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Acid-sensing ion channels (ASICs) are proton-gated cation
channels that are widely expressed in both the peripheral and
central nervous systems. ASICs contribute to a variety of
pathophysiological conditions that involve tissue acidosis,
such as ischemic stroke, epileptic seizures and multiple
sclerosis. Although much progress has been made in
researching the structure-function relationship and
pharmacology of ASICs, little is known about the trafficking of
ASICs and its contribution to ASIC function. The recent
identification of the mechanism of membrane insertion and
endocytosis of ASIC1a highlights the emerging role of ASIC
trafficking in regulating its pathophysiological functions. In
this review, we summarize the recent advances and discuss
future directions on this topic.

Introduction

Acid-sensing ion channels (ASICs) are a proton-gated subgroup
of the degenerin/epithelial NaC channel (DEG/ENaC) family of
cation channels, which are trimeric protein complexes composed
of different combinations of subunits.1 To date, 6 ASIC isoforms
(ASIC1a, 1b, 2a, 2b, 3 and 4) arising from 4 genes (Accn1, 2, 3
and 4) have been identified. ASICs are expressed in both the
peripheral and central nervous systems. ASIC1a, 2a and 2b are the
major isoforms in the brain and spinal cord; whereas the expression
of ASIC1b and ASIC3 is restricted to peripheral sensory neurons.2

As the key receptors for extracellular protons, ASICs have been
implicated in many pathophysiological processes related to acido-
sis, such as pain, ischemic stroke, and fear-/anxiety-related psychi-
atric disorders. The function of ASICs in these processes depends
on the number of channels on the cell surface. Thus, the dynamic
control of surface ASICs under normal and pathological condi-
tions is currently being researched.

The number and function of receptors on the plasma mem-
brane is partially determined by the dynamic trafficking pro-
cesses, which include sorting and forward trafficking of receptors
from the endoplasmic reticulum (ER) through the Golgi appara-
tus to the plasma membrane; endocytosis of surface receptors;

resorting of receptors following endocytosis; recycling of recep-
tors back to the plasma membrane; and targeting receptors for
degradation.3 Elucidating the detailed molecular mechanisms
that govern ASIC trafficking will improve our understanding of
their pathophysiological functions in the brain.

Recent Advances in ASIC Trafficking

Defects in trafficking cause the dysfunction of ion channels,
and ultimately lead to a variety of disorders. ENaCs share sub-
stantial homology with ASICs.4 Disruption of ENaC endocyto-
sis, which is primarily regulated by Nedd4–2, an E3 ubiquitin
ligase, has been shown to be involved in Liddle syndrome.5–7

However, it is not yet known whether the same trafficking path-
ways regulate ASICs or if other mechanisms are involved. Cumu-
lative evidence indicates that the function of these channels can
be increased or decreased by modulating the level of trafficking-
related proteins or mutating their trafficking motifs, both of
which are discussed below.

PICK1 and ASIC trafficking
Protein-interacting with C kinase-1 (PICK1) regulates the

trafficking of multiple membrane proteins,8 and is an established
ASIC binding partner that binds to the C-terminus of ASICs via
its PDZ domain.9-11 It has long been speculated that PICK1
plays a role in the trafficking of ASICs. Recent evidence has
shown that the genetic disruption of PICK1 leads to a decreased
plasma membrane level of ASIC1 and ASIC2a, which attenuates
the function of ASICs in mouse cortical neurons.12 This work
indicates a possible regulatory role of PICK1 in ASIC trafficking.
Further supporting evidence shows that overexpression of PICK1
increases the surface level of ASIC1a and ASIC1a-mediated acid-
otoxicity via interactions with the PICK1 BAR and lipid binding
domain.13 However, more details regarding the exact process of
PICK1-mediated ASIC trafficking are yet to be elucidated.
PICK1 can facilitate either endocytosis or exocytosis of its bind-
ing partners, depending on the distribution of these proteins in
different pools and the nature of the stimulation. For instance,
PICK1 increases the surface expression of dopamine transporters
(DATs) and enhances DAT uptake activity,14 which is similar to
the effects of PICK1 on ASICs. In contrast, overexpression of
PICK1 decreases the surface expression of AMPA receptors
through calcium-dependent endocytosis.15,16 A model that
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incorporates these differences is that PICK1 may maintain an
intracellular reserve pool of membrane proteins, which engages
in exchanging with cell surface proteins in a regulated manner. It
would be interesting to determine whether PICK1-mediated traf-
ficking of ASICs is regulated by a similar mechanism.

The role of the ASIC extracellular domain in channel
maturation and trafficking

The large extracellular domain of ASICs (»318 of the 528
residues in ASIC1a) has led to the speculation that it may have
additional functions besides sensing protons.1 The trafficking of
membrane proteins is tightly controlled by post-translational
modification and protein maturation. As the most common
type of modification, glycosylation through the secretory path-
way, plays an important role in the maturation and trafficking
of proteins within the cell.17 Jing et al.18 carried out studies to
assess the role of N-glycosylation in the biogenesis and surface
expression of ASICs. They found that the surface fraction of
ASIC1a in the mouse brain contains a higher percentage of
EndoH-resistant mature N-linked glycans than cytoplasmic
ASIC1a, which indicates that mature ASIC1a is preferentially
transported to the cell surface. Furthermore, they found that the
extracellular asparagine site at 393 (Asn393; Fig. 1), but not
those at other sites, was preferentially processed in middle-to-
late Golgi; whereas mutation of Asn393 (N393Q) reduced
ASIC1a maturation and surface expression. Importantly, inhibi-
tion of glycosylation with tunicamycin or by N393Q mutation
reduced ASIC1a dendritic targeting; moreover, the N393Q
mutation caused ASIC1a to be resistant to acidosis-induced
spine loss. These findings suggest that glycosylation of ASICs
has an important role in regulating synaptic morphogenesis and
determining long-term consequences in tissue acidosis. Consis-
tent with a previous study,19 the Asn393 site, located between
the a6 and a7 helices in the crystal structure, is conserved
among all ASICs. In addition to conventional trafficking signals

that are composed typically of short linear peptide sequences,
the tertiary structure, within the extracellular domain of ASICs,
can form a signal patch for trafficking. In support of this
hypothesis, Jing et al.20 showed that mutations of Tyr71
(Y71G) and Trp287 (W287G; Fig. 1), involved in the TM1-
thumb interaction, decreased the surface expression and den-
dritic targeting of ASIC1a. In a separate study, a highly con-
served salt bridge at the extracellular loop (D107-R153 of rat
ASIC3, and D107-R160 of human ASIC1a; Fig. 1), which sta-
bilizes a rigid signal patch, was found to be critical for surface
expression of ASICs.21 These data indicate that both the post-
translational modification sites and tertiary structure within the
extracellular domains regulate ASIC trafficking.

The emerging role of ASIC1a dynamic trafficking
Our recent studies have demonstrated the molecular mecha-

nism of ASIC1a dynamic trafficking and its pathophysiological
role (Fig. 2).22,23 We found that application of brain-derived
neurotropic factor (BDNF) upregulates ASIC1a channel activity
in cultured mouse spinal dorsal horn (SDH) neurons and that
ASIC1a is required for sustained BDNF-induced mechanical
hyperalgesia. BDNF sensitizes ASIC1a function through enhanc-
ing its forward trafficking and surface expression via the down-
stream tropomyosin-related kinase B (TrkB)-phosphoinositide 3
kinase (PI3K)-protein kinase B (PKB/Akt) cascade and phos-
phorylation of the cytoplasmic residue Ser25 of ASIC1a. More-
over, this enhancement is required for BDNF-mediated
hypersensitivity of SDH nociceptive neurons and central
mechanical hyperalgesia in rat and mouse models. We further
demonstrated that this process was abolished by intrathecal appli-
cation of a peptide representing the N-terminal region of ASIC1a
encompassing Ser25.22 These results reveal a novel mechanism
underlying ASIC1a forward trafficking, and indicate that target-
ing specific trafficking process of pain-facilitating receptors may

more efficiently treat chronic
pain.24 In the future, it will be
interesting to examine whether
this regulatory signaling pathway
of ASICs is involved in other
physiological or pathological
conditions.

In contrast to the regulation of
ASIC surface expression, the endo-
cytosis of ASIC channels is not well
understood. Given that epithelial
sodium channels (ENaCs), which
have substantial homology with the
ASIC family, are regulated by
clathrin-dependent endocyto-
sis,25,26 and their dysfunction leads
to Liddle syndrome5-7; we specu-
lated that ASICs are also regulated
by the same pathway. As expected,
we found that ASIC1a is associated
with several subunits of adaptor

Figure 1. Diagram of motifs within ASIC1a. The trafficking motifs in the extracellular loop and cytoplasmic
domains are indicated. Tyr71 and Trp287 are involved in the TM1-thumb interaction. Asp107–Arg160 (linked
by the line) is a conserved salt bridge. Asn393 is the N-glycosylation site. The blue characters indicate the
phosphorylation sites, and red characters indicate motifs mentioned in the manuscript. The red characters at
the C-terminus indicate the motifs that are critical for ASIC1a surface expression.
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protein 2 (AP2) and undergoes con-
stitutive endocytosis in a clathrin-
and dynamin-dependent manner in
both mouse cortical neurons and
heterologous cell cultures. We have
further shown that the membrane-
proximal residues LCRRG, located
at the cytoplasmic C-terminus of
ASIC1a, are critical for interaction
with the endogenous adaptor pro-
tein complex.23 Endocytic pathway
dysfunctions have been found in var-
ious neurodegenerative disorders,
such as Alzheimer disease, lateral
sclerosis, and ischemia.27-29 In light
of these studies, we hypothesized
that dysfunction of ASIC1a endocy-
tosis in neurodegeneration may
exacerbate acidosis-induced neuro-
nal injury. In our in vitro model of
acidosis-induced neuronal death,
inhibition of ASIC1a internalization
by dynasore, a small inhibitor of
dynamin, strongly exacerbated the
acidosis-induced death of cortical
neurons from wild-type, but not
from ASIC1a knock-out mice.23

Our results indicate the importance
of endocytic pathways in acidosis-
induced neuronal death and suggest
that this regulation is mediated mainly via membrane retention of
ASIC1a proteins (Fig. 2).

Constitutive Trafficking of ASICs

As membrane proteins, ASICs undergo constitutive traffick-
ing. To date, their trafficking motifs and pathway-specific acces-
sory proteins remain largely unknown. Investigating the
constitutive trafficking cascade of ASICs will help us to under-
stand the molecular mechanisms that regulate these channels and
provide potential targets for preventing acidosis-induced cell
death.30 In this section, we summarize the current knowledge
about trafficking motifs and accessory proteins of ASICs that
have a profound influence on their constitutive trafficking
processes.

Trafficking motifs within the cytoplasmic domain of ASICs
Motifs within the cytoplasmic domains of membrane proteins

play important roles in regulating their biogenesis, surface expres-
sion and trafficking through interactions with different accessory
proteins.31 The type of motif varies among different trafficking
pathways. For instance, the di-acidic motifs [(D/E)X(D/E)], di-
hydrophobic motifs (FF, YY, LL or FY), YXXXNPF and LXXLE
are ER-exit signals that play a role in the transport of specific
cargo from the ER exit sites31,32; whereas the KDEL, di-lysine

(KK) and RXR motifs lead to ER retention32; and the di-leucine
(LL) and tyrosine-based (YXXK, where K is a hydrophobic
amino acid) motifs are canonical signals for clathrin-mediated
endocytosis.33,34 Investigations are currently underway to unravel
the trafficking motifs within ASICs. Several motifs within the
cytoplasmic domains of ASIC1a are critical for its channel gating
and surface expression. The N-termini of ASICs contain 2 highly
conserved channel gating motifs. Mutation of the HIF motif
(Fig. 1) abolished the proton-gated current density,37 without
affecting the surface expression of ASIC1a. In addition, the HG
motif (Fig. 1) is completely conserved among ENaC family
members and mutating it reduces the open probability of ENaC
channels.35,36 Although it is yet unknown whether the HG motif
is also involved in the functional properties of ASICs, it is possi-
ble that the N-terminus of ASIC1a contains multiple channel
gating motifs. In contrast, cumulative evidence shows that the
trafficking motifs are located within the C-terminus of ASIC1a.
All ASICs contain a PDZ-binding motif at the end of their C-
termini that regulates ASIC surface expression and channel activ-
ity through interacting with several PDZ-domain proteins.9–11

In accordance with a previous study in which coexpression of
postsynaptic density protein 95 (PSD95) and ASIC3 reduced
the amplitude of ASIC3 proton-gated currents,38 mutating the
PDZ-binding motif of ASIC1a (Fig. 1) increased its surface
expression and current density.39 These data suggest that the reg-
ulation of trafficking by PDZ-binding proteins is conserved

Figure 2. Dynamic trafficking of ASIC1a. Left: activation of TrkB receptor by BDNF Facilitates the PI3K/Akt
pathway, and then induces ASIC1a phosphorylation and forward targeting to the cell surface. Right: the
endocytosis of ASIC1a is mediated by clathrin and dynamin-dependent processes.
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among ASICs. We then wanted to find out whether ASICs con-
tained isoform-specific trafficking motifs. By thoroughly scan-
ning the C-terminus of ASIC1a, we found that the membrane-
proximal residues LCRRG, at the cytoplasmic C-terminus, are
critical for surface expression (unpublished data) and responsible
for the interaction with AP2, which regulates the constitutive
endocytosis of ASIC1a in both mouse cortical neurons and heter-
ologous cell cultures.23 Consistent with our observation, Jing
et al.39 showed that mutating the positively-charged amino acids
that overlap the LCRRG motif (from RRGK to AAGA), or
deleting these residues, significantly reduced ASIC1a surface
expression and proton-gated current density. Among ASIC iso-
forms in higher vertebrates, the LCRRG motif is unique for
ASIC1a/1b, indicating that these residues act as an ASIC1a/1b-
specific regulatory motif through recruiting distinctive trafficking
machineries. In addition, mutating the KEAKR motif (from
KEAKR to AEAAG), located next to the LCRRG motif of
ASIC1a (Fig. 1), has similar effects.39 These data suggest that the
K/R motif on the C-terminus of ASIC1a plays a critical role in
the regulation of channel trafficking. Because the total protein
level of ASIC1a in wild-type and RRGK/KEAKR mutants
remains unchanged,39 it appears that these mutations do not
affect the stability of the protein or protein degradation path-
ways. The ASIC1a C-terminal juxtamembranous motif is local-
ized for optimal interaction with the membranous protein
dynamin and the AP2 complex. It will therefore be interesting to
identify the binding partners and elucidate the exact functions of
these cytosolic K/R motifs in future studies.

Accessory proteins of ASICs
Several lines of evidence have shown that accessory proteins

can regulate the constitutive trafficking of ASICs (summarized in
Table 1).30

Although we are continually adding to our knowledge of ASIC
accessory proteins, some questions remain unclear. Further in vivo
evidence of the binding and regulatory effects of these accessory
proteins on ASICs under various pathophysiological conditions is
needed. For example, understanding which interactions happen in
vivo, which trafficking processes involved, and what’s the

pathophysiological consequence will undoubtedly advance our
understanding of the pathophysiological role of ASICs.

Regulated Trafficking of ASICs

It is now well documented that membrane proteins, espe-
cially ion channels, receptors, and transporters, expressed at
the surface, undergo both constitutive and regulated traffick-
ing, which act cooperatively to achieve homeostasis and/or
plasticity in response to different environmental changes.40–44

Indeed, dynamic regulation of the rate of either insertion or
retrieval (or both) of integral membrane proteins in response
to stimuli embodies the strategic regulation of their surface
expression. Examples of receptors and transporters whose traf-
ficking is modulated by stimuli or neuronal activity are the G
protein-activated inwardly rectifying KC channels,45,46 dopa-
mine D2 receptors,47 ENaCs,48 cystic fibrosis transmembrane
conductance regulator,48 as well as ionotropic ligand-gated
receptors such as AMPA receptors, NMDA receptors, GABAA

receptors, and the purinergic receptor P2X4.3,49 Interestingly,
several studies have demonstrated that regulated trafficking is
also commonly used by ASICs for modulation of their physio-
logical function.22,50 In this section, we will discuss the regu-
latory pathways of ASIC trafficking and its pathophysiological
roles, with particular emphasis on ASIC1a.

The insulin pathway
Insulin depletion has been shown to increase ASIC1a surface

expression and proton-gated current density, without affecting
ASIC2a, in cultured neurons and Chinese hamster ovary cells.50

Cerebral ischemia results in reduced blood flow and delivery of
insulin to the damaged brain region, and therefore the effect of
insulin on ASIC1a expression observed in vitro is relevant to the
pathogenesis of the stroke. However, more evidence is needed to
elucidate the underlying mechanism. Insulin activates the insulin
receptor (IR) tyrosine kinase, which results in the activation of
a variety of signaling pathways, including PI3K/Akt, mitogen-
activated protein kinase, and Cbl/CAP pathway.51 Insulin

Table 1. Accessory proteins that regulate trafficking of ASICs

Accessory proteins ASIC isoforms Interaction sites Surface expression Refs

Annexin II/p11 1a N-terminus " by overexpression 66

AP2m2 1a C-terminal LCRRG motif " by knockdown 23

Dynamin1 1a NR " by inhibition 23

Hsc70 2a NR " by knockdown 67,68

Lin7b 3 C-terminal PDZ-binding motif " by overexpression 38

NHERF 3 C-terminal PDZ-binding motif " by overexpression 69

PICK1 1a, 2a C-terminal PDZ-binding motif " by overexpression 9,10,12,13

PSD-95 2a, 3 C-terminal PDZ-binding motif # by overexpression 38,70

Stomatin, STOML3 1a, 2a, 3 NR 1a: NR
2a, 3: no changes 71-73

SGK1.1 1 NR # by activation 52

Symbols: ", increases; #, decreases. Abbreviations: AP2m2, adaptor protein 2 m2 subunit; Hsc70, heat shock cognate protein 70; Lin7b, abnormal cell
lineage 7b; NHERF, NaC/HC exchanger regulatory factor 1; PICK1, protein interacting with C-kinase 1; PSD-95, postsynaptic density protein 95; STOML3,
stomatin-like protein 3; SGK1.1, serum- and glucocorticoid-induced kinase isoform 1.1; NR, not reported.
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signaling also activates serum- and glucocorticoid-induced kinase
1 (SGK1), and the brain-specific isoform SGK1.1 decreases
ASIC1a surface expression and proton-gated current density;52 it
would therefore be interesting to investigate whether activation
of SGK1.1 facilitates the endocytosis or inhibits the membrane
insertion of ASIC1a in the brain. Moreover, the expression level
of SGK1.1 is highly associated with neuronal activity,52 and it
could therefore provide insights into the neuronal activity-depen-
dent trafficking of ASICs.

The PI3K/Akt pathway
It has long been speculated that the trafficking of ASICs can

be regulated under pathological conditions that relate to tissue
acidosis, such as ischemic stroke, epileptic seizures and chronic
pain. However, evidence shows that acidosis itself has no influ-
ence on the trafficking processes of ASICs.50 A possible interplay
between ASICs and neurotrophins, or other mediators of patho-
logical development, is worthy of investigation. Our recent work
examined the interaction between neurotrophin signaling and
ASIC1a channel function, as well as its significance in chronic
pain, using both in vitro and in vivo approaches.22 Because
ASIC1a is the major component of ASICs and is required for
central sensitization and pain hypersensitivity in SDH neurons,
we screened several neurotrophins for ASIC1a function, and
found that BDNF upregulates the activity of ASIC1a via the
PI3K/Akt signaling pathway.22 BDNF and its receptor, TrkB,
have been implicated in the development of spinal central sensiti-
zation that underlies persistent pain.53,54 We found that BDNF
facilitates ASIC1a membrane insertion, a process for which the
Ser25 site on the ASIC1a N-terminus is crucial. Blockade of
ASIC1a trafficking by peptides that mimic the Ser25 phosphory-
lation site attenuates pain sensitization.22 Our results provide
novel insights into the cellular processes of BDNF/TrkB signal-
ing-mediated central sensitization. Because activity-dependent
expression and release of BDNF is essential for synaptic plasticity
and fear conditioning in the CNS,55,56 it is possible that BDNF-
mediated ASIC1a trafficking also plays a role in fear memory57–59

at the central nucleus where ASIC1a is robustly expressed, for
example, at the lateral and basolateral nuclei of the amygdala58,60

and striatum.60,61

Summary and Outlook

Our knowledge on the trafficking of ASICs has expanded in
the past few years. However, more studies are needed to unravel

the basic cell biological processes of ASICs to understand the
pathophysiological role of ASICs. Future directions of ASIC traf-
ficking studies are discussed below.

1. Imaging the trafficking and pathophysiology of ASICs in
vivo. There remains a challenge to elucidate the mechanisms
of ASIC trafficking between the plasma membrane and
intracellular compartments with excellent spatial and tempo-
ral resolutions. To address this issue, more sensitive molecu-
lar probes and microscopy methods for ASICs should be
developed. For example, pH-sensitive GFP, a superecliptic
pHluorin, has been demonstrated to be a powerful probe
used to monitor the dynamics of several ion channels, when
it is fused to their extracellular domains.62 In combination
with total internal reflection fluorescent microscopy, it is
possible to visualize the rapid appearance of surface ion
channel clusters within a specific region.47,63,64 However,
the extracellular domain of ASICs is compact, and it is there-
fore important to test whether a pHluorin fusion protein
would work. The use of an extracellular HA-tag within
ASICs would provide a good start for such studies.22,23,65

2. Identifying novel physiological and pathophysiological
mechanisms of ASIC trafficking. Investigations should be
undertaken to address whether ASICs have isoform-specific
trafficking motifs and related accessory proteins; the role of
ASIC1a endocytosis in acidosis-induced neuronal death;
and the contribution of ASIC trafficking to synapse devel-
opment and synaptic transmission.

In summary, to understand the role of ASICs in disease more
thoroughly and to explore new clinical treatments, the above
issues should be addressed with a combination of traditional and
the latest techniques.
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