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SLUG, a member of the SNAIL family of transcriptional
repressors, is known to play a diverse number of roles in the
cell, and its deregulation has been observed in a variety of
cancers including breast. Here, we focus on SLUG’s role as a
master regulator of mammary epithelial cell (MEC) fate and
lineage commitment in the normal mammary gland, and
discuss how aberrant SLUG expression can influence breast
tumor formation, phenotype, and progression. Specifically,
we discuss SLUG’s involvement in MEC differentiation,
stemness, cellular plasticity, and the epithelial to
mesenchymal transition (EMT), and highlight the complex
connection between these programs during development
and disease progression. Undoubtedly, delineating how
molecular factors influence lineage identity and cell-state
dynamics in the normal mammary gland will contribute to
our understanding of breast tumor heterogeneity.

SLUG: A SNAIL Family Protein

SLUG (SNAI2) is a member of the SNAIL family of zinc fin-
ger transcriptional repressors that mediates sequence-specific
interactions with DNA. The most highly studied members of
this family include SNAIL (SNAI1) and SLUG (Fig. 1), both of
which are conserved among vertebrate species.1 SNAIL family
members have been implicated in a variety of developmental and
cellular processes, many of which relate to cell motility and
induction of the EMT; these include but are not limited to:
mesoderm formation, neural crest migration, and determination
of left-right asymmetry during embryogenesis, as well as wound
re-epithelialization and tissue fibrosis in the adult.2-8 Addition-
ally, SNAIL family members are aberrantly expressed in a variety
of cancers where they regulate a diverse number of processes

ranging from tumor cell invasion and metastasis to cell survival
and proliferation.2,9-15

Proteins of the SNAIL family share a similar structural organi-
zation. The carboxy terminus contains 4 to 6 C2H2 zinc finger
motifs, which facilitate the protein’s direct binding to DNA. The
consensus DNA binding site for SNAIL family proteins is the
CAGGTG sequence; this motif is a subset of the E-box sequence
(CANNTG) to which a number of basic helix-loop-helix tran-
scription factors bind.1,2,16 The DNA-binding domain of SNAIL
family transcription factors is necessary, but not sufficient, to
mediate transcriptional repression by these proteins.3 At their N-
terminus, SNAIL family members contain a highly conserved
Snai.Gfi-1 (SNAG) domain; this domain is essential for the
protein’s nuclear localization and role as a transcriptional repres-
sor.3,17-19 Despite the similarities at their terminal ends, SNAIL
and SLUG proteins differ in their proline-rich central region.
While SNAIL contains a destruction box and nuclear export
sequence, SLUG possesses a unique 2nine amino acid region
known as the SLUG domain.3,20 Therefore, it is likely that the
SLUG domain is responsible for many of the functional differen-
ces between SLUG and other SNAIL family member proteins.
Although recent evidence suggests the SLUG domain interacts
with the CtBP1 co-repressor and negatively regulates induction
of the EMT, the full functional consequence of this domain
remains unknown.21

Despite their considerable homology in protein structure and
their involvement in common cellular programs, important func-
tional differences exist between SLUG and SNAIL proteins, thus
highlighting the notion that these 2 transcription factors have
unique and non-overlapping roles in the cell. For example, while
SNAIL is required for early embryogenesis, as SNAIL-null mice
die at gastrulation, SLUG-null mice are viable but exhibit a vari-
ety of specific tissue and stem cell defects.22,23 Additionally,
when over-expressed in MDCK epithelial cells or MCF-7 breast
cancer cells, SNAIL and SLUG induce both common and dis-
tinct gene expression patterns, suggesting these factors regulate
shared as well as specific transcriptional programs in both normal
and transformed cells.11,24 Although SNAIL and SLUG can both
bind to the E-CADHERIN (E-CAD) promoter and repress
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transcription, SNAIL does so with a higher efficiency and
potency than SLUG.25,26 Furthermore, while SNAIL and SLUG
are both aberrantly expressed in a variety of tumors, studies indi-
cate they play different roles related to tumor initiation, progres-
sion, and metastasis.27,28 These observations suggest that SNAIL
and SLUG have distinct roles in the cell, and thus regulate a
unique set of gene targets. However, given their structural simi-
larities, it is likely that one can use SNAIL as a guide to assist in
the identification of possible mechanisms of transcriptional regu-
lation by SLUG.

This review will focus on the contribution of the transcription
factor, SLUG, to normal mammary gland biology and breast
tumor development. Specifically SLUG’s influence on mammary
epithelial cell lineage commitment and differentiation, cellular
plasticity, and the mammary stem cell state will be discussed. In
regard to these processes, the consequence of aberrant SLUG
expression on breast tumor initiation and breast tumor pheno-
type will be reviewed. Finally, possible molecular mechanisms by
which SLUG may regulate these processes will be explored.

The Evolving Mammary Epithelial Cell Hierarchy

The mammary gland is a complex tissue composed of a
branching epithelial ductal tree embedded in a layer of fat and
stroma. The mammary ductal tree consists of lobular units inter-
connected by a network of ducts that ultimately drains into the
nipple.29 The mammary epithelium is a bilayered structure com-
posed of 2 types of cells: luminal and basal/myoepithelial (ME)
cells (Fig. 2A). Luminal cells, which are polarized and cuboidal
in shape, can differentiate into either ductal cells or milk produc-
ing alveolar cells. Luminal cells line the inner lumens of ducts
and alveoli, and are often separated from the surrounding base-
ment membrane (BM) and stroma by an intervening layer of
basal/ME cells.29,30 These cells, which form a single-cell layer
sheath separating the luminal cells from the BM, are spindle-

shaped and possess contractile abilities
that allow them to squeeze milk through-
out the ducts during lactation.31 Luminal
and basal cells are characterized by dis-
tinct markers: luminal cells express cyto-
keratins (CKs) 8/18 and 19, as well as
markers such as MUC1, GATA3, and
CD24; basal/ME cells express CKs 5, 14,
and 17, as well as smooth muscle actin
(SMA) and vimentin.32-34

In addition to mature luminal and
basal/ME cells, numerous reports have
provided evidence that a mammary epi-
thelial cell hierarchy exists and is respon-
sible for tissue growth and maintenance
during periods of development and
homeostasis. In a simplistic model, it is
thought that bi-potent or multi-potent
stem cells give rise to lineage-restricted
progenitor cells; these progenitors then

divide and differentiate into the committed mature luminal and
basal cells of the adult mammary epithelium. Although there
have been many attempts to delineate the lineage hierarchy of the
mammary epithelium, it is still unclear as to which model, if any,
accurately identifies the full spectrum of mammary epithelial
cell-types as well as their relationship to one another.35-39

Using cell sorting techniques to isolate subsets of MECs based
on their expression of various cell surface markers, researchers
have identified subpopulations of luminal progenitor, mature
luminal, and basal/stem cells from both human and mouse mam-
mary tissue. While the luminal markers, CD24 and EPCAM,
and the basal markers, CD49f and CD29, have consistently been
used to segregate luminal and basal MEC populations (Fig. 2B),
the identification of intermediate progenitor subsets as well as a
pure mammary stem cell (MaSC) population has proven chal-
lenging.40-44 Recently, various groups have used different marker
combinations to try and define unique MEC progenitor popula-
tions.36,40,44,45 While these studies have resulted in the identifica-
tion of various luminal progenitor subsets, the isolation of a
distinct basal progenitor population has been unsuccessful. It is
possible, however, that a different combination of markers is nec-
essary to delineate this subset. Similar to the difficulties encoun-
tered in defining a basaL-progenitor cell subset, attempts to
isolate a pure MaSC population have been challenging. Until
recently, MaSC-enriched subpopulations were defined predomi-
nantly by their ability to form colonies in vitro and to reconsti-
tute a cleared mammary fat pad following transplantation
in vivo. Using these techniques, numerous reports concurred that
MaSCs reside within the basal epithelial cell subpopulation in
both humans and mice; however, markers that can isolate pure
MaSCs from within the basal epithelial subset have yet to be
discovered.41,42,46,47

Recently, researchers have used a series of lineage tracing stud-
ies to further investigate the mammary lineage hierarchy. Lineage
tracing allows genetic markers to be tracked in situ, and thus pro-
vides a way to trace stem or progenitor cell fate over time under

Figure 1. Schematic diagram of the main functional domains of the SNAIL (SNAI1) and SLUG (SNAI2)
proteins. The common domains include the N-terminal SNAG domain and C-terminal zinc finger
domains. NES, nuclear export sequence.
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normal, physiological con-
ditions. Using this tech-
nique, van Keymeulen and
colleagues showed that the
mammary gland initially
develops from bipotent
CK14C progenitors that
persist only during embryo-
genesis. Following birth,
unipotent luminal-restricted
and basal/ME-restricted
progenitors are responsible
for tissue growth and main-
tenance during puberty,
pregnancy, lactation, and
involution. The authors did
acknowledge, however, that
perhaps a rare, adult bipo-
tent mammary stem cell
exists that was not targeted
by their genetic-labeling
system.38

Adding to the complex-
ity of this topic, a study by
Rios et al., which also uti-
lized lineage tracing techni-
ques to examine the
mammary epithelial cell
hierarchy, reported that a
bipotent, adult MaSC
exists, in addition to long-
lived progenitor cells. The
results from this study sug-
gested that both MaSCs
and progenitor cells contrib-
ute to ductal growth, alveo-
lar expansion, and tissue
maintenance throughout
development of the mam-
mary gland.48 Together,
these findings reveal that
defining distinct subsets of
mammary stem and pro-
genitor cells is challenging,
and continued work is nec-
essary to definitively charac-
terize a mammary lineage
hierarchy. Undoubtedly,
deciphering the mammary epithelial cell hierarchy will provide criti-
cal information to aide in our understanding of the cellular and
molecular mechanisms that drive breast cancer initiation and
progression.

SLUG in mammary epithelial cell differentiation
Recent work has identified a novel role for SLUG as a regula-

tor of mammary epithelial cell differentiation.49,50 In adult

human and mouse mammary epithelium, immunohistochemical
(IHC) analysis revealed that SLUG localizes to the basal/ME cell
layer, suggesting that SLUG may regulate this epithelial cell-
state.49,51 Further examination of SLUG expression in different
mouse epithelial cell populations, including mature luminal,
luminal progenitor, and basal/stem cells, confirmed that SLUG
is differentially expressed in the basal/stem subset.42,51,52 Unlike
SLUG, SNAIL is expressed at similar levels in luminal and basal

Figure 2. Cellular components of the mammary epithelium. (A) Cross section of a bilayered duct. Luminal cells line the
inner duct lumen and are surrounded by an outer layer of contractile basal cells. (B) Flow cytometry plots of primary
human mammary epithelial cells analyzed for expression of (i) EPCAM vs. CD49f and (ii) CD24 vs. CD49f expression.
Mature luminal, luminal progenitor, and basal/stem populations are indicated.
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cells, but is significantly enriched in the mammary stromal popu-
lation; this suggests a unique role for SLUG in regulating mam-
mary epithelial cell identity and lineage commitment
programs.51,52

Consistent with a role
for SLUG in maintaining
the basal cell phenotype,
stable knockdown of
SLUG in immortalized,
patient-derived human
mammary epithelial cells
(HMECs) resulted in
increased expression of
luminal lineage genes,
including EPCAM, E-
CAD, CD24, and
MUC1; similar results
were observed following
SLUG inhibition in the
spontaneously immortal-
ized MCF10A breast epi-
thelial cell line.50 In both
cell lines, the gene signa-
ture of SLUG KD cells
was significantly enriched
in genes characteristic of
luminal progenitor cells;
this further suggests that
SLUG functions to
repress luminal lineage
differentiation. Addition-
ally, flow cytometry anal-
ysis revealed that SLUG
inhibition results in a shift
in epithelial cell-state pro-
portions, characterized by
an expansion of luminal
cells and reduction of
basal cells.50 Together,
these results suggest that
SLUG functions to main-
tain MECs in a basal-like
state, and inhibition of
SLUG promotes luminal
differentiation (Fig. 3A).

Confirmation that
SLUG regulates MEC dif-
ferentiation was also shown
in vivo using a SLUG-
LacZ transgenic mouse
model.22,50 Throughout
early stages of development
and during puberty, strong
SLUG expression was
observed in the basal/ME
layer of mammary ducts.52

Compared to wild type (WT) mice, the mammary epithelium of
SLUG-deficient mice displayed increased expression of luminal
CKs and luminal-specific genes, including Gata3 and ERa. Histo-
logical examination of mammary glands from adult SLUG-LacZ

Figure 3. SLUG is a Regulator of Mammary Epithelial Cell-State Dynamics. Schematic diagrams outlining the various
functions of SLUG in mammary epithelial cells. (A) SLUG regulates MEC differentiation. As a transcriptional repressor,
SLUG represses transcription of luminal lineage genes and maintains cells in a basal/progenitor-like state. (B) During
tissue regeneration following transplantation and tumor initiation, SLUG may be necessary for lineage-restricted cells
to de-differentiate into a more primitive, stem-like state. (C) SLUG cooperates with SOX9 to promote the mammary
stem cell state. (D) SLUG regulates stochastic cell-state transitions between luminal, basal, and stem cells. Following
SLUG knockdown, there are decreased transitions into the basal state and increased transitions into the luminal state.
SLUG KD also affects transition into and out of the stem cell state. (E) SLUG promotes the EMT.
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mice revealed severe defects in MEC differentiation characterized by
hyperplasia of luminal cells and aberrant expression of luminal
markers in the basal/ME cell layer.50 Upon further investigation of
this phenotype, a unique population of cells with an EPCAMhi/
CD49fhi profile was identified in SLUG-deficient mammary epithe-
lium. This population, termed the luminobasal population, repre-
sented basal cells with enhanced features of luminal differentiation.
Consistent with this observation, the gene signature of the lumino-
basal population was significantly enriched in the gene expression
patterns of both luminal progenitor and mature luminal cells.50

These data confirm a role for SLUG in regulating MEC identity
and differentiation in vivo, and suggest that SLUG is necessary to
represses luminal gene expression programs in basal/stem cells.
Taken together, in vitro and in vivo models of SLUG-deficiency
have highlighted a critical role for SLUG as a regulator of MEC dif-
ferentiation, whereby SLUG functions to repress luminal gene tran-
scription programs.

The connection between SLUG, cellular plasticity, and the
mammary stem cell state

In addition to regulating differentiation, recent work has also
shown that SLUG promotes the mammary stem-cell state. This
is consistent with SLUG’s expression in the basal cell layer of the
mammary epithelium, where MaSCs have been reported to
reside.46,51,53 Using the mammosphere assay, Nassour and col-
leagues showed that SLUG-deficient MECs were unable to form
secondary and tertiary mammospheres upon serial dissociation
and re-plating, suggesting that SLUG may be necessary for stem/
progenitor cell self-renewal.52 Additional studies investigating
SLUG’s role in promoting “stemness” revealed that induction of
SLUG correlates with increased proportions of CD44C/CD24¡

stem-like cells. Cells with this phenotype have in vivo repopulat-
ing capabilities, display the ability to self-renew, and exhibit
bipotent differentiation potential.54,55 Interestingly, over-expres-
sion of SLUG in the MCF10A basal breast epithelial cell line
induced formation of CD44C/CD24¡ stem-like cells; however,
the same result was not observed when SLUG was overexpressed
in the MCF-7 luminal-type breast cancer cell line.56 This finding
suggests that the differentiation state of a cell may affect SLUG’s
ability to promote stem-like properties. In several studies,
SLUG’s ability to induce the CD44C/CD24¡ cancer stem cell
(CSC) phenotype has been proposed to result from its induction
of the EMT.55-57 However, it is unclear whether a full EMT is
necessary to generate these stem cells, or whether certain aspects
of the EMT, such as enhanced plasticity, are sufficient to trans-
form cells into bona fide stem cells.

Previously, the mammary transplantation assay had been
described as the gold standard for identifying functional stem
cells.29 Recently, however, it has been hypothesized that the
transplantation assay does not measure a cell’s inherent stem
cell activity, but instead reflects the potential of lineage-commit-
ted cells to de-differentiate and adopt a more primitive, stem-
like state.38,58 Recent reports using the mammary transplanta-
tion assay to investigate the effect of SLUG loss on a cell’s
regenerative potential have offered an interesting perspective on
this issue.

SLUG-deficient mice do not display stem cell defects during
normal growth and development, as they develop full mammary
ductal trees. Similarly, when SLUG-deficient tissue fragments
were transplanted into the cleared fat pads of WT recipients,
they successfully grew and formed outgrowths.52 Together, this
suggests that when MECs are maintained in their normal, physi-
ological environment they do not require SLUG for stem cell
activity. However, when SLUG-deficient MECs were removed
from their natural environment and transplanted as single cell
suspensions, they failed to reconstitute the mammary gland.50

This suggests that SLUG may regulate cellular plasticity necessary
for differentiated cells to acquire stem-like properties under non-
physiological conditions (Fig. 3B).

Consistent with these findings, Guo and colleagues reported
that SLUG and the SRY-box transcription factor, SOX9, func-
tion together to induce and maintain the mammary stem cell
state.51 By ectopically expressing both factors alone or together in
primary mouse MECs, this group showed that SLUG and SOX9
are both required for MaSC function. Strikingly, co-expression
of both factors in differentiated luminal cells in vitro converted
these cells into functional MaSCs that could reconstitute a
cleared mammary fat pad following transplantation in vivo
(Fig. 3C).51 While this finding provided evidence that SLUG
can promote entrance into the stem cell state, it also demon-
strated that epithelial cells are plastic, suggesting that certain
genetic or epigenetic factors, such as SLUG, may be able to con-
vert differentiated cells into a more primitive stem-like state. In
support of a role for SLUG in regulating cell plasticity, we used
an in vitro model of cell state dynamics to show that loss of
SLUG alters cell-state transitions between normal luminal, basal,
and stem cells. Importantly, loss of SLUG affected transitions
from and into the stem cell state (Fig. 3D). Together, these find-
ings highlight a novel function of SLUG in regulating the MaSC
state and cell-state dynamics.

SLUG and Breast Tumorigenesis

Work from various groups has revealed that disruption of
lineage commitment and differentiation programs can alter the
epigenetic state of progenitor cells, and thus influence which type
of tumor will develop.59-63 Given the important role of SLUG in
regulating normal luminal and basal/ME cells in the breast, it
should likely play an important role in breast cancer pathogenesis
and tumor behavior. In fact, we speculated that breast tumor
phenotype would be significantly impacted by SLUG deficiency
since the differentiation state of the normal basal precursor target
for neoplastic transformation is altered in SLUG-deficient mice.
Surprisingly however, we found that SLUG-deficient mice were
resistant toMyc-induced mammary tumorigenesis.50 This finding
suggests that tumor initiation operates through a mechanism that
is similar to tissue regeneration. Indeed, in other contexts, cells
must adopt stem-like properties as a pre-requisite for tumor initi-
ation.64,65 These unexpected findings highlight a role for
SLUG in regulating mammary epithelial cell plasticity, and sug-
gest that SLUG may be necessary for lineage-committed cells to
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de-differentiate into a more primitive, stem-like state during tis-
sue regeneration following transplantation and tumor initiation.

SLUG and the EMT
Understanding the full functional consequence of aberrant

SLUG expression during malignant transformation is complex,
especially given the diverse roles of SLUG in the cell.1 The
majority of studies evaluating SLUG’s involvement during breast
tumorigenesis have focused on SLUG’s regulation of the EMT
(Fig. 3E), a reversible process in which epithelial cells acquire a
mesenchymal phenotype.25,66-70 In epithelial cells, the EMT is
characterized by loss of polarity, cytoskeleton rearrangement, a
change in intermediate filaments (from keratin to vimentin), an
increase in cell motility, and resistance to apoptosis.68,71 On a
molecular level, SLUG’s regulation of the EMT is often associ-
ated with its ability to transcriptionally repress expression of the
epithelial gene, E-CAD.25,72,73 These phenotypic and functional
changes have been shown to facilitate cancer cell invasion and
metastasis.72,74

Apart from the EMT, transcriptional regulation by SLUG has
been shown to affect a diverse number of cellular functions in the
mammary epithelium. As previously discussed, recent studies
have identified SLUG as a regulator of MEC differentiation; in
this context SLUG directly represses the transcription of mam-
mary epithelial luminal lineage genes.49,50,52 SLUG has also been
implicated as a regulator of the mammary stem cell state, both in
the normal tissue and breast cancer cells.50-52 Consistent with
these findings, basal-type breast tumors with elevated SLUG
expression were shown to over-express stem-like genes, including
CD133 and BMI1.72 Additional studies revealed that breast
tumors over-expressing SLUG display increased proportions of
CD44C/CD24¡ CSCs, suggesting that transcriptional programs
induced by SLUG promote stemness. However, from these stud-
ies it is unclear whether SLUG endows cells with certain proper-
ties of stem cells, or fully converts them into bona fide stem
cells.55,56,72,75

Interestingly, other studies have recognized that during some
developmental and disease processes a full EMT is not always
achieved. Termed a partial EMT, cells in this phenotypic state
often retain cell-cell junctions but acquire invasive and motile
properties.68,76 Physiological examples of a partial EMT include
epithelial wound healing and the collective migration of epithe-
lial cells during mammary branching morphogenesis.77 In this
sense, the EMT signature appears closely connected to differenti-
ation pathways as well as stem cell signatures.52 The identifica-
tion of the partial EMT state is critical to our understanding of
cell-state identity and cellular plasticity, suggesting that a switch
between 2 phenotypic states is not absolute, but exists on a con-
tinuum.68 With regards to this, we recently identified SLUG as a
regulator of mammary epithelial cell plasticity, and showed that
SLUG promotes cell-state transitions into and out of the basal
and stem cell states.50 This finding suggests that it may be impor-
tant to consider the concept of a phenotypic continuum when
assessing SLUG’s function during development and tumor pro-
gression. From the work discussed above, it is clear that SLUG’s
regulation of cellular differentiation, cellular plasticity, and the

mammary stem cell state will have important implications for
research focused on understanding breast tumor heterogeneity.

SLUG and the Basal Breast Tumor Phenotype

Breast cancer is a complex disease, comprised of heteroge-
neous tumors displaying different molecular profiles, metastatic
behavior, clinical characteristics, and response to therapeutics.
Much research has focused on the 2 major molecular classes of
breast cancers: luminal and basal-type tumors. These tumor types
were originally classified by their expression of certain markers
known to identify with either normal luminal or basal/ME breast
cells. Luminal-type tumors are characterized by high expression
of genes typically found in normal luminal breast epithelial cells,
including CK8/18 and the estrogen receptor (ERa). On the con-
trary, basal-type tumors consistently express high levels of certain
basal/ME-associated genes, including CK5, CK14, and CK17.80-
82 Luminal and basal-type tumors differ not only in their molec-
ular profiles, but also in the clinical course of the disease and their
response to therapeutics.78,79 Compared to luminal tumors, basal
tumors typically are high grade, poorly differentiated, and associ-
ated with a poor prognosis.83,84 Interestingly, women with inher-
ited mutations in the Breast Cancer Associated 1 (BRCA1) gene
have an increased risk of developing aggressive basal-type breast
cancer.85,86

Although known for their high expression of several basal/
ME-specific markers, further analysis of the basal tumor subtype
revealed that these tumors also express genes characteristic of
other cell lineages, including luminal, stem, and progenitor-type
cells.80,87,88 Consistent with this, basal breast cancers have been
shown to express several stem cell-associated genes, including
BMI1.72,89-91 Recently, a subset of embryonic mammary epithe-
lial genes was also found to be up-regulated in basal-type tumors;
several of theses genes, including BCl11a, GRHL3, PROX1, and
SOX11, were previously shown to function as regulators of pro-
genitor cell activity or differentiation.92 Furthermore, several
studies have reported an enrichment of CD24¡/CD44C breast
cancer stem cells (BCSCs) in basal-type tumors.93-96 The discov-
ery that basal-type tumors exhibit stem-like features suggests that
properties inherent to stem cells, such as increased plasticity and
decreased lineage specification, may contribute to the basal tumor
phenotype.

Strikingly, despite their expression of several basal/ME and
stem cell markers, recent studies have revealed that the gene sig-
nature of basal-type tumors most closely resembles that of normal
luminal progenitor cells.42,97 This finding had a major impact in
the field and compelled researchers to investigate the connection
between basal-type breast cancer and luminal progenitor cells.
Recently, studies from several groups have provided evidence
that transformed luminal progenitor cells are the cell-of-origin of
BRCA1-associated and basal-type breast cancers.49,98,99 This
data suggests that factors that regulate cellular differentiation and
lineage commitment may play an important role in dictating
breast tumor phenotype.
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Investigation into possible molecular factors and pathways
contributing to the aggressive nature of the basal tumor subtype
has often focused on members of the SNAIL family of transcrip-
tional repressors, including SLUG.56,66,68,69,72 In human breast
cancer, SLUG is frequently overexpressed in BRCA1-mutated
and basal-type tumors.49,69,72 IHC analysis of SLUG expression
in primary human breast tumors revealed that elevated SLUG
levels correlate with increased metastatic potential and high
tumor grade.69 Similarly, SLUG is also over-expressed in basal-
type breast cancer cell lines where inhibition of SLUG has been
shown to result in increased expression of luminal lineage genes
49,90; this suggests that, similar to the normal MECs, SLUG also
represses luminal gene expression in breast cancer cells.49

While these findings clearly establish a connection between
SLUG overexpression and the basal tumor subtype, they do not
distinguish whether SLUG is the cause or consequence of the
basal phenotype. However, some early findings might point to
SLUG as the cause of the basal tumor phenotype in at least some
breast cancers. In disease-free breast tissue of BRCA1-mutation
carriers, SLUG was shown to be overexpressed prior to any evi-
dence of cancer.49 These BRCA1-deficient or mutant MECs
were shown to exhibit defects in epithelial cell differentiation as
well as progenitor cell function.49,100-102 In addition, analysis of
BRCA1 mutated HMECs prior to transformation revealed that
these cells display enhanced features of basal differentiation.
BRCA1-mutant HMECs also generated outgrowths in vivo with
increased numbers of luminal cells expressing both luminal and
basal markers.49 Furthermore, when cells from these women
were transformed, they preferentially generated basal-like tumors.
This finding suggests that elevated SLUG expression prior to
neoplastic transformation might explain, in part, why BRCA1-
mutation carriers exhibit a strong predisposition to developing
aggressive, basal-type breast tumors.49 In addition, these data
suggest that aberrant SLUG expression creates defects in MEC
lineage commitment that may ultimately affect tumor
phenotype.

Mechanism of transcriptional regulation by SLUG
It is clear that SLUG regulates many critical functions in the

cell that are necessary for breast development and tumor forma-
tion. Uncovering the molecular mechanisms by which SLUG
controls gene expression programs will undoubtedly contribute
to our understanding of SLUG’s role during breast tumorigenesis
and provide possible avenues for new therapies to treat aggressive
basal-type tumors. Over the past 20 years, chromatin remodeling
and histone modifications have been recognized as major mecha-
nisms controlling gene expression. In particular, histone methyla-
tion and acetylation have been frequently implicated in
regulating gene transcription.103 The first evidence that SNAIL
family members might use epigenetic mechanisms to function as
transcriptional repressors was reported in 2000, when treatment
of cells with tricostatin A, a histone deactelyase (HDAC) inhibi-
tor, alleviated SNAIL-mediated repression at the E-CAD pro-
moter.3 Since then, SNAIL has been identified in various
complexes with epigenetic factors and co-repressors, including
HDAC1/2 and the mSIN3A co-repressor,104 the arginine

methyltransferase, PRMT5, and the AJUBA co-repressor,105 as
well as the methyltransferases SUZ12, G9a, and SUV39H1.106-
108 In all cases, the ability of SNAIL to repress the transcription
of target genes was linked to its recruitment of chromatin-modi-
fying enzymes and/or co-factors.

More recently, Lysine Specific Demethylase 1 (LSD1) was
identified as a novel SNAIL interacting protein and co-regulator
of E-CAD transcription.109 LSD1 is an enzyme that removes
mono- and dimethyl methyl groups from H3K4 and H3K9,
post-translational modifications associated with transcriptional
repression.110,111 Lin et al. showed that SNAIL binds LSD1 via
its SNAG domain and recruits it to the E-CAD promoter. Once
localized, LSD1 removes mono- and di-methyl groups from
H3K4, thus promoting gene silencing.109,112

With regards to SLUG, this finding was intriguing since
SLUG also contains a SNAG domain and is a known repressor
of E-CAD transcription. In fact, it was recently shown that
SLUG interacts with LSD1, and this interaction is responsible
for epigenetic silencing at SLUG target gene promoters.113 In the
MCF10A breast epithelial cell line, we showed that SLUG and
LSD1 function together to repress genes associated with luminal
differentiation.50 However, whether this complex also functions
to regulate mammary stem cell activity is unknown. Interestingly,
like SLUG, LSD1 is also over-expressed in aggressive ERa¡

breast tumors where its expression correlates with aggressive
behavior and a poor prognosis.114 Therefore, targeting the
SLUG/LSD1 complex may provide a potential avenue for treat-
ing aggressive basal-type tumors. However, LSD1 represents only
one of potentially many SLUG transcriptional co-regulators, and
therefore, further work is necessary to identify other mechanisms
by which SLUG may regulate gene transcription programs.

Conclusion

SLUG, a SNAIL family transcription factor, has been highly
studied in the context of breast cancer since it is consistently over-
expressed in aggressive, basal-type breast tumors. Previous work
has predominantly focused on SLUG’s regulation of the EMT
and its influence on breast tumor invasion and metastasis. More
recently, studies have discovered novel roles of SLUG in normal
breast epithelial cells, including regulation of cell differentiation,
cell-state dynamics, and the mammary stem cell-state. These
SLUG-dependent processes have also been shown to influence
breast tumor initiation and progression. Understanding the con-
nection between EMT, cellular plasticity, stemness, and cell-state
identity during normal development and tumorigenesis is
undoubtedly complex; however, SLUG may be an ideal candi-
date for delineating how these processes relate to one another,
and for determining how they collectively contribute to breast
cancer initiation and progression.

The studies discussed here offer insight into how targeting
SLUG may affect breast tumorigenesis. The role of SLUG in
repressing luminal differentiation suggests that inhibiting SLUG
in basal-type tumors could alter the differentiation state of these
cells. Alternatively, the requirement for SLUG during tissue
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regeneration following transplantation and Myc-induced tumor
formation suggests that targeting SLUG may compromise breast
tumor stem cell activity. With regards to EMT during late stages
of tumorigenesis, inhibiting SLUG function has already been
shown to inhibit cancer cell invasion and metastasis. While it

clear that SLUG plays a critical role during multiple stages of
breast tumor development, further insight into the cellular com-
ponents and pathways of the normal mammary hierarchy is nec-
essary to fully comprehend how aberrant SLUG expression
influences breast tumor biology.
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