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The detection of temperature is one of the most
fundamental sensory functions across all species, and is critical
for animal survival. Animals have thus evolved a diversity of
thermosensory mechanisms allowing them to sense and
respond to temperature changes (thermoreception). A key
process underlying thermoreception is the translation of
thermal energy into electrical signals, a process mediated by
thermal sensors (thermoreceptors) that are sensitive to a
specific range of temperatures. In disease conditions, the
temperature sensitivity of thermoreceptors is altered, leading
to abnormal temperature sensation such as heat hyperalgesia.
Therefore, the identification of thermal sensors and
understanding their functions and regulation hold great
potential for developing novel therapeutics against many
medical conditions such as pain.

Introduction

Temperature affects nearly every aspect of function in organ-
isms ranging from cell metabolism to animal behaviors. Animals
have thus developed various robust sensory mechanisms permit-
ting them to select their preferred temperatures, while avoiding
thermal extremes, an essential process for animals to main tem-
perature homeostasis.

The perception of temperature is initiated by the activation of
thermoreceptors on peripheral nerve endings in mammals. How-
ever, the molecular entity of thermoreceptors has been a mystery
for a long time. A breakthrough was achieved when the first tem-
perature sensitive ion channel TRPV1 was cloned.1 This break-
through stimulated considerable interest in hunting for other
temperature sensitive ion channels over the years, leading to the
identification of thermally sensitive TRPV2, TRPV3, TRPV4,
TRPM8 and TRPA1. These thermo-sensitive ion channels
belong to a large transient receptor potential (TRP) ion channel
superfamily, they are thus also dubbed as Thermo-TRP ion chan-
nels (Fig. 1). Interestingly, equivalent temperature-sensitive ion
channels and thermosensory mechanisms were also discovered in
other organisms such as Drosophila.2 These thermo-sensitive ion

channels, therefore, offer a molecular gateway for our under-
standing of thermal sensation and signaling.

Thermosensation and Thermoreceptors
in Mammals

In mammals, temperature sensation is carried by specialized
sensory neurons in the Dorsal Root Ganglia (DRG) and the tri-
geminal ganglia, which project their terminals to both peripheral
tissues (e.g. skin) and the spinal cord in the central nervous sys-
tem (CNS). These temperature-responding sensory neurons are
thus the key to our understanding of a broad range of tempera-
ture sensation extending from heat, warm to cold.

Heat detection
An inward current triggered by noxious heat ( > 42�C) was

first observed from a subpopulation of DRG neurons.3 The mol-
ecule responsible for this heat-activated current was soon identi-
fied as TRPV1 using the expression cloning strategy.1 Indeed,
when expressed in a heterologous cell system, TRPV1 was acti-
vated by heat with a similar thermal threshold of 42�C, and also
by capsaicin, a known ingredient from hot chilli peppers causing
a burning heat sensation.1 Moreover, mice deficient for TRPV1
exhibited impaired responses to noxious heat and showed
reduced heat hyperalgesia caused by inflammation.4,5 These find-
ings argue for TRPV1 as a heat sensor responsible for detecting
heat temperature in mice. However, nerve fibers isolated from
TRPV1-deficient mice responded to heat normally.6 Moreover,
the heat avoidance behavior of mice was not impaired by deleting
TRPV1 over the temperature range between 40�C and 50�C
evaluated in a 2 temperature preference assay,7 but completely
eliminated by ablating TRPV1-expresing (TRPV1C) neurons or
by silencing TRPV1C fibers.7-10 These results support the idea
that there are other yet unknown molecular sensors within
TRPV1C neurons that mediate noxious heat detection.

What molecule functions as an additional heat sensor? In
search for homologous genes to TRPV1, TRPV2 was identified
as another heat-activated ion channel expressed on sensory neu-
rons, albeit with a much higher heat activation threshold
( >52�C).11 However, the majority of TRPV2C cutaneous nerve
fibers did not respond to heat,6,12 and TRPV2-deficient mice
exhibited no deficits in response to noxious heat over a broad
heat range.13 Therefore, it is not likely that TRPV2 functions as
a heat sensor.
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TRPM3 and calcium activated chloride channel anoctamin 1
(ANO1) are another 2 recently identified ion channels that
respond to noxious heat (Fig. 1). TRPM3 and ANO1 exhibit
steep temperature dependence and can be directly activated by
heat over 40�C and 44�C, respectively, when they were heterolo-
gous expressed in HEK293 cells.14,15 Of interest, both TRPM3
and ANO1 are mainly expressed in small diameter nociceptive
neurons and the majority of them also co-express TRPV1, sug-
gesting a role of these ion channels in heat nociception. Indeed,
responses to noxious heat in mice was significantly reduced by
either deleting TRPM3 or ANO1,14,15 similar to that observed
in TRPV1-deficient mice.4,5 However, there remains a large pro-
portion of heat responding neurons after deleting TRPM3 com-
bined with pharmacologically blocking TRPV1.14 It remains to
be determined whether blocking TRPV1 and TRPM3 together
with ANO1 can further eliminate remaining fractions of heat-
responding neurons. Collectively, these data suggest that sensory
neurons employ multiple and redundant heat sensors within
TRPV1C neurons to transduce noxious heat, presumably robust
thermosensory mechanisms are required for reliably detecting
and avoiding damaging stimuli, such as extreme heat, which oth-
erwise can cause irreversible tissue injury.

Warm sensation
The identification of heat transducers prompted the search for

sensors responsible for detecting warm temperatures. The
attempt led to the cloning of TRPV3 by several labs around simi-
lar time.16-18 TRPV3 was activated by innocuous warm tempera-
tures (>33�C).16,18,19 However, TRPV3 was mainly expressed
in skin and keratinocytes without significant expression in
DRG.18,19 The unique TRPV3 expression profile led to the pro-
posal that TRPV3 acts as a warm receptor in the skin responsible
for detecting physiological range of temperatures. Indeed, in one
report, mice lacking TRPV3 exhibited deficits in response to
both innocuous and noxious heat.20 However, these deficits were
not observed in another TRPV3-null mice line with a different
gene background.21 TRPV3 may thus have only an assisting role
in mediating warm and/or heat perception. In support for this

idea, mice with TRPV3 overexpressed
in keratinocytes did not display signifi-
cant altered thermosensory behaviors
until functions of the heat receptor
TRPV1 were masked by a pharmaco-
logical inhibitor.22 A more recent
study employing TRPV3 and TRPV1
double knockout mice provided more
direct evidence supporting the notion
that skin derived-TRPV3 and sensory
neuron-localized TRPV1 have a coop-
erative role in mediating warm and
heat temperature sensation.23

TRPV4 was initially recognized as
an osmolality sensor.24,25 It was soon
found that TRPV4 can also be acti-
vated by warm temperatures over
27�C.26,27 Interestingly, similar to

TRPV3, TRPV4 is highly expressed in skin epidermal keratino-
cytes, but not in DRG.28,29 As expected, both TRPV3 and
TRPV4 contribute to different components of currents elicited
by warm temperatures in primary skin keratinocytes,19,30 sug-
gesting that keratinocytes may act in concert with sensory neu-
rons to transduce thermal information. As predicted, TRPV4-
deficient mice displayed deficits in detecting warmer tempera-
tures.31,32 Puzzlingly, TRPV3/TRPV4 double knock-out mice
did not exhibit significant deficits in either thermo-sensory
behaviors or thermal nociception.33 These studies suggest that
there are other as-yet-unknown significant warm sensing mecha-
nisms that may compensate warm sensation.

In addition to acting on thermo-sensitive ion channels on the
cell membrane, temperature rises can also cluster and activate
STIM1, an ER Ca2C sensor, leading to the activation of the
store-operated ion channel Orai1 and Ca2C influx,34 implying
that STIM1 also acts as a intracellular heat sensor. However, it
remains to be established whether this heat signaling mechanism
contributes to warm and/or heat transduction in somatosensory
neurons.

Cold sensation
Following the identification of the heat-activated TRPV1

channel, it was suggested that there exists a similar thermorecep-
tor for detecting cold temperatures, because a moderate cooling
can directly elicit an inward ionic current from a subpopulation
of sensory neurons.35 Indeed, molecule responsible for mediating
the cold-induced current was later on identified as the TRPM8
ion channel.36,37 TRPM8 can be activated by a broad range of
cold temperatures ranging from innocuous cooling (<26�C) to
noxious cold ( <16�C), and also by cooling compounds such as
menthol. Consistently, mice lacking TRPM8 lost the ability to
sense cold (up to 15�C) and exhibited pronounced deficits in
cold-avoiding behaviors.38-40 Furthermore, pain induced by nox-
ious cold was also prevented by either genetically deleting
TRPM8 or by pharmacological blocking TRPM8,41,42 in line
with TRPM8 activation by noxious cold. These studies conclu-
sively demonstrated that TRPM8 is a bona fide principal cold

Figure 1. A schematic diagram depicting the temperature sensitive ion channels. Ion channels are
ordered according to their relative activation threshold to temperatures.
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sensor in animals. However, the ability to detect noxious cold
largely remains in TRPM8-deficient mice, suggesting that there
are other significant unknown cold sensing mechanisms.

The attempt to seek another cold sensor for transducing nox-
ious cold led to the identification of TRPA1 using a bioinfor-
matic approach.43 TRPA1 is indeed can be activated by an
average of 17.5�C, much lower than that of TRPM8.43 However,
this proposal caused a continued debate surrounding the cold
sensitivity of TRPA1, with some supporting, while others disap-
proving.44 A recent study demonstrated that TRPA1 is sensitive
to cold even when reconstituted into lipid bilayers, lending
strong support to the idea that TRPA1 is cold-sensitive intrinsi-
cally.45 However, there is again no consensus on whether TRPA1
contributes to acute noxious cold sensation in animals, with
some endorsing,46,47 and others not.7,42,48,49 Despite these dif-
ferences, it is agreed that TRPA1 does play a significant role in
pathological cold signaling, such as cold hypersensitivity associ-
ated with nerve injury and chemotherapy.48,50-52 In contrast to
the controversial role of TRPA1 in cold transduction, TRPA1
was well documented as a polymodal nociceptor for integrating
various environmental and endogenous damaging stimuli such as
mustard oil and oxidative stress that elicit pain.53 Interestingly,
in contrast to the cold-sensitive mammalian TRPA1, invertebrate
TRPA1, such as rattlesnake and Drosophila TRPA1, is heat sensi-
tive.54,55 The robust heat sensitivity of rattlesnake TRPA1 was
proposed to enable rattlesnake to use infrared radiation to detect
warm-blooded prey.54

TRPC5 is another TRP ion channel reported to respond to
innocuous cold temperature (<37�C) (Fig. 1).56 However, there
are no changes in temperature-sensing behaviors in TRPC5-null
mice, thus TRPC5 may only act as a thermal modulator in cold
transduction.

In summary, thermo-TRP ion channels function as thermo-
sensors for detecting different spectrum of temperatures. But
there are also other unknown mechanisms cooperative for sensing
different ranges of temperatures.

Modulation of Thermal Sensors

Thermosensors have their inherent thermal activation thresh-
old. The threshold for temperature activation, however, can be
modulated by a variety of factors (e.g., inflammatory mediators),
leading to abnormal thermo-sensation, such as heat hyperalgesia
induced by inflammation. Therefore, understanding thermal
modulation of thermosensors is crucial for elucidating abnormal
thermo-sensation associated with diseases such as pain. Here I
discuss the modulation of TRPV1 and TRPM8, 2 well-accepted
thermo-sensitive ion channels, under both physiological and
pathological conditions. TRPA1 modulation will also be dis-
cussed due to its significant role in pathological cold signaling.
However, as TRPV2 and TRPC5 do not function as thermo-sen-
sors, and either TRPV3 or TRPV4 alone does not contribute sig-
nificantly to thermo-sensation, they are thus not the focus of this
review.

Modulation of TRPV1

Physiological modulation
TRPV1 is believed to be intrinsically heat sensitive. However,

different populations of TRPV1C neurons exhibit differential
heat sensitivities, and capsaicin-responding neurons are not
always sensitive to heat.57,58 The varied heat sensitivities of
TRPV1 in sensory DRG neurons under the basal condition sug-
gest that there exist additional thermal modulators.

We have recently discovered that PKCbII is such a crucial
modulator that causes varied heat-induced responses across dif-
ferent populations of TRPV1C neurons.59 Here, PKCbII is co-
expressed in only a subset of TRPV1C neurons, and markedly
enhances their responses by phosphorylating TRPV1 at T705.
Interestingly, co-expressed PKCbII is constitutively active as a
result of direct binding to TRPV1 and forming a local TRPV1-
PKCbII complex59 (Fig. 2). Therefore, different basal phosphor-
ylation at T705 may underlie varied heat sensitivities of TRPV1,
and TRPV1-PKCbII complex-containing neurons may represent
a subset of hypersensitive nociceptive neurons.

The membrane lipid PIP2 is another critical factor involved in
regulating the heat sensitivity of TRPV1. However, there is a
continuing controversy regarding the exact role of PIP2 in
TRPV1 activation, with some supporting an inhibiting role,60,61

and some advocating an stimulating effect,62-69 whereas others
favoring both activating and inhibiting roles depending on cer-
tain conditions.70,71 Different approaches used for manipulating
the cellular PIP2 level may underlie the difference, with some
including PIP2 into the whole-cell recording pipette,65,67 and
some applying PIP2 directly to an inside-out excised
patch,63,68,69 whereas others reconstituting PIP2 and purified
TRPV1 in an artificial liposome or into planar lipid bilayers.61,64

It should be noted that most of these studies are conducted in
expression or reconstitution system, which may also contribute
to variable conclusions. A missing study is to determine the role
of PIP2 in native sensory neurons. In this respect, it will be inter-
esting to know whether different levels of PIP2 are present in dif-
ferent populations of TRPV1C neurons and thus influence their
heat sensitivity.

The negatively charged head groups of PIP2 underlie most of its
functional effect. PIP2 acts primarily by binding to positively
charged residues on ion channels through the head groups. The
identification of PIP2 effector regions or sites on TRPV1 is thus
important for elucidating the acting mechanisms of PIP2. In this
regard, both a distal C-terminal region (777»820) and a TRP
domain in the proximal C-terminal region (682»725), rich in pol-
ybasic residues, were identified as the PIP2 binding region.63,72 A
recent study further identified R575 and R579 in the S4-S5 linker,
and K694 in the TRP domain, as specific PIP2 binding sites on
TRPV1 using molecular docking simulation based on the resolved
TRPV1 structure.69 It is interesting to note that PIP2 was predicted
to bind at the interface between the transmembrane domain and
the cytoplasmic domains of TRPV1, lined with the identified basic
residues, similar to that observed in the structure of Kir2.2.69 How-
ever, how PIP2 exactly binds to TRPV1 can only be answered after
resolving the structure of TRPV1 in complex with PIP2.
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Pathological modulation
TRPV1 is activated by noxious heat. In disease conditions

such as inflammation, the heat activation threshold of TRPV1 is
markedly lowered down so that even pleasant warm temperatures
can be felt to be very painful, a process known as heat hyperalge-
sia. It is caused by the sensitization of TRPV1 by a variety of
inflammatory mediators released during tissue injury and inflam-
mation, including bradykinin (BK),60,73 prostaglandin E2
(PGE2),74,75 nerve growth factor (NGF),60,76 ATP,77 substance
P,78 cytokines (e.g. IL-6),79 chemokines (e.g., CCL3),80 endothe-
lin-181 and proteases.82–84 Most of these agents bind to G pro-
tein-coupled receptors (GPCR) that couple to either Gs and/or
Gq, leading to the activation of PKA and PKCe, which then
phosphorylates TRPV1 at S116 and S502/S801, respectively,
leading to the sensitization of TRPV185 (Fig. 2). Mutating these
PKA and/or PKCe phosphorylation sites markedly impaired
TRPV1 sensitization induced by these agents,85 suggesting that
TRPV1 phosphorylation at these sites is critical for inflammatory
heat hyperalgesia.

Interestingly, the same mutation of PKCe phosphorylation
sites (S502/S801), however, did not affect the basal TRPV1 ther-
mal sensitivity, which is determined by phosphorylation at T705
by PKCbII.59 On the other hand, mutating PKCbII phosphory-
lation site T705 had no effect on sensitizing TRPV1 induced by
BK. Therefore, PKCbII and PKCe control basal thermal sensi-
tivity and sensitization of TRPV1, respectively, by phosphorylat-
ing distinct PKC sites. Notably, TRPV1 phosphorylation by
PKCe depends on the scaffolding protein AKAP79/150, which
anchors both PKA and PKCe in close proximity to TRPV1 by

binding to the C terminus of TRPV1,
thus assembled into a macro-protein
signaling complex.74,75,86 Correspond-
ingly, the sensitization of TRPV1
induced by both PKA and PKCe was
blunted either by knocking down
AKAP79/150 or by disrupting mutual
interactions between TRPV1 and
AKAP79/150.75,87,88 Importantly,
inflammatory heat hyperalgesia was
inhibited by interfering with the inter-
action between TRPV1 and
AKAP79.89,90 These studies suggest a
possible novel analgesic approach by
antagonizing the TRPV1-AKAP79/
150 interaction.

Intriguingly, another complex
formed between TRPV1 and GABAB1

receptor was recently identified.91

Here, activated GABAB1 inhibits
TRPV1 sensitization and inflammatory
pain caused by inflammatory mediators
by preventing TRPV1 phosphoryla-
tion. It will be interesting to know
whether GABAB1 acts by interfering in
the interaction between TRPV1 and
AKAP79/150.

The responsiveness of TRPV1 to heat is not only influenced
by the thermal gating of TRPV1, but also affected by the number
of ion channels trafficking to the cell membrane. The dynamic
trafficking of TRPV1 is a tightly-regulated process. Many protein
kinases, such as PKC, PKA, Src kinase and cyclin-dependent
kinase 5, were shown to promote the forward trafficking of
TRPV1 to the cell membrane, contributing to thermal hyperalge-
sia.75,76,92 On the other hand, inhibition of TRPV1 internaliza-
tion induced prolonged thermal hyperalgesia.93

Taken together, both enhanced gating and trafficking of
TRPV1 are responsible for enhanced TRPV1 responses to heat,
leading to inflammatory hyperalgesia.

Modulation of TRPM8

Physiological Modulation
TRPM8 responds to both innocuous and noxious cold and

exhibits different cold activation threshold across different popu-
lations of sensory neurons. Based on the different activation
threshold, TRPM8C neurons were classified into 2 main catego-
ries, with one subpopulation activated by a low-threshold (LT)
cold (>26�C) and another responding to a high-threshold (HT)
cold (<24C�).94,95 However, the mechanisms that govern differ-
ent cold threshold among TRPM8C neurons are not completely
understood. In one study, different levels of TRPM8 expression
was proposed to be one of the mechanisms, because LT
TRPM8C neurons are often associated with higher TRPM8
responses and vice versa.95 The same study also implicated differ-
ent expression of shaker-like Kv1 channels in setting the threshold

Figure 2. Summary of distinct modulation of TRPV1 and TRPM8 by inflammatory mediators activat-
ing Gq coupled receptors. The inflammatory mediator BK sensitizes hyperalgesia-mediated TRPV1,
but inhibits analgesia-mediated TRPM8, resulting in inflammatory hyperalgesia. The sensitization of
TRPV1 is caused by the phosphorylation of TRPV1 at S502/S801 (not depicted) by PKCe, which is
anchored adjacent to TRPV1 by the scaffolding protein AKAP79/150 forming a macro-signaling com-
plex. However, the inhibition of TRPM8 is mediated by a direct action of activated Gq on TRPM8 inde-
pendently of the PLC signaling. Note that the basal thermal sensitivity of TRPV1 is determined by the
basal phosphorylation of TRPV1 at T705 by PKCbII, which binds to TRPV1 forming another local pro-
tein complex with TRPV1.
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of TRPM8C neurons, with LT neurons containing lower expres-
sion of outward KC currents and HT neurons associated with
higher level of KC currents. A further analysis of TRPM8C neu-
rons identified TASK3, a 2-pore -domain KC leak channel
(K2P), to be highly enriched in TRPM8C neurons and critical
for specifying the threshold of HT TRPM8C neurons.96 How-
ever, in other studies, A type KC currents and voltage gated NaC

currents were thought to be critical in specifying cold activation
threshold of TRPM8C neurons.94,97,98 It is possible that a com-
plex interplay and concerted action of different ion conductance
shape the excitability of TRPM8C neurons. What remains little
known is why TRPM8 per se exhibits different cold sensitivities
in different subpopulation of neurons and what determine the
varied cold sensitivity of TRPM8.

PIP2 is a well-established factor critical for maintaining
TRPM8 activity by binding to the TRP domain in the C termi-
nus of TRPM8.99,100 Addition of synthesized PIP2 activates
TRPM8, whereas depletion of PIP2 inhibits TRPM8 by inducing
a 5-phosphatase.101,102 Interestingly, different basal temperatures
can alter the interaction of PIP2 with TRPM8, which was
thought to be responsible for changes in temperature thresholds
for TRPM8 activation induced by different pre-exposed ambient
temperatures.103 Furthermore, the metabolic products of mem-
brane lipids due to phospholipase A2 activation can alter
TRPM8 thermal sensitivity. For example, lysophospholipids
(LPLs) shifts TRPM8 cold activation threshold toward warm
temperature, whereas another product, arachidonic acid, inhibits
TRPM8 activation by cold.104,105 There is also evidence showing
that TRPM8 thermal responses are inhibited by lipid rafts, a cho-
lesterol-rich membrane micro-domain where TRPM8 tends to
reside.106 It is thus tempting to wonder whether these different
lipids are crucial in specifying different cold sensitivities of
TRPM8 in sensory neurons.

Pathological modulation
It is known that a moderate cooling (innocuous cold) inhibits

pain mediating an analgesia effect, but noxious cold causes pain.
Paradoxically, TRPM8 can mediate both processes.38–40 During
inflammatory condition, TRPM8 sensitivity is susceptible to
alteration by inflammatory mediators, leading to inflammatory
hyperalgesia and cold hypersensitivity. Of note, a brief applica-
tion of BK rapidly inhibited TRPM8 in DRG neurons, an event
presumably leading to the inhibition of TRPM8-mediated anal-
gesia and thus contributing to inflammatory hyperalgesia.107,108

The effect is mainly mediated by the BK receptor B2R, a Gq-
coupled GPCR. However, the underlying mechanisms for BK-
induced TRPM8 inhibition had been unclear. It had been sug-
gested to be caused by either depletion of PIP2 due to activation
of PLCb or by activation of downstream PKC.107,108 However,
we found that neither of these mechanisms is critical, instead acti-
vated Gq directly inhibits TRPM8 by binding to the channel
forming a local protein complex independently of downstream
GPCR signaling109 (Fig. 2). Notably, PIP2 cannot activate
TRPM8 anymore in the presence of activated Gq,

109 suggesting
that Gq is a potent regulator of TRPM8 activity. Interestingly,
activated Gq and G11 inhibit TRPM8 to a markedly different

degree, despite they have similar capability of inducing PIP2
hydrolysis,110 further supporting the idea that direct inhibition
of TRPM8 by Gq is separable from PIP2 hydrolysis-mediated
TRPM8 inhibition. However, it is not known whether these 2
mechanisms act concomitantly to inhibit TRPM8 during activa-
tion of a Gq-coupled receptor. In contrast to BK-induced
TRPM8 inhibition, artemin, a glial cell-derived neurotrophic
factor, sensitizes TRPM8-mediated cold responses in mice, lead-
ing to cold hypersensitivity.111 However, the sensitizing effect of
artemin was not demonstrated at the cellular level and the under-
lying potential signaling mechanisms remain to be established.
The opposing effects of BK and artemin may be caused by the
colocalization of their respective acting receptors (i.e. B2R and
GFRa3) in analgesia- and pain-mediating TRPM8C neurons,
respectively, thereby contributing to inflammatory hyperalgesia
and cold hypersensitivity, separately.

Modulation of TRPA1
As a key damage sensing ion channel, it is not surprising that

TRPA1 is targeted by many inflammatory mediators (e.g. BK
and PGE2), leading to pain hypersensitivity. Similar to TRPV1,
TRPA1 can be potentiated by BK and PGE2,112,113 which acti-
vates Gq and Gs-coupled GPCR, respectively, resulting in the
activation of phospholipase C (PLC) and PKA. Blocking PLC
and PKA prevented the sensitization of TRPA1 induced by
BK,112 and activation of PLC and PKA evoked TRPA1-mediated
hyperalgesia.113 Mechanistically, activation of PLC/PKA path-
ways enhanced trafficking of TRPA1 to the cell membrane,114

suggesting that the PLC and PKA pathways potentiates TRPA1
by promoting forward trafficking of the channel. Interestingly,
several downstream signaling messengers of the Gq-PLC pathway
such as Ca2C, diacylglycerol (DAG) and arachidonic acid (AA)
can directly activate TRPA1,115-117 and was suggested to be a
mechanism underlying BK-elicited excitation of sensory neurons
and pain.117 A similar direct action on TRPA1 was also observed
with prostaglandins (PG). However, PG excites TRPA1 via 15d-
PGJ2, a metabolite of PGD2, without the involvement of intra-
cellular signaling.118-120 Puzzlingly, none of these studies investi-
gated whether these modulation mechanisms can alter the cold
sensitivity of TRPA1.

Thermo-Modulation by Other Ion Channels

Thermo-reception not only depends on the temperature sensi-
tivity of thermos-sensors, but also relies on the membrane excit-
ability and transducing capability of thermo-sensitive neurons,
which is determined by several KC channels and voltage-gated
sodium channels, respectively. Therefore, activities of these chan-
nels can significantly influence thermo-reception. Of note, the 2
pore domains background KC channels (K2P) TREK-1, TREK-
2 and TRAAK are sensitive to temperature increases (Fig. 1).121

They are thus proposed to hyperpolarize both heat- and cold-sen-
sitive neurons and antagonize the depolarizing effect evoked by
thermo-sensors, leading to a shift of temperature threshold of
thermo-sensitive neurons.122,123 Voltage-gated sodium channels
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(Nav), in particular Nav1. 8, also play a significant role in ther-
moreception (Fig. 1). Nav1.8 was found to be the only func-
tional sodium channel that elicits firing of nerve fibers during
cold condition, and was thus implicated in noxious cold trans-
duction.98 Indeed, noxious cold sensation was lost in mice lack-
ing Nav1.8.98,124 Taken together, combined actions of
thermosensors, KC and NaC channels result in the generation of
temperature-dependent nerve impulses which can then be propa-
gated to the CNS, leading to thermoreception.

Concluding Remarks

Thermoreception is fundamental to animals. Many tempera-
ture-sensitive ion channels and receptors have been identified
and some of them act as molecular thermometers involved in
thermo-sensation. Under pathological conditions such as

inflammation and tissue injury, the thermo-sensitivity of ther-
moreceptors was subjected to be regulated by a variety of factors,
leading to thermal hyperalgesia. Thereby, thermo-transduction is
governed by both thermal sensors and modulators. Despite rapid
progress in our understanding of thermoreception, many ques-
tions remain. For example, what are molecular entities for detect-
ing heat and noxious cold, independently of thermo-TRP ion
channels? It is still not known whether LT TRPM8 neurons
mediate cold analgesia and HT TRPM8 neurons cause cold
pain. Understanding these fundamental questions will be critical
for elucidating pathological thermo-sensations and open up novel
targets for therapy of related diseases.
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