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Repurposed biological scaffolds: kidney to pancreas
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ABSTRACT. Advances in organ regeneration have been facilitated by gentle decellularization
protocols that maintain distinct tissue compartments, and thereby allow seeding of blood vessels with
endothelial lineages separate from populations of the parenchyma with tissue-specific cells. We
hypothesized that a reconstituted vasculature could serve as a novel platform for perfusing cells
derived from a different organ: thus discordance of origin between the vascular and functional cells,
leading to a hybrid repurposed organ. The need for a highly vascular bed is highlighted by tissue
engineering approaches that involve transplantation of just cells, as attempted for insulin production
to treat human diabetes. Those pancreatic islet cells present unique challenges since large numbers
are needed to allow the cell-to-cell signaling required for viability and proper function; however,
increasing their number is limited by inadequate perfusion and hypoxia. As proof of principle of the
repurposed organ methodology we harnessed the vasculature of a kidney scaffold while seeding the
collecting system with insulin-producing cells. Pig kidneys were decellularized by sequential
detergent, enzymatic and rinsing steps. Maintenance of distinct vascular and collecting system
compartments was demonstrated by both fluorescent 10 micron polystyrene microspheres and cell
distributions in tissue sections. Sterilized acellular scaffolds underwent seeding separately via the
artery (fibroblasts or endothelioma cells) and retrograde (murine bTC-tet cells) up the ureter. After
three-day bioreactor incubation, histology confirmed separation of cells in the vasculature from those
in the collecting system. bTC-tet clusters survived in tubules, glomerular Bowman’s space,
demonstrated insulin immunolabeling, and thereby supported the feasibility of kidney-to-pancreas
repurposing.

KEYWORDS. decellularization, diabetes, organogenesis, stem cells, tissue engineering

*Correspondence to: Edward A Ross; Email: edward.ross@ucf.edu
Submitted March 6, 2015; Submitted June 24, 2015; Submitted June 25, 2015.
Presented in part at the ERA-EDTA Annual Scientific Meeting, June 2014.

47

Organogenesis, 11:47–57, 2015
� 2015 Taylor & Francis Group, LLC
ISSN: 1547-6278 print / 1555-8592 online
DOI: 10.1080/15476278.2015.1067354



INTRODUCTION

Biomaterial tissue scaffolds are fundamental
components of many regenerative medicine
approaches, with decellularized whole-organs
being a promising recent focus in the field. A
major strategy has been to overcome the short-
age of transplantable organs for human disease
by processing tissues from animals and then
reconstituting them with patient-derived cells.1

These biological scaffolds are produced by the
sequential perfusion of detergents and enzymes
to remove all the cellular components, thereby
retaining much extracellular matrix (ECM) and
basement membranes.2,3 The resilient compo-
nents (e.g., collagens, laminin, fibronectin) are
typically well-preserved by these decellulariza-
tion protocols, less so for certain proteoglycan
and glycosaminoglycans (GAGs).4,5 Advanta-
geously, ECM proteins are largely conserved
from person to person and across species, and
therefore decellularized scaffold materials do
not typically elicit an immune rejection
response.6,7 In fact, there is mounting evidence
that these types of scaffolds exert beneficial
immunomodulatory effects.8–13 Much research
heretofore has focused on the preservation of
complex architectures which would permit the
correct stereotypic placement of appropriate
parenchymal cell types and allow recapitulation
of organ-specific function (such as for liver,
kidney or heart for transplantation).14–19 We
now propose to go beyond concordance
between a scaffold and its native reconstitution:
instead to use decellularized whole organ scaf-
folds as a vascular platform to perfuse cells
originally from a different tissue. We would
thus harness these scaffolds’ extensive vascula-
ture to grow hybrid organs. This approach
addresses a heretofore unmet need for trans-
planting cells or organoids which otherwise fail
due to insufficient blood perfusion and
oxygenation.

As proof of concept we chose to use a pan-
creatic insulin-producing cell line (bTC-tet)
since one of the limitations to their success in
humans has been lack of adequate vasculariza-
tion. It has become clear that for both survival
and endocrine function there needs to be
enough cells in islets to allow cell-to-cell

signaling through pathways such as homeobox-
1 (Pdx1).20 The conundrum has been that
increasing the cell number improves their via-
bility but exacerbates the hypoxia problem
from under-perfusion. To overcome that prob-
lem and demonstrate feasibility of the hybrid
organ (as well as trans-species) approach, our
goal was to grow insulin-producing cells in
highly vascularized swine kidney scaffolds. We
devised a methodology to decellularize pig kid-
neys that assured integrity of the distinct tissue
compartments. This allowed us to seed the
swine vasculature separately from the collect-
ing system, into which we seeded and cultured
murine bTC-tet cells that demonstrated insulin
immunolabeling.

MATERIALS AND METHODS

Scaffold preparation

All animal procedures were conducted under
guidelines approved by the University of Flor-
ida IACUC as a tissue protocol or from a com-
pany as intact kidneys harvested from
heparinized pigs (Midwest Research Swine,
Inc., Gibbon, MN) at approximately 3–5 weeks
of age and 5–12 kg weight, perfused with hepa-
rin followed by arterial rinsing with saline. The
kidneys were isolated and then underwent
decellularization using a 4-day protocol similar
to that we previously described.2,3,21 The artery
and ureter of each kidney were cannulated and
connected to a peristaltic pumping system that
incorporated pressure-relief protection. The
remaining blood in the organs was rinsed out
with 2L of heparinized isotonic saline infused
via the artery, washed with a nonionic detergent
(20L of 1.0% Triton X-100), phosphate-
buffered saline (PBS) rinse (2L), then an ionic
detergent (20L of 0.25% or 0.75% sodium
dodecyl sulfate). A PBS rinse (2L) followed by
a second nonionic detergent1 flush was also
performed to assist in the clearance of remnant
ionic detergent1 before the final PBS (40L),
DNase (1L of 0.0025%) and 1% antibiotics/
antimycotics (in PBS, 10L) rinses all at 1L/hr.
Kidneys were sterilized with 1% MIN-
NCARE� (4L, 4.5% peracetic acid and 22.0%
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hydrogen peroxide, Mar Cor, Plymouth, MN)
or by irradiation with 12 to 16 kGy over 24 to
30 hours (Florida Accelerator Services and
Technology, Gainesville, FL). Sterility of the
decellularized organ was demonstrated by
flowing DMEM supplemented with 10%
FBS between 24 and 48 hours before cellular
injection(s).

Imaging of kidney compartments

Pump flow rates and pressure profiles were
determined to optimize decellularization with-
out disrupting the integrity of the organ com-
partments. Collagen IV staining was used to
show the preservation of the basement mem-
branes. Protocols were developed to image and
confirm the separation of seeding antegrade
into the artery and retrograde via the ureter.
This was accomplished first with polymer par-
ticles and then with cells. For the former, we
used fluorescently-colored 10 micron polysty-
rene microspheres and ascertained their distri-
bution by fluorescence imaging of the organ
when intact and bisected using an IVIS Spec-
trum (Perkin Elmer, Waltham, MA) and
microscopy. With a peristaltic pump, 2 ml of
red 580/605 FluoSpheres� (3.6 £ 106 spheres/
ml, Life Technologies, Grand Island, NY) in
10 ml of saline were perfused through the
artery and images were taken. A second 2 ml
of red FluoSpheres� in 10 ml of saline was
introduced 2 d later. Then 2 d later, 4 ml of yel-
low 505/515 FluoSpheres� (3.6 £ 106 spheres/
ml) in 150 ml of saline were introduced
through the ureter and then reimaged with
IVIS.

Cell seeding and immunohistochemistry

To establish conditions for cell seeding, we
repopulated with murine bTC-tet cells (1.2 £
107cells) retrograde through the ureter with a
peristaltic pump assisted with vacuum.14 Once
pump flow and pressure parameters were opti-
mized, immortalized GFPC murine lung fibro-
blasts (1.4 £ 107cells) were used to establish
the pattern of distribution through the renal
artery; the intact organ was then incubated in a

bioreactor for at least 3 d. Cells were grown in
in DMEM 4.5 g/L glucose with 10% FBS and
1% penicillin-streptomycin. Media was per-
fused at 15 ml/min with a peristaltic pump. The
bioreactor was situated in a 5% CO2 incubator
at 37�C and a separate pump was used to assure
gas exchange. Proper oxygenation was verified
with a sensor placed in the media (NeoFox,
Dunedin, FL). Then the tissue was fixed (4%
PFA), paraffin embedded, cut at 4 microns,
stained with H&E and for anti-GFP (1:1000,
Abcam, Cambridge, MA), and insulin (1:100,
Ventana, Tucson, AZ) with Ventana CC1
retrieval and collagen IV (1:25 Dako, Carpinte-
ria, CA) with Ventana protease II immunohis-
tochemical labeling with hematoxylin counter
staining (Ventana). Once optimal seeding and
pumping conditions were determined using
fibroblasts, we confirmed cell distribution and
growth using mouse hemangioendothelioma
endothelial (EOMA) cells (ATCC, Manassas,
VA). Approximately 4.7 £ 106 cells were vac-
uum seeded, which was repeated after static
culture for 2 hr and then media flow com-
menced. On day 4 the scaffold was re-vacuum
seeded with 4.9 £ 107 EOMA cells. Media was
changed every 2 d. On day 7 the media was
removed and PBS was flushed through, fol-
lowed by 10% neutral buffered formalin for 18
hr as preparation for histologic studies. Anti-
CD31 (1:50, Santa Cruz Biotechnology, Dallas,
TX) labeling was used for imaging the endothe-
lial cells, and the collagen IV antibodies were
utilized to define the basement membrane
microstructure.

RESULTS

Decellularization and preservation of
compartments

The overall structure of the kidney remained
complete (Fig. 1A, B). Architecture was opti-
mally preserved during decellularization using
fluid pressure and flow parameters of up to
approximately 80 mm Hg and 1L/hr, (Fig. 1F–H)
compared with native structures (Fig. 1C–E).
Collagen IV staining illustrates the basement
membrane remained intact as individual tubules
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and glomeruli are clearly seen (Fig. 1F-H arrow-
heads pointing at glomerular tufts).

FluoSpheres seeding

Seeding with either the FluoSpheres� or cells
was possible with positive pressure limited to
80 mm Hg, but was improved by applying 60–
80 mm Hg vacuum. Figure 2A, B demonstrates
antegrade distribution of the polystyrene par-
ticles (in red) from the arterial cannula and ret-
rograde (in green) from the ureter to the
medulla and corticomedullary junction, with
some particles noted in the mid-cortex. Histo-
logic sections (Fig. 2C, D) confirmed landing of
FluoSpheres� from the tip of the ureter back via
the collecting system as far as Bowman’s space
of glomeruli in the outer cortex.

Cell seeding and distribution

Figure 3A–C shows seeding and survival of
arterially perfused GFPC murine lung fibroblast
cells extending to the peritubular capillary net-
works. Their distribution was distinct from the
retrograde-delivered bTC-tet cells that were
seeded and survived within the collecting sys-
tem tubules and Bowman’s spaces (Figs. 3D
and 4). Figure 3D shows the presence of fibro-
blast cells in the vasculature (GFPC) and the
bTC-tet (GFP-) cells in adjacent tubules. bTC-
tet cells within the tubules and Bowman’s
spaces were also positive for insulin production
after a 3-day perfusion culture as evidence by
immunohistochemical staining (Fig. 4). After
these results were obtained by iterative refine-
ments in the pumping and seeding protocols,

FIGURE 1. Pig kidneys pre- and post-decellularization and collagen-IV staining of glomerular struc-
tures. Gross image of pig kidney pre- (A) and post-decellularization (B), scale bar 1 cm. Collagen-
IV immunohistochemical staining of basement membranes (C–H). Pig kidney histology before
decellularization (C–E) and after (F–H); arrow heads point to acellular glomerular vascular tufts
(G,H). Scale bar (C–H) 100 mm.
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the findings were confirmed using the endothe-
lioma cells. As demonstrated in Figure 5, the
morphology and anti-CD31 labeling showed
that the cells remained within the vascular
compartment’s vessels, lined the luminal surfa-
ces (Fig. 5B–D), and successfully populated
glomerular tufts (Fig. 5A)

DISCUSSION

Although there has been varied success in
restoring organ-specific functionality and struc-
ture to repopulated biological scaffolds, we
believe a common theme in many reports has

been progress in recapitulating the vasculature.
Some investigators have used cells already in
the endothelial lineage (e.g., human umbilical
vascular endothelial cells).22 In an alternative
approach we have previously shown23 that pre-
cursor (embryonic stem) cells show evidence
for differentiation within vessels: expressing
endothelial lectin and VEGFR2 (Flk1). Further-
more the cells produce embryologically correct
(fetal) collagen IV a 1 and 2 isoforms, laminin
and label appropriately for mouse basement
membrane antigens within what was originally
a rat scaffold. We believe that robust vascula-
tures such as that within kidneys can be har-
nessed to perfuse cells from other organs. Here

FIGURE 2. Fluorescent 10 mm polystyrene microspheres (FluoSpheres�) with antegrade perfu-
sion in renal artery (red), (A) visualizing afferent arteriole and glomerulus and retrograde perfusion
in ureter (green), (B). Scale bar (A, B) 1 cm. Ten mm polystyrene FluoSpheres� (arrowhead)
injected retrograde in the ureter and reaching Bowman’s space. Scale bar (C, D) 50 mm.
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we show for the first time successful repurpos-
ing of kidney scaffolds for growth of insulin-
producing b cells.

An integral and necessary aspect of this tech-
nology is the maintenance of separate vascular
and nonvascular (e.g. collecting system) com-
partments. This allows for distinct seeding and
incubation conditions as visualized with
FluoSpheres� and cells. We achieved b cell
population of the collecting compartment and
endothelial cell-line seeding of the blood ves-
sels (including glomeruli).

We believe that it is advantageous to utilize
biological scaffolds to regenerate vasculature,
in that they inherently preserve chemical sig-
nals and permit mechanical shear stress signal-
ing from the peristaltic pumping of the
incubation media. In our previous work,23 the
evidence for precursor cells to mature into an

endothelial lineage was obtained without added
growth or differentiation factors; only the
matrix and mechanical forces were present.
Growth factors could be added to the scaffold
or the media so as to further enhance vasculari-
zation, as has been successful when sustained
release of VEGF was incorporated into syn-
thetic collagen hydrogel or other proangiogenic
polymer models.24,25 The geometry of the peri-
tubular capillaries is also favorable due to its
proximity to the tubular structures wherein
trans-organ cells can be placed. This is relevant
to recent evidence for the existence of cross-
talk between cells in kidney capillary and
tubule compartments.26 There are even reports
of vascular beds providing signals to hormone-
producing pancreatic cells in a synthetic
polymeric model that incorporated endothelial
cells and fibroblasts.27 With adequate

FIGURE 3. Three-day incubation of scaffold showing antegrade seeding of vasculature and retro-
grade seeding of collecting system. H&E (A). GFPC cells line peritubular capillary vessels (B–D)
while a GFP¡ bTC-tet cell population (D) occupy tubular structures. GFPC cells are marked by
arrows and the GFP¡ bTC-tet cells with arrowheads (B–D). Scale bar 100 mm.
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vascularization one might take advantage of
other advances in polymer-based substrates for
islet cell growth.28,29

Repurposing of organ scaffolds is particu-
larly promising for pancreatic islet cells. We
believe that the kidney’s highly vascular struc-
ture will permit viability and functionality of
the large numbers of cells that are needed by
islets for the required cell-to-cell signaling
through such pathways as homeobox-1.30

Unfortunately, one reason that pancreatic islet
cell transplants have failed in man31,32 (e.g.,
when engrafted to the liver) is that the large
clusters of cells cannot be maintained without
appropriate oxygenation.28 Lowering the cell
number so as to allow adequate nutrient perfu-
sion not only reduces vital signaling but is

disadvantageous in that it limits the amount of
insulin produced.33 A theoretical therapeutic
strategy would thus be to repurpose an intact
decellularized swine kidney: repopulate it with
cells derived from the human patient (e.g. vas-
cular and islet cells derived from induced plu-
ripotent stem cells); grow the organ in a
bioreactor with appropriate media and growth
factors; and then transplant the hybrid graft.
Utilization of pig organs for xenotransplanta-
tion, rather than smaller ones from rodents, has
been studied by other investigators and will
necessitate scaling up of the amount of cells
and bioreactor time in order to achieve full-tis-
sue regeneration. Homogeneous repopulation
of the vessels, for example, would be necessary
to allow for stable reanastomosis and to

FIGURE 4. 3-day incubation of scaffold after retrograde seeding of pancreatic b cells. Cells show-
ing positive insulin immunoreactivity localized to the collecting tubules (A, B) and glomeruli (C, D).
Scale bar 200 mm (A–C) 100 mm (D).
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minimize thrombotic tendencies. There is also
motivation for using a repurposed scaffold
organ, such as kidney, rather than a decellular-
ized pancreas. Although there has been recent
notable reported success for the latter
approach,34,35 other investigators have previ-
ously highlighted the difficulties working with
that organ: architectural complexity due to its
exocrine function (only up to 2% of cells are
thought to be insulin-secreting) and there is a
concern that porcine pancreatic extracellular
matrix may be disrupted by decellularization
protocols.35 While the kidney scaffold’s vascu-
lature is more robust and thus superior to nearly
all other organs, a potential limitation to the

repurposed-tissue strategy is that the collecting
system extracellular milieu might not be opti-
mal for pancreatic cells36,37 without further
chemical modification or use of appropriate
growth factors.25 Lack of native pancreatic
matrix may be more important when using rela-
tively undifferentiated precursors,35 as indeed
our findings do support the survival of insulin-
producing cells.

Lastly, we suggest that biological scaffolds
have additional merits over totally synthetic
architectures in that the matrix has been reported
to have immunomodulatory properties.38–40

Fishman et al.39 have studied effects on cell-
mediated immunity and report decreased

FIGURE 5. (A) Collagen IV immunohistochemical staining of glomerular tuft containing EOMA
cells. (B–D) CD31 immunohistochemical staining of EOMA cells lining blood vessels. Scale bar D
50 mM.
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cytokine production, transition to an M2 macro-
phage phenotype and down regulation of T-cell
sensitization. This is of importance since, apart
from issues of oxygenation, human islet cell
transplants have also failed due to inflammation
and rejection of cadaveric donor tissue. Encap-
sulation of islet cells41 with synthetic or semi-
synthetic substances as an immune barrier is
actively being studied by many investigators,42

but to date immunoisolation techniques have not
met with long-term success.24,28,43,44 It is not
clear whether those difficulties can be overcome
by recent advances in the synthesis (e.g., for
alginates) and multi-layering of the coating
materials.33,42 Although not taking advantage of
vascular structures, it is possible that rejection
can be attenuated by transplanting micro-organ-
elles of islet cells grown in decellularized bio-
logical scaffolds. For example, this might be
accomplished by dissection of islets surrounded
by acellular kidney matrix and subsequent
implantation into an organ such as the liver.

In conclusion, we have demonstrated proof
of concept for repurposing a biological scaf-
fold, kidney-to-pancreas, so as to provide both
extensive vascularization of large numbers of
cells and the benefits from matrix- and cell-to-
cell signaling.
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