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This commentary discusses the rationale behind our recently reported work entitled “Mimicking isovolumic
contraction with combined electromechanical stimulation improves the development of engineered cardiac
constructs,” introduces new data supporting our hypothesis, and discusses future applications of our bioreactor system.
The ability to stimulate engineered cardiac tissue in a bioreactor system that combines both electrical and mechanical
stimulation offers a unique opportunity to simulate the appropriate dynamics between stretch and contraction and
model isovolumic contraction in vitro. Our previous study demonstrated that combined electromechanical stimulation
that simulated the timing of isovolumic contraction in healthy tissue improved force generation via increased
contractile and calcium handling protein expression and improved hypertrophic pathway activation. In new data
presented here, we further demonstrate that modification of the timing between electrical and mechanical stimulation
to mimic a non-physiological process negatively impacts the functionality of the engineered constructs. We close by
exploring the various disease states that have altered timing between the electrical and mechanical stimulation signals
as potential future directions for the use of this system.

Introduction and Motivation

Our recently published work “Mimicking isovolumic contrac-
tion with combined electromechanical stimulation improves the
development of engineered cardiac constructs” describes a biore-
actor system that can precisely control the timing between com-
bined electrical and mechanical stimulation of engineered cardiac
tissue constructs, allowing us to study how synchronized vs.
delayed electromechanical stimulation influences the develop-
ment of function in engineered cardiac tissues.1 The aim of this
commentary is to provide additional insights into the rationale
behind the simulation of isovolumic contractions in a dual stimu-
lation bioreactor system, introduce new data that supports our
claims that the timing of combined stimulation is important, and
highlight potential uses of this technology in the study of various
cardiac diseases.

Individually, both mechanical and electrical stimulation have
been established as standard conditioning methods for engi-
neered cardiac constructs and have been studied extensively previ-
ously. For instance, mechanical stimulation has been used in a
wide variety of bioreactor systems,2-4 and has been shown previ-
ously to activate FAK and RhoA, which initiates myotube

formation5 and promotes extracellular matrix (ECM) forma-
tion,6 improving the overall organization of the tissue and thus
the contraction force.2 Similarly, electrical stimulation has been
used in other systems,7-9 and has been shown to lead to synchro-
nous contractions of the myocytes, by inducing alignment in the
cardiomyocytes10 and increasing the volume fraction and organi-
zation of sarcomeres.11 Likewise, in our system, we observed that
though electrical and mechanical stimulation both improve
twitch forces over the static conditions, they influenced develop-
ment in different ways. Mechanical stimulation had a statistically
significant increase in the cell number in the constructs after 14 d
in culture, while electrical stimulation appeared to have a slightly
higher percentage of cardiomyocytes in the culture.

In modeling the dynamic electromechanical environment
present in vitro, it is important to note that the mechanical stim-
ulation simulates the ventricle filing with blood, while electrical
stimulation mimics the induction of the ventricular contraction.
While single-modality stimulation has its benefits, the environ-
ment that cells are subjected to in vivo involves both electrical
and mechanical signaling, and the timing of these two events can
be critical. The interaction of these two stimuli occurs during Iso-
volumic contraction, which is a critical period in the cardiac cycle
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where the left ventricle is stimulated to contract, but it is main-
tained in a stretched position until enough pressure is built up in
the ventricle to cause the aortic valve to open.12 The alteration of
Isovolumic contraction time has been established as a method of
evaluating cardiac function13 due to its direct relationship with
myocardial contractility14 and its sensitivity to alterations in both
hemodynamic activity and contractile function.15 Thus, when
creating engineered cardiac tissue, in vitro methods of recapitu-
lating the specific timing of combined electromechanical

stimulation could be an important fac-
tor in promoting optimal construct
function.

Though electrical and mechanical
stimulation have been previously com-
bined in other bioreactor systems,16-19

the effect of delayed timing between
electrical and mechanical stimulation
had not been studied. Mimicking the
timing present in vivo causes a switch in
the contractile model of the muscle
from an isometric mode when the valve
is closed to an isotonic shortening, once
the valve opens.20 Previous studies have
shown that muscles, on a tissue21 and
cellular level,22 behave differently under
isometric conditions vs. isotonic short-
ening. Under isometric conditions,
mechanical stretch shortens the intracel-
lular calcium transients,23 and maxi-
mizes the forces generated by the tissue.
Under isotonic shortening, the intracel-
lular calcium transients are prolonged.24

Thus, the switch in contractile modes
that would be generated during a stimu-
lation that mimics isovolumic contrac-
tion could allow for a higher force to be
maintained during the shortening
period, which would increase the net-
work output,25 and could modulate the
calcium dependent action potential
duration in our engineered constructs,20

thus maximizing the forces generated.26

Our system allows for the study of
changes in isovolumic contraction by
changing the timing between the
beginning of the mechanical stimula-
tion and the beginning of electrical
stimulation. To model the isovolumic
contraction, the electrical stimulation
was delayed until 10 ms before the
end of the mechanical stimulation.
While the ICT in the human heart is
approximately 40 ms,27 an ICT of
10 ms was chosen to model the ICT
observed in the rat. This time was
based on a derivation of the ICT

from previously published data on the Myocardial Perfor-
mance Index(MPI)28 and literature values of ejection time
and isovolumic relaxation time.29,30 With the delayed condi-
tion, we observed an increase in the twitch force as compared
with a simultaneous electromechanical stimulation. The
increase in function was likely due to the increases in the
protein expression of Troponin T, the thin-filament regula-
tory protein necessary for coordinated force generation31 and
cardiac sarcoplasmic reticulum Ca2C ATPase (SERCA2a), the

Figure 1. (A) A diagram demonstrating the stimulation regimens implemented. The blue line repre-
sents the mechanical stretch while the red line represents the electrical stimulation. Portions reprinted
with permission from reference 1.
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protein responsible for pumping calcium back into the sarco-
plasmic reticulum during diastole.32 The increase in Tropo-
nin T and SERCA2a indicates that modeling the isovolumic
contraction improves calcium sensitivity and handling, which
is necessary for cardiomyocyte maturation. Observed increases
in Akt expression further suggested that this maturation could
be via physiological hypertrophic pathway.33,34

Offsetting Electrical and Mechanical Stimulation

While the data from our previous paper1 indicate that the tim-
ing between electrical and mechanical stimulation can be utilized
to enhance the function of engineered cardiac tissues, we only
investigated variations in the timing where the two stimuli were
overlapping. To further build the case on the importance of tim-
ing in a combined electromechanical bioreactor system, here we
present new data investigating the effects of offsetting the electri-
cal and mechanical stimulation so that they were completely out
of phase. As shown in Figure 1, two additional conditions
beyond those studied in the original paper were added: an Offset
(O) condition where the electrical stimulation was completely
out of phase with the mechanical stimulation but the rate of
mechanical stimulation was maintained (1Hz), and a Half Offset
(H) condition in which the electrical and mechanical stimulation
alternated at 1 Hz stimulation. The offset condition represents a
condition that is physiologically irrelevant, given that electrical
and mechanical stimulation does not occur in isolation in the
native heart. In this case, though the alternating electrical and
mechanical stimulation could potentially combat the cellular
adaptation to stimuli, the electrical stimulation would cause the
construct to contract against no resistance, likely reducing its
effect. Thus, we hypothesized that the offset conditions would
have less functionality than the delayed electromechanical
stimulation.

It is important to note that all experimental groups, including
both the new and previously published data, were created from
the same cell isolation and cultured at the same time in the biore-
actor system. Twitch force results (Fig. 2) indicate that the static
condition (2.08§ 0.77 mN) had a statistically significantly lower
contraction force than all other conditions but the half offset con-
dition (2.03§ 1.13 mN) (P < 0.05). The offset condition exhib-
ited a similar twitch force (3.33§ 1.02 mN) to the delayed
condition (3.29 § 1.09 mN). The force generation time
(Fig. 3A) and the force relaxation time (Fig. 3C) were statistically
greater in the half offset condition than in the static, mechanical
only, electrical only and synchronized conditions. The force gen-
eration and relaxation rates were also statistically less in the static
and half offset conditions (Fig. 3B and D, respectively). Contrary
to our initial hypothesis, the offset condition maintained a simi-
lar twitch force to the delayed conditions, indicating that an addi-
tional factor could be influencing the development of the
constructs and offsetting the potential negative effects of mis-
timed stimulation. One potential explanation was that by offset-
ting the electrical and mechanical stimulation in the manner that
we did, we increased the effective rate of stimulation from 1 Hz

to 2 Hz. Increases in the frequency of both mechanical3 and elec-
trical35 stimulation have been shown to lead to increased force
development. To assess what effect this was having in our system,
we added a half offset condition in which the stimulation
occurred at half of the frequency of the other groups (total stimu-
lation frequency of 1 Hz, individual stimulation was at 0.5 Hz)
to determine if the offset electromechanical stimulation or the
increased frequency was the cause of the observed functionality.
Though twitch force testing occurred at the same rates for all
groups, unlike the standard offset condition, the half offset con-
dition demonstrated a reduced twitch force and decreased rate of
force generation and relaxation, similar to the static conditions.
Twitch force generation rate signifies the ability of the tissue to
contract simultaneously, indicating high levels of cell-cell cou-
pling, which allows for the quick propagation of the calcium sig-
nal and a faster rate of force generation.36 Previous contraction
kinetics experiments in skinned fibers, skinned myocytes, and
subcellular cardiac myofibrils have also indicated that elevated
Ca2C increases both the forces generated and the rate of force
generation.37 Furthermore, alterations in relaxation rate are likely
due to changes in the expression, function, and interactions of
Ca2C handling proteins, such as SERCA2a.38,39 Our results indi-
cate that increased stimulation rate was likely the cause of the
similar levels of contractile function observed in the standard off-
set condition as compared with the other conditions, analogous
to previously published results indicating that increased fre-
quency of mechanical stimulation improved contractile func-
tion.3 In the case of the half offset we see the true effect of a 1 Hz

Figure 2. Observed twitch forces for all groups. and denotes statistically
significantly different than all other conditions but the half offset (O)
(P < 0.05). Portions reprinted with permission from reference 1.
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offset stimulation and the reduction in force is accompanied by a
reduction in both generation and relaxation rates indicating that
altered calcium handling may be the culprit, but further testing is
needed to verify this hypothesis. Additionally, these results in
sum further implicate the critical importance of the timing of
combined electromechanical stimulation in vitro. In summary,
our experiments have demonstrated that varying the timing
between electrical and mechanical stimulation in our bioreactor
system can be an important factor to consider when conditioning
engineered myocardium. When optimized, dual electromechani-
cal stimulation can be a powerful tool, but mismatched stimula-
tion can also hinder the conditioning process.

Future Directions in Modeling Development
and Disease

One possible future direction of study for our system is utiliz-
ing its unique ability to vary the timings between electrical and
mechanical stimulation to mimic the change of isovolumic

contraction time (ICT) that occurs in
normal development40-42 or to model
various myocardial diseases,13,43-45 spe-
cifically those that affect the ICT. For
example, in fetal heart development,
four different distinct stages of develop-
ment occur, each with its own contrac-
tion mechanics and conduction
parameters.41 Contractions coupled with
action potential appear by the end of the
3-somite stage.42 Early cardiac develop-
ment is characterized by changes in the
blood flow and heart function, which are
necessary to maintain the circulatory
needs of the developing embryo as the
heart changes morphologically and phys-
iologically.46 Previous studies have
shown that the ICT appears by 6 wk of
gestation to be approximately 20% of
the total cardiac cycle.46 ICT as a pro-
portion of the total cardiac cycle
decreases in the first trimester, even
though a steady fetal heart rate is main-
tained, indicating a decrease in the total
ICT.47 Through 18–31 wk of gestation,
the ICT remains constant at approxi-
mately 43§ 14 ms.48 By modeling fetal
ICT over time in our system, we can
more closely recapitulate the mechanical
and electrical signals observed and its
changes, which is likely to be beneficial
in engineered cardiac tissue develop-
ment, particularly when the cells utilized
are immature cardiomyocytes derived
from stem cell sources.

With respect to disease modeling,
patients with aortic stenosis, a disease in which the aortic valve
does not fully open, demonstrate a decrease in ICT15 when they
have preserved systolic left function, and an increase in ICT
when depression of the systolic left ventricular function occurs.43

A delay in the contraction occurs likely due to the prolonged
effort of the left ventricle in ejecting the blood through the
obstructed aortic valve,49 which ultimately results in an increased
afterload and slower contractions.50 Aortic valve regurgitation
can lead to ventricular pump failure due to a mismatch of after-
load with preload.51 When increases in afterload occur through
reductions in the wall shortening and stroke volume, it leads to
decreased performance, ultimately causing heart failure. Another
potential example where the ability to alter the timing between
electrical and mechanical stimulation could offer greater insight
into the disease process involves patients with LV myocardial dis-
ease, where the ICT is increased significantly, from 35§ 26 ms
to 69§ 30 ms,44 likely due to decreased myocardial contractil-
ity.52 In patients with heart failure, the widening of the QRS
complex indicates an impaired or slowed propagation of the elec-
trical input, which is associated with increased morbidity and

Figure 3. (A) Force generation time for all conditions. (B) Force generation rate for all conditions
(mN/s). (C) Force relaxation time and (D) force relaxation rate for all conditions (mN/s). For all figures
A–D, * denotes statistically different than all other conditions (P < 0.05), and denotes statistically sig-
nificantly different than all other conditions but the half offset (O) (P < 0.05). # denotes statistically
significantly different than all conditions but the static control (C) (P < 0.05). Portions reprinted with
permission from reference 1.
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mortality.53 This impairment of the electrical input causes ven-
tricular dysynchrony. Biventricular devices used in cardiac
resynchronization therapy have been established as a therapeutic
treatment option for patients. However, studies have indicated
that optimal pacing combinations change over time and high
temporal individual variability of the activation pattern exists,54

indicating electrical remodeling of the affected tissue.53 In these
cases, a system such as ours may be able to shed light on the role
that the mismatch between mechanical and electrical signaling is
playing in promoting or maintaining the diseased phenotype.

The creation of a dual electromechanical stimulation bioreac-
tor system has demonstrated the importance of modeling the
isovolumic contraction in the conditioning process of engineered
cardiac tissues.1 The ability to vary the timing between electrical
and mechanical stimulation is a powerful tool that allows us to
mimic both normal developmental processes that are likely
important in cardiomyocyte and myocardial tissue maturation as

well as diseased tissues, such as those that exist in aortic valve ste-
nosis and heart failure. Future studies will aim to investigate the
effects of elongated and shortened isovolumic contraction time
and its effects on tissue development with the goal of simulating
a disease model system in vitro for studying potential treatment
options.
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