be an important part of the learning process and the neural activity that underlies it. 

Alternatively, a greater alignment of the Targ-Off signal could indicate that the signal has 

become more predictive of subsequent behavior as training progressed. Further investigation 

will be necessary to explore these and other potential mechanisms.

Critically, the subpopulation of striatal end-responsive neurons that represented both cost 

and outcome, but not the subsets of cost-responsive neurons or outcome-responsive neurons 

alone, exhibited long-term, cross-session changes in firing pattern: their spike activity 

underwent a gradual sharpening that was highly correlated with the increases in 

repetitiveness of the scanning movements that the monkeys exhibited across training 

sessions. In work in rodents, the degree of sharpening of striatal responses was found to 

correlate with the degree of habit formation (e.g., Barnes et al., 2005; Smith and Graybiel, 

2013). Our findings suggest that an aspect of local striatal spike density at scan-end, 

combining information about cost and outcome, is available in the striatum as a putative 

teaching signal for natural, uninstructed learning in non-human primates.
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Extensive work has shown that outcomes, in the form of rewards or values, are represented 

during learning in the CN in addition to the error associated with reward prediction (Asaad 

and Eskandar, 2011; Daw et al., 2006; Histed et al., 2009; Lau and Glimcher, 2007; 

O'Doherty et al., 2004; Stalnaker et al., 2012; Tanaka et al., 2004; Yamada et al., 2011, 

2013; Yanike and Ferrera, 2014). There is a much smaller body of work specifically 

pertaining to the representation of cost in the dorsal striatum. Of note is the fact that, 

according to our findings, changes in firing rate due to differences in cost are relatively 

small in comparison to changes related to reward outcome (e.g., see Fig. 5E Outcome versus 

Fig. 5E Cost). This difference could account for the relative paucity of reports of cost 

signals in the striatum: the changes in activity due to these factors are relatively small, and a 

large parametric range of values is required to detect them.

The cost variable that we found to be related to the Targ-Off spike responses of CN neurons 

was the same cost variable that we earlier found to be a better driver than reward of the RL 

algorithm that modeled the monkeys’ free scanning patterns (Desrochers et al., 2010). A 

prediction error in cost is not commonly used in modeling an adaptive change in behavior, 

but it bears resemblance to variables in traditional models of sequential (Squire, 2004) and 

non-sequential (Gomi and Kawato, 1993; Ito, 2008; Kawato and Gomi, 1992; Marr, 1969; 

Wolpert and Ghahramani, 2000) motor skill learning thought to be represented in the 

cerebellum (Kitazawa et al., 1998; Medina and Lisberger, 2008). Most computational 

models of sequential movements, however, have emphasized the use of reward prediction 

error as the feedback signal (Berns and Sejnowski, 1998; Dolan and Dayan, 2013; Doya, 

2000; Gläscher et al., 2010; Hikosaka et al., 1999). Here we suggest, as predicted by our 

cost-based RL model (Desrochers et al., 2010), that subsets of neurons in the striatum of 

macaque monkeys represent at trial end the same cost variable identified behaviorally.

Many studies have investigated the representation of effort in the neocortex (see Rushworth 

et al., 2011 for review), and both theoretical and experimental work specifically relating the 

effort of actions to the striatum has focused on cost/benefit trade-offs in motor tasks, 

positing a role of dopamine in their representation (Niv, 2007), or in decision-making tasks 

in which cost and benefit are combined variables to be judged in guiding actions (Amemori 

and Graybiel, 2012; Friedman et al., 2015). In human patients with Parkinson's disease, 

depleted levels of striatal dopamine are accompanied by decreases in efficient planning and 

execution of tasks (Gepshtein et al., 2014; Mazzoni et al., 2007), compatible with a function 

for the striatum in representing cost itself in such motor targeting tasks. Downstream targets 

of the striatum, components of the direct and indirect pathways, also have been implicated in 

performance prediction error monitoring (Tan et al., 2014). Moreover, the notion of cost has 

been extended from the motor domain by showing that mental effort can be represented by 

activations in the CN in humans (Schouppe et al., 2014). The findings presented here help to 

fill a gap in this domain by showing that the specific neural encoding of conjunctions of 

outcome and cost can parallel not only single movements or decisions, but also the 

acquisition and execution of complex, naturalistic self-taught behaviors in the primate.
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Questions for Further Study

Our findings are, per force, limited to the neuronal population that we sampled with the 

~100 electrodes chronically implanted across the striatum of each monkey. We have not 

obtained proof that the scan-end activity that we report is causally responsible for the 

naturalistic learning that we observed. Furthermore, we focused on activity occurring in the 

Targ-Off window, after the movements have been completed for the trial, in order to 

examine potential feedback signals, but we recognize that other changes occurred during the 

months of the recording periods. When examining the entire trial-time series as a whole, it 

was evident that the beginning of the movement sequence was also highly represented, as 

part of a beginning and end pattern.

The specific content of the scan-start (Targ-On) signal is an intriguing avenue for future 

research. A subset of the task-start signals recorded in the prefrontal cortex of monkeys 

performing instructed sequences of saccades were found to be directly linked to increases or 

decreases in task-end activity (Fujii and Graybiel, 2003). Also, in the scan task that we used 

here, CN activity at Targ-On appeared to be independent of the execution of individual eye 

movements. These observations suggest that CN activity at Targ-On may represent the same 

kind of activity previously observed in the prefrontal cortex to mark the initiation of 

stereotyped action sequences, but in an uninstructed context. It is possible that these signals 

at the beginning and end of sequences of uninstructed movements are intimately tied to 

predictions about performance and outcome. If so, it is reasonable to suggest that their 

dysfunction could contribute to deficits in initiating and terminating commonplace 

movement sequences, such as those observed in patients with Parkinson's disease.

Other task periods also hold promise for future investigation. Howe et al. (2013) found, with 

fast-scan cyclic voltammetry, that dopamine release in the striatum of rats ramps up with the 

progress towards a distant goal in a maze. This observation suggests that there could be a 

gradual dopamine signal that ramped up through the progress of scanning; it will be 

important to determine whether this dopamine signal is related to the end signal that we 

describe here. Further, although we have shown that cost drives the acquisition of repetitive 

action sequences in general, an important open question is how neural activity in this 

scanning period relates to the previously described individual habit-like sequences 

themselves (Desrochers et al., 2010).

End-Boundary Activity as a Higher Order Form of Neural Representation Related to 
Learning

The fact that action boundary activity of this kind has been reported in both rodents (Barnes 

et al., 2005; Jin and Costa, 2010; Jin et al., 2014; Jog et al., 1999; Smith and Graybiel, 2013) 

and in over-trained primates (Fujii and Graybiel, 2003, 2005), and now our evidence that 

this boundary activity exists in monkeys performing uninstructed sequences of movements 

of their own, suggests that signals marking the end of successful performance are a 

fundamental feature of behavioral learning of repetitive behaviors and habits. Moreover, the 

end-boundary activity sharpening of a subpopulation integrating cost and outcome signals 

that evolves over time is remarkably similar to the reduction in the variability of neural 

responses previously reported in rodents learning a T-maze task (Barnes et al., 2005). These 
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converging lines of evidence across different species and tasks suggest that the eye-

movement sequences that the individual monkeys performed were represented by the action 

boundaries developed during months of exposure to the scan task. This commonality 

suggests that the beginning-and-end patterning, including the prominent end-related activity 

analyzed here, represents a higher order representation not only of scan-end signaling itself, 

but also of task structure, coordinately built up through the learning process.

EXPERIMENTAL PROCEDURES

Two adult female monkeys (Macaca mulatta, ~5.9 kg each, monkeys G and Y) were studied 

in the experiments. All procedures were performed as approved by Massachusetts Institute 

of Technology's Committee on Animal Care. The details of the surgical procedures and 

chronic recording method was previously published (Feingold et al., 2012), and a summary 

is provided in Supplemental Experimental Procedures.

The two monkeys were experimentally naïve prior to the first day of exposure to the free-

viewing scan task, as they were not exposed to any explicit task training (on any task) prior 

to the first day of recording. They were only trained to be transferred from their home cage 

to the primate chair in the laboratory and to sit quietly in the chair with their head stabilized 

prior to the first day of neural recording. The free-viewing scan task and the related analyses 

of behavioral data have been previously described in detail (Desrochers et al., 2010); 

therefore, a summary is provided in Supplemental Experimental Procedures.

One Y4 session and one Y9 session were excluded due to data loss. Session blocks with 

fewer than 55% rewarded trials were included only if performance in other blocks indicated 

the monkey was sufficiently motivated to perform the task, and session blocks with fewer 

than 40 rewarded trials were not included in analyses (~4% excluded overall). All analyses 

were done in Matlab.

For each session, the probability of the monkey fixating each target in the green target grid 

following a fixation of each of the targets in the target grid was calculated to allow 

formation of the transition probabilities for that session. The entropy of the transition 

probabilities for each session (q) was defined as:

where qi is the probability of observing target i, and qij is the probability of observing target 

j followed by target i.

The trial-by-trial cost was calculated in the following manner. First, the distance measured 

from Targ-On to Targ-Off in each trial was simplified to be the geometric distance, so that 

the horizontal or vertical distance between two adjacent targets was equal to one. The mean 

distance was calculated over all trials in a single session and then was subtracted from the 

distance traveled in each trial to yield an estimate of the trial-by-trial cost (Δ distance). A 

positive cost would mean that the distance in the current trial was greater than the mean 
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distance; a negative cost would mean the distance in the current trial was shorter than the 

mean distance.

Units were separated from noise manually and with templates using Offline Sorter (Plexon, 

Inc.). We used established methods (Thorn and Graybiel, 2014) to classify units as HFNs, 

TANs, or MSNs (see Supplemental Experimental Procedures).

The stepwise regression with the firing rate (number of spikes) in the Targ-Off window (400 

ms) as the response variable was initialized with an intercept, outcome (as a categorical 

variable for correct and error trials), cost, and an interaction term.

The criterion to add or remove terms was the p-value for an F-test of the change in the sum 

of squared error. Terms were added if p < 0.05 and removed if p > 0.10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• During sequence learning, macaque striatal neurons encode integrated cost-

benefit

• These signals mark ends of saccade sequences acquired without explicit training

• With learning, the cost-benefit end signals sharpen via population spike 

alignment

• This sharpening is tightly coupled to decreasing entropy of the sequences 

acquired
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Figure 1. Behavior and Neural Responses during Task Periods
(A) Sample sequence of viewing screens in single trial. Gray targets appear on black 

background (left). The monkey scans green targets until a randomly chosen target is 

captured (middle). Then, the green targets grid turns off (right). Black diamond indicates 

time (on color bar) and position (on grid) of monkey's gaze when the target (red dashed 

circle) became bated with reward (not signaled to the monkey).

(B) Sequence of task events, with mean of variable duration (Start Delay, Delay Scan, 

Reward Scan, and Reward Delay) or fixed duration. Dashed lines indicate events not 

observable by the monkey. ITI1 (0.5 s after trial start) and ITI2 (1 s before trial end) were 

used to examine neural responses immediately prior to and after each trial, respectively.
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(C) Mean (± SEM) saccade distance (from Targ-On to Targ-Off) for each session in G9 

(left) and Y9 (right).

(D) Correlation between trial-by-trial cost and inter-pattern interval (IPI, number of 

intervening trials between two trials with the same stereotyped scan pattern; see 

Supplemental Information). All trials containing any of the most frequent sequences in G9 

and Y9 are shown as dots in the left panel. Note that the distribution appears skewed 

because the density of values less than zero cannot be accurately represented; the 

distribution is centered around zero with a median cost value of 1.2. Middle panel shows 

means for 10 bins containing the same number of trials (bin edges indicated by red lines in 

left) and line fit. Right panel shows results of shuffling the IPI and cost 500 times and 

computing the slope for each. Actual slope (middle) indicated by red line. No shuffled slope 

was greater than actual.

(E) Entropy of target-to-target transition probabilities across training sessions.

(F) The mean fraction (± SEM) of units with significant responses to task events across 

sessions (see Supplemental Information).

See also Figure S1.
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Figure 2. Changes in Activity Patterns of Striatal Neurons across Learning
(A and B) All units recorded in monkey G (A) and monkey Y (B). Activity of each unit was 

normalized to minimum-to-maximum (0-1) scale. Units were binned across sessions, if 

necessary, so that there were at least 10 units in each bin. Each row shows the average 

activity of all units (20 ms bins, color indicates normalized firing rate) in that session bin 

across the following peri-event windows (divided by vertical white lines): Targ-On (−0.4 to 

0.4 s), Find Scan (−0.4 to 0 s), Targ-Off (0 to 0.4 s), and Rwd-On (0 to 0.4 s; only for 

correct trials). (C and E) Response sharpness (mean ± SEM) in the Targ-Off window, as 

measured by IQR, increases across sessions (binned as in A) in monkeys G (C) and Y (E). 

Regression lines (red) shown with confidence intervals (red dashed).

(D and F) Average peak firing (± SEM) of all units across sessions in the Targ-Off window 

for monkeys G (D) and Y (F), calculated as the mean normalized firing rate in the center 

two quartiles around the median firing time.

See also Figure S2.
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Figure 3. Response Categories of CN Units
(A and B) Percentage of units categorized as Outcome, Cost, and Both (Additive and 

Interaction types) units recorded in monkeys G (A) and Y (B) across sessions. Signs (“+”, 

“−”, or combination) indicate the sign of the coefficient in the regression (for Both units, 

signs for Outcome and Cost shown, respectively, toward perimeter and towards center). 

Units correlated with eye movement times (Eye) are not further broken down into subtypes 

based on the sign of the coefficient.

(C and D) Venn diagrams showing percentage of each unit type. Eye units were excluded. 

Overlap of Outcome and Cost units represents Both units.

See also Figure S3.
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Figure 4. Recording Locations of Outcome, Cost and Both Units
(A-D) Coronal view (A), sagittal view of left (B) and right (C) hemisphere, and axial view 

(D) of bilateral recording locations in G9. Outline of the striatum showing the CN and 

putamen (Put) is drawn for reference and does not represent exact border. The location of 

individual electrode tracks was verified in histological sections of each monkey's brain. Zero 

in the anterior/posterior (y) direction is the center of the grid used for implanting electrodes.

(E-H) The same as A-D but for recording locations in Y9.
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Figure 5. Response Patterns of Single CN Units in Relation to Outcome and Cost
(A and B) Units with a greater response in correct (left) trials (Outcome-positive unit, A) 

and with a greater response in error (right) trials (Outcome-negative unit, B). Plots show 

activity during 0.4 s period after Targ-Off (time 0).

(C and D) Trial-by-trial firing rate relative to cost (left) and mean firing rate with regression 

line (red line) and 95% confidence bounds (red dashed lines, right) for Cost-positive (C) and 

Cost-negative (D) units, plotted as in Figure 1D.
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(E and F) Both-Additive (E) and Both-Interaction (F) units. Histograms as in A and B and 

correlations with change in cost as in C and D are shown for correct (top) and error (bottom) 

trials. All units recorded in monkey G.
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Figure 6. HFN, TAN, and MSN Classification
(A) All HFNs (orange), TANs (brown) and MSNs (blue) recorded in monkeys G and Y, 

plotted in 3-D by spike parameters used to classify HFNs: firing rate, peak full width at half 

maximum (FWHM) and valley FWHM.

(B) All units recorded in both monkeys, plotted in 3-D by firing pattern parameters use to 

classify TANs: percent of spikes with long (> 0.5 s) interspike intervals (ISIs), percent of 

spikes in a burst (two or more spikes within 10 ms) and post-spike suppression (see 

Methods).
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(C-E) Mean wave forms of an HFN (C), TAN (D) and MSN (E) indicated by black circles 

in A and B.

(F-H) Response categories for HFNs (F), TANs (G) and MSNs (H) as in Figures 3A and 

3B, and single units from the Both category of each unit type as in Figure 5.

See also Figure S3K.
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Figure 7. Inter-Quartile Range (IQR) Through Learning
(A and B) IQR illustrated on the mean normalized firing rate histograms from Both units 

recorded early (left, mean of first five session bins) and late (right, mean of last five session 

bins) in training for monkeys G (A) and Y (B). Dashed line indicates median spike time.

(C) IQR of individual Both units (dots) across sessions in monkey G with correlation line 

(solid) and confidence intervals (dashed) in black. Mean IQRs (± SEM) in consecutive 

session bins (as in Figure 2) are shown in color.

(D-H) Same as in C but for Outcome (D) and Cost (E) units in monkey G, and Both (F), 

Outcome (G) and Cost (H) units in monkey Y.

See also Figures S4, S5 and S6.
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Figure 8. Correlation between Saccade Entropy and IQR
(A) Saccade entropy versus IQR in the Targ-Off window plotted for Both units in monkey G 

using the same bins as in Figure 2. Each point represents the mean across all the sessions 

contained in that session bin. For illustrative purposes only, regression lines (solid) and 95% 

confidence intervals (dashed) are shown.

(B-F) Same as in A but for Outcome (B) and Cost (C) units in monkey G, and Both (D), 

Outcome (E), and Cost (F) units in monkey Y.

See also Figures S7 and S8.
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