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ABSTRACT The binding of antibody to antigen or T-cell
receptor to major histocompatibility complex-peptide complex
requires that portions of the two structures have complemen-
tary shapes that can closely approach each other. The question
that we address here is how large should the complementary
regions on the two structures be. The interacting regions are by
necessity roughly the same size. To estimate the size (number
of contact residues) of an optimal receptor combining region,
we assume that the immune system over evolutionary time has
been presented with a large random set of foreign molecules
that occur on common pathogens, which it must recognize, and
a smaller random set of self-antigens to which it must fail to
respond. Evolutionarily, the receptors and the molecular
groups that the immune system recognizes as epitopes are
imagined to have coevolved to maximize the probability that
this task is performed. The probability of a receptor matching
a random antigen is estimated from this condition. Using a
simple model for receptor-igand interaction, we estimate that
the optimal size binding region on immunoglobulin or T-ceil
receptors will contain about 15 contact residues, in agreement
with experimental observation.

The mammalian immune system, to provide protection
against pathogenic organisms, must be able to recognize an
extremely large number of foreign molecular antigens. The
actual number of antigens that the immune system can
recognize is unknown but for antibodies it has been estimated
to be greater than 1016 (1). At the same time, the immune
system must fail to be responsive to a presumably smaller
number of self-antigens. The binding of receptor to antigen
occurs by a generalized lock and key fit ofthe two structures,
involving geometrical and charge complementarity and other
factors. The region ofan antigen that interacts with a receptor
is called an antigenic determinant or epitope. Recognition in
the immune system is carried out by receptors on the surface
of B and T lymphocytes. The immunoglobulin and T-cell
receptor (TCR) repertoires in a mouse are estimated to
contain on the order of 107 different receptors generated from
a much larger potential repertoire of germ-line-encoded re-
ceptors (2, 3). With this limited number of receptors, the
immune system seems capable of recognizing essentially any
antigen. Immunologists thus speak of the repertoire as being
complete (4). Perelson and Oster (5) introduced the idea of
shape space to show in a quantitative way that a repertoire of
107 randomly made receptors is essentially complete. To
accomplish this degree of recognition each receptor must be
capable of recognizing many different epitopes.

Evolution has shaped the repertoires of immunoglobulin
and TCR genes found in vertebrates. Here we suppose that
frequently encountered pathogens provide an evolutionary
driving force for recognition of epitopes that are common to

large classes of microorganisms, for example, polysaccha-
rides found in bacterial cell walls. Evidence that at least some
of these antigens are treated specifically by the immune
system is found in the fact that polysaccharides stimulate B
cells in the absence of T-cell help. At the same time, some
epitopes may be expected to be found on self-molecules and
on foreign molecules. Although deletion or inactivation of
self-reactive clones is known to occur during B-cell and T-cell
development, it still seems reasonable that over evolutionary
time genes coding for the recognition of common self-
antigens would tend to be eliminated and mechanisms would
be discovered to minimize interactions with common self-
antigens. Thus, we suggest that repertoires are shaped to
recognize common features of pathogens that are not simul-
taneously present on self-molecules. Work by Chalufour et
al. (6) and Claverie et al. (7), in which the sequences ofknown
epitopes were compared with sequences of self-proteins,
indicates that epitopes are sequences that are unusually
"rare" in known proteins. Similar results have been obtained
by Ohno (8). Since only a small fraction ofproteins have been
sequenced so far, this result is still prelimninary but is sup-
portive of our general hypothesis.

If this very general picture is indeed the main story, at least
one vestige of the receptor-antigen coevolution should be
apparent in present-day organisms. In particular, the size of
the region that is complementary in shape between receptors
and antigens should be optimal for the recognition and
nonrecognition tasks that are to be performed. Size is com-
monly measired by the number of contact residues and we
shall use that convention here. Recent x-ray crystallographic
studies indicate that approximately 15 amino acids of an
antigenic protein contact the antibody combining site. For
example, Amit et al. (9) found that in an antigen (lysozyme)-
antibody complex, the interface is tightly packed with 16
lysozyme and 17 antibody residues making close contact.
Sheriff et al. (10) looking at a second epitope on lysozyme
found that it is composed of three sequentially separated
subsites containing a total of 14 residues in direct contact with
the antibody. Surprisingly, Cygler et al. (11) found that even
with an oligosaccharide antigen there are 15 residues in contact
with the antigen. Ajitkumar et aL (12) found that T cells
recognize a region on peptide-major histocompatibility com-
plex (MHC) complexes of approximately 600 A2, which is
roughly the same contact area as in the antigen-antibody
complexes of native proteins such as lysozyme and influenza
virus neuraminidase (9, 10, 13). Thus, a common property of
receptors is that they seem to interact with regions ofabout 15
amino acids.
Below we construct a simple model of receptor-antigen

matching, which when optimized for maximal recognition of
foreign epitopes and minimal recognition of self-epitopes,
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predicts that the optimal sizes of receptor combining regions
and epitopes are approximately 15 amino acids. It will turn
out that this estimate of the optimal epitope size is insensitive
to the precise matching criterion between receptor and an-
tigen that we use and appears to be very robust.

RESULTS
The size ofan epitope bears no relationship to the overall size
of the antigen, but it should roughly correspond to the size of
the receptor combining site. We imagine that epitopes occur
at random locations in antigens. We assume that the proba-
bility ofbinding between antigen and receptor depends in part
upon epitope size. Data consistent with this assumption have
been obtained for the binding of oligosaccharides to anti-
dextran antibodies (14). In our theory, r will denote the
number of complementary units (amino acids) on receptors
and antigens that need to interact to generate the minimal
affinity needed for B-cell or T-cell activation.
Below we calculate Pr(N,N';n), the probability that a

receptor repertoire of size n has the property that all of N
foreign antigens are recognized by at least one receptor in the
repertoire but that none of N' self-antigens are recognized.
We will then determine the value of r that maximizes this
probability and associate this value of r with the most likely
size of epitopes and receptor combining regions.
Let Ps be the probability that a random receptor recognizes

a random antigen, so that the corresponding complementary
probability, PF = 1 - Ps, is the probability that a random
receptor fails to recognize a random antigen. Then

Pr(N,N';n) = Pr[each ofN antigens is recognized by at least
one of the n receptors]

x Pr[none of the N' self antigens are recog-
nized by any of the n receptors]

= (1 p n)NpN'. [1]

The value of PF that maximizes Pr(N,N';n) is

PF= (1 +
N >-lln 1 + N

-1 -- ln 1 +-
N', n N'

(The approximation can be shown to be extremely accurate
for the parameter ranges of interest.)

If the current immune system has optimized Pr(N,N';n),
then we would expect the probability ofrecognizing a random
antigen, Ps = 1 - PF, to be computable from Eq. 2. Hence

1 / N\
Ps--In l+NtJ [3]

A mouse contains about 2 x 108 B lymphocytes. If each
lymphocyte type grows into a clone of size 20 during its
development in the bone marrow, then the animal will
contain approximately 107 different clones at any one time;
i.e., n = 107 (15). Although the number of foreign and
self-epitopes that the immune system deals with is unknown,
let us assume N = 1016, which is the lower limit proposed by
Inman (1). Now if the number of self-epitopes N' = 106 (i.e.,
10 epitopes in each of the 105 or so self-proteins coded for in
the human genome), then by Eq. 3, Ps = 2.3 x 10-6. This is
somewhat smaller than empirical estimates. For example,
Cancro et al. (16) estimate that in BALB/c mice there are 13.0
+ 2.3 anti-influenza hemagglutinin-specific B cells per 106
splenic B cells. Since hemagglutinin is a protein found on the
surface of a naturally occurring virus, it is a good choice for
comparison with our theory. However, as a protein it may
have multiple epitopes, which may explain the 5-fold higher
measured frequency than our theory predicts. One might

question the assumption of 10 epitopes per selfprotein or 1016
foreign epitopes. However, due to the logarithmic nature of
Eq. 3, our estimate of Ps is not very sensitive to changes in
N and N'.
As in the classical lock and key picture, a portion of the

antigen (or peptide-MHC complex) needs to be roughly
complementary in shape to the receptor combining region.
Since it is not yet possible to solve folding problems to
determine the shapes of receptors and antigens, we resort to
a simple model in which antigen and receptor are each
modeled as strings or sequences of letters, an approach
initiated by Farmer et al. (17) and recently used by De Boer
and Perelson (18) and Celada and Seiden (19). To determine
recognition, we posit that the strings are composed of m
letters, each letter having the property that it is complemen-
tary to one other letter in the alphabet. For example, if the
strings are binary strings, then 1 and 0 are defined as being
complementary. To be more realistic, one can think of
protein antigens composed of m classes of amino acids, say
for m = 3, positive, negative, and neutral. To determine
complementarity, we assume that due to geometric con-
straints only l sites on the receptor and antigen sequences can
contact each other and demand that a continuous sequence of
at least r complementing pairs are required to generate the
affinity of interaction needed to trigger B-cell or T-cell
activation.
Denote a matching or a complementary pair by the symbol

x and noncomplementation by y. If receptor and antigen
strings are each constructed with the m units chosen at
random, then at each position complementation occurs with
probability l/m and noncomplementation occurs with prob-
ability (m - 1)/m. The probability of recognition Ps then
translates into the probability of at least one sequence of at
least r contiguous xs out of a total of l entries. This matching
problem is not novel and has a history going back at least to
de Moivre (see ref. 20).
A general mathematical treatment of this problem, pre-

sented in a form that permits generalization to various
relaxed matching criteria, will be presented elsewhere. For
present purposes, a simple argument suffices. A rigorous
analysis shows that the probability of a long matching region
is very small, and hence when m-r << 1, to a good approx-
imation the various contributing possibilities can be regarded
as independent. Starting at the leftmost site of the i-site
sequence, r contiguous xs occur with probability m-r. There-
after, runs of r xs can start at l - r possible sites. Each such
run is preceded by a mismatch y, for a net probability of
m-r(m - 1)/m. We conclude, on adding up these probabil-
ities, that

Ps = m-r[(l - r)(m - 1)/m + 1]. [4]

By assuming 1>> r > 1 {i.e., dropping the negligible
[(m - 1)/m]r and 1 in Eq. 4}, we obtain

r = -ln,,Ps + lnm[l(m - 1)/m]. [5al
Experimental estimates for Ps can be used, or we can
substitute the optimal value of Ps given by Eq. 3 to obtain

r = Inn(n6 - Inn[ Im 1+( N')]

Because of their logarithmic nature both formulas make
similar predictions. In particular, Eq. 5b is very insensitive to
the population sizes N and N' of foreign and self-antigens.
Having derived Eqs. Sa and 5b, we now estimate r. The

antibody and TCR repertoire sizes are both estimated to be
n 107. The entire variable region of a receptor is not
accessible to antigen since some residues are buried in the
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interior ofthe molecule. Ifwe estimate that roughly halfofthe
amino acids are accessible, then 1 100. Lastly, we need to
determine l/m, the probability that two amino acids are
complementary under the assumption that the different types
of amino acids are present in equal quantities. To study the
properties of amino acid sequences various "chemical alpha-
bets" have been defined (21, 22). For our purposes a three-
letter charge alphabet might be appropriate, where the letters
represent positive, negative, and neutral amino acids. Em-
pirical estimates of Ps are on the order of 10-5 (16). With m
= 3, 1 100, n = 107, PS = 10-5,N 1016, andN' 106, Eqs.
Sa and Sb predict r 14.3 and 15.6, respectively. If I = 70
rather than 100, then Eq. 5b predicts r 15.3; if N/N' = 109
rather than 1010, then Eq. 5b predicts r 15.7, illustrating the
insensitivity of r to our precise choice of 1 and the ratio of
foreign to self-antigens. These predicted values of r are
consistent with the various experimental determinations on
the number of contact residues between antibody combining
sites and protein antigens and the size of the region on the
MHC-peptide complex that interacts with the TCR (9, 10,
12).

If a four-letter functional alphabet were used, with the
letters representing acidic, basic, polar uncharged, and hy-
drophobic nonpolar residues, then Eqs. 5a and 5b give r
11.3 and 12.5, respectively. Thus the prediction of the theory
is sensitive to the choice of m. One way to estimate m is to
note that each amino acid in a receptor can on average bind
to 20/m amino acids on an antigen. Thus for m = 3 this
implies that on average there would be seven possible com-
plementary amino acids. The recent data on peptides bound
to the MHC class I molecule HLA-B27 (23) indicate that, at
the nine positions of the peptide, the number of allowed
substitutions at each of the positions is 6, 1, 8, 11, 8, 7, 7, 11,
and 6 or on average 7.2 amino acids can be at each position
of the peptide. Such data, while still preliminary, are con-
sistent with m = 3 for peptide-MHC interactions. It is not
unlikely that similar values of m would be found for TCR-
MHC-peptide or immunoglobulin-antigen binding, since
similar physical forces govern the interactions between these
molecules. However, the binding of peptide to MHC seems
to be associated with the folding and assembly of MHC class
I molecules (24) and thus may be somewhat unique. A second
way to estimate m is to note that if r = 15, then there are 2015
possible epitopes. If the repertoire is complete, 107 receptors
must be able to recognize the 2015 epitopes, or each receptor
must recognize 3.2 x 1012 epitopes. This number should
equal (20/m)15, the number of complementary epitopes of
length 15. Solving for m one finds m = 2.9.
One feature of our results that is surprising is that the

dominant effect in determining the optimal epitope size
turns out not to be self-nonself discrimination. From Eq. 5b,
keeping only the largest term on the righthand side,
r lnm,,n, or n = mr. Form = 3 and r = 15, Mrn 1.4 x 107,
which is approximately the estimated repertoire size. Thus,
we conclude that the optimal value of r generates the maximal
number of epitopes that an immune system with 107 receptors
can detect.

If the arguments given above are relevant to the processes
involved in the evolution of immunoglobulin and TCR genes,
then one might argue that in evaluating r one should use the
potential repertoire rather than the expressed repertoire. For
immunoglobulins the potential repertoire is estimated to be of
order 1010 (2). With this value of n, Eq. 5b predicts that the
optimal value of r is 21.9 form = 3 and 17.5 form = 4. Again,
quite plausible values. The potential TCR repertoire has been
estimated to be 1016 (3). One might thus imagine that evolu-
tion would have a much harder task in evolving a set of TCR
gene segments that would be optimal at recognizing foreign
molecules and not recognizing self-molecules. Using n =
1016, we find from Eq. 5b that the optimal values of r are 34.5

and 27.4 for m = 3 and 4, respectively. These values are not
consistent with observation and thus suggest that the TCR
gene families are not optimized for self-nonself recognition
and hence other mechanisms, such as thymic deletion, are
needed.
Even if the optimal value of r is obtained, as may be the

case for immunoglobulins, this does not imply that the
immune system has succeeded in doing self-nonself discrim-
ination purely at the level of the selected gene families. At the
optimal value of r, the probability of achieving self-nonself
discrimination, as given by Eqs. 1 and 2, is extraordinarily
small, =(N'/eN)N' = 10-1o' and, as we well know, self-
nonself discrimination has not been obtained at the level of
receptors. However, we could still imagine an evolutionary
tendency toward self-nonself discrimination by receptors
that would lead to an optimal value of r. For example, if
discrimination is achieved for some small values ofN and N',
then the probability of achieving discrimination for an incre-
mentally larger system, say of size N + 8N,N' + AN', is no
longer vanishing small and in principle is achievable (25).

DISCUSSION
Immunoglobulins and TCRs have similar-sized combining
sites (12). One might then ask if this is coincidence or if there
is some underlying principle that has led to the evolution of
antigen receptors with a characteristic size binding site.
There is a very simple argument that points to the existence
of an optimal size for combining regions. The size of the
combining region determines the number of amino acid
contact residues. If the number of contact residues is too
small, then the receptor will lack specificity. Conversely, if
the number of contact residues is too large then the receptor
will be so specific that the available repertoire will not be
sufficient to recognize pathogens efficiently. Here we have
developed a theoretical framework with which one can make
quantitative predictions of the optimal number of contact
residues.
We have formulated the receptor-antigen recognition

problem abstractly. We represent receptors and antigen in
terms of strings of letters chosen from an alphabet of size m
with the property that each letter is complementary to one
other letter. In binary sequences, 1 would be complementary
to 0. In a three-letter charge alphabet, positive (+) and
negative (-) would be complementary, as would be un-
charged (0) and uncharged (0). Binary strings, m = 2, have
found wide use in the last 5 years to represent antibodies and
antigens (17-19, 26) in problems involving the determination
of complementarity for a number of reasons. (i) It is conve-
nient and elegant. String-matching algorithms are fast and can
be used to compute a degree of match between molecules that
can then be used to represent the affmity of the interaction
(27). (ii) String matching seems to capture the essence of the
process, details of which should be of secondary importance
for the matters of issue here.
By using the example of m = 3, it is easy to see why an

evolutionary strategy in which receptors evolved only to
recognize common foreign antigens would not be useful.
Given any set of foreign antigens represented by random
ternary strings, e.g.,

00+-0++0
+-00-+00
00+--+00

--+00 000
00-+00+0

one can see that patterns such as 00 or 0+ occur in almost all
of the strings. Thus, receptors that recognized any of these
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"epitopes" would recognize most antigens in the above list.
However, such receptors would not be useful because
strings, such as 0+, would also be expected to appear in any
population of self-molecules represented in the form of
ternary strings. A similar phenomenon is observed when
proteins are analyzed for their amino acid content. Ohno (8)
observed that two totally unrelated proteins, on the average,
share 30 identical tripeptides, two tetrapeptides, and one
pentapeptide per 500 residues. Hence receptors that recog-
nized short patterns would be expected to bind molecules
throughout the body. Thus, to be useful, receptors must
recognize long strings that uniquely characterize the antigen
population. Recognizing each antigen by its entire string
would require a receptor for each possible antigen and would
not be consistent with reasonable repertoire sizes. Thus,
antigens need to be recognized over regions that are long but
not too long. The regions that are recognized are epitopes and
an optimal epitope size should result once the repertoire size
and recognition task are specified.
Given repertoire completeness, the most important recog-

nition task that the immune system must perform is self-
nonself discrimination. Here we have formulated this task
probabilistically and asked what is the optimal epitope size
that simultaneously maximizes the probability of recognizing
a large set of foreign molecules while minimizing the prob-
ability of recognizing a smaller set of self-molecules. Recent
work by Claverie et al. (7) suggests that this optimization
problem may in fact underlie some of self-nonself discrimi-
nation. Claverie et al. (7) examined the amino acid sequences
of known epitopes and compared them with peptides from
self-molecules contained in the available protein sequence
databanks. They found that epitopes could be characterized
in a statistically significant way as sequences that were rare
in the currently known population of self-molecules. They
then used this as a basis for predicting epitopes of the human
immunodeficiency virus. Further, it is known that antibodies
can act as antigens and it is this property of antibodies that
is the basis of idiotypic network theory. Chalufour et al. (6)
thus examined the variable regions of a set of antibodies and
again found that their sequences were rare in the set of all
peptides, consistent with the hypothesis that sequences that
are not present in self-molecules are selected as epitopes.

In the string-matching model of receptor-antigen recogni-
tion, we assumed that the recognition would be of sufficient
strength to signal the B cell or T cell if binding occurred over
a sequence of at least r contiguous positions. We then
predicted r by using two approaches: (i) we used empirical
estimates of the probability of an antibody recognizing a
random antigen, and (ii) we maximized the probability of
having a repertoire that recognized all ofN foreign antigens
and none of N' self-antigens. Interestingly, both approaches
predicted that r should be about 15, corresponding to mea-
sured sizes of antibody combining sites (9-11, 13).
The closeness of fit of the predicted value of r with that

observed, although surprising and well worth taking note of,
should not be given excessive credence. Given the approx-
imations in the theory, what is significant is that the predicted
value of r is roughly correct, not that it is 15. Clearly, the
particular values of N,N' and m that are used are only rough
estimates, and by assuming that each letter in a sequence has
probability 1/m of matching, a letter in the complementary
sequence is only an approximation. Also, we have tacitly
assumed that the accessible regions of both antigen and
receptor can be modeled by sequences that are both of length
1, in register. If instead the receptor region were of length 1'
< 1, there are clearly I - I' + 1 + 2(1' - r) relative positions,
without imposing register, which have an overlap of at least
r. Note that if l' = r, then Eq. 4 is again recovered. If gaps
in complementation are permitted, e.g., due either to discon-
tinuous epitopes or to a relaxed matching criterion where

each element need not match, the complementary configu-
rations are again increased in number. For example, one can
show (25) that ifthe combining site instead ofbeing composed
ofone uninterrupted sequence of at least r matches is an area
composed of at least t linear pieces each contributing at least
r' matches, then the equivalent of Eq. Sb is

r't = lnm(nl) - lnm[( m n1j( +6)] 6

Thus, allowing the r = r't matching sites to be distributed in
pieces increases the optimal size of the combining site, but
not significantly until i' approaches the order of n. For
example, with two pieces (t = 2) and all other parameters as
in Eq. 5b, r = r't = 19.46 when m = 3, and r = 15.59 when
m = 4. While this effect increases the size of r, any geometric
fitting requirements for molecules in three dimensions would
decrease this number. One would imagine that these effects
are small on the logarithmic scale of Eq. 5, and hence
predicted sizes of combining sites with r 15 should be
robust.
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