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background: Primaryovarian insufficiency (POI) is characterized by markedheterogeneity, but with a significant genetic contribution. Iden-
tifying exact causative genes has been challenging, with many discoveries not replicated. It is timely to take stock of the field, outlining the progress
made, framing the controversies and anticipating future directions in elucidating the genetics of POI.

methods: A search for original articles published up to May 2015 was performed using PubMed and Google Scholar, identifying studies on the
genetic etiology of POI. Studies were included if chromosomal analysis, candidate gene screening and a genome-wide study were conducted.
Articles identified were restricted to English language full-text papers.

results: Chromosomal abnormalities have long been recognized as a frequent cause of POI, with a currently estimated prevalence of
10–13%. Using the traditional karyotype methodology, monosomy X, mosaicism, X chromosome deletions and rearrangements, X-autosome
translocations, and isochromosomes have been detected. Based on candidate gene studies, single gene perturbations unequivocally having a
deleterious effect in at least one population include Bone morphogenetic protein 15 (BMP15), Progesterone receptor membrane component
1 (PGRMC1), and Fragile X mental retardation 1 (FMR1) premutation on the X chromosome; Growth differentiation factor 9 (GDF9), Folliculo-
genesis specific bHLH transcription factor (FIGLA), Newborn ovary homeobox gene (NOBOX), Nuclear receptor subfamily 5, group A, member
1 (NR5A1) and Nanos homolog 3 (NANOS3) seem likely as well, but mostly being found in no more than 1–2% of a single population studied.
Whole genome approaches have utilized genome-wide association studies (GWAS) to reveal loci not predicted on the basis of a candidate
gene, but it remains difficult to locate causative genes and susceptible loci were not always replicated. Cytogenomic methods (array CGH)
have identified other regions of interest but studies have not shown consistent results, the resolution of arrays has varied and replication is
uncommon. Whole-exome sequencing in non-syndromic POI kindreds has only recently begun, revealing mutations in the Stromal antigen
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3 (STAG3), Synaptonemal complex central element 1 (SYCE1), minichromosome maintenance complex component 8 and 9 (MCM8, MCM9) and
ATP-dependent DNA helicase homolog (HFM1) genes. Given the slow progress in candidate-gene analysis and relatively small sample sizes avail-
able for GWAS, family-based whole exome and whole genome sequencing appear to be the most promising approaches for detecting potential
genes responsible for POI.

conclusion: Taken together, the cytogenetic, cytogenomic (array CGH) and exome sequencing approaches have revealed a genetic caus-
ation in �20–25% of POI cases. Uncovering the remainder of the causative genes will be facilitated not only by whole genome approaches in-
volving larger cohorts in multiple populations but also incorporating environmental exposures and exploring signaling pathways in intragenic and
intergenic regions that point to perturbations in regulatory genes and networks.

Key words: primary ovarian insufficiency / premature ovarian failure / chromosomal abnormality / gene mutation / genome-wide association
studies / whole-exome sequencing / next generation sequencing

Introduction
Primary ovarian insufficiency (POI), also known as premature ovarian
failure (POF) or premature menopause, is defined as cessation of men-
struation before the expected age of menopause. This age is traditionally
defined to be prior to 40 years and diagnosis is confirmed by elevated
serum FSH levels (.40IU/l). Although frequently stated that �1% of
the population is affected with POI before the age of 40 years and
0.1% before age 30 years, the prevalence is actually less certain
(Coulam et al., 1986).

The disorder is clearly heterogeneous, with a wide spectrum of
causes, namely cytogenetic, genetic, infectious or iatrogenic. Auto-
immune and metabolic etiologies may or may not be genetic. Irrespect-
ive, etiology remains to be elucidated in most cases and until a decade ago
few specific causes were known beyond X-chromosomal abnormalities,
Fragile X mental retardation 1 (FMR1) premutation and FSH receptor
(FSHR) in the Finnish population (Simpson, 1975; Aittomäki et al.,
1995; Wittenberger et al., 2007). Most cases of isolated POI still
appear sporadically, but �10–15% has an affected first-degree relative,
indicating significant genetic etiology (Van Kasteren et al., 1999). Pedi-
grees with multiple affected relatives are not rare (recessive and domin-
ant). Presence of POI as one component of a pleiotropic genetic disorder
is also well recognized. Yet identifying precise causative genes has been
challenging. Here, we enumerate known genetic causes of POI, most elu-
cidated within the last 5–10 years.

Confusion exists concerning nomenclature, namely the use of POF or
POI. It is the view of the authors that POI can be taken to encompass
occult, biochemical and overt stages, whereas POF is best considered
as only the final stage of POI. The designation POI is thus best reserved
as alluding to the entire gamut of disorders having diminished ovarian
reserve—occult, subclinical, iatrogenic. Although many authors
espouse POI in lieu of POF, the canonical genetic reference—Online
Mendelian inheritance in man (OMIM)—has long used, and continues
to use POF, to nominate causative genes. These designations now
apply to POF1–POF9 (Supplementary Table SI), and the list growing.

Methods
A search for original articles published up to May 2015 was performed using
PubMed and Google Scholar to identify studies on genetic variants associated
with the human disease. The key word combinations include ‘premature
ovarian failure’, ‘primary ovarian insufficiency’, ‘early menopause’,
‘genetic’, ‘gene mutation’, ‘variant’ and ’genome wide study’. For a study to
be included in our review, it had to focus on chromosomal analysis, candidate

gene screening, or a genome-wide study in different POI cohorts. In addition,
studies on mitochondrial genes causing POI and multiple malformation syn-
dromes characterized by POI were included. Reports on the role of candi-
date genes in animal models were not included. Where appropriate,
reference lists of identified articles were also searched for further relevant
papers. However, articles identified were restricted to English language full-
text papers.

Results

Chromosomal abnormalities in POI
Chromosomal abnormalities have long been recognized as a cause of
POI, but percentages vary widely among reported series. This clearly
reflects biases of ascertainment, for example reflecting whether a
cohort was derived from a referral cytogenetic lab, a gynecologic prac-
tice, or a pediatric practice. Numerous different karyotypic anomalies
have been found, ranging from numerical defects (monosomy X; X
chromosomal mosaicism), X-deletions, X-autosome translocations,
and X-isochromosomes and other rearrangements. Aggregate fre-
quency of chromosomal abnormalities in reported studies is summarized
in Table I. Small sample sizes as well as selection biases and differing ages
of ascertainment probably account for different prevalence in different
populations. However, each of the five largest studies with respect to
sample size reported frequencies between 10.0 and 12.9% (Zhang
et al., 2003; Lakhal et al., 2010a; Baronchelli et al., 2011; Jiao et al.,
2012; Kalantari et al., 2013); thus, a prevalence of 10–13% seems
reasonable.

Numerical defects
The X chromosome has long been known to play an essential role in the
maintenance of ovarian development and function. Females lacking an X
chromosome as well as those showing an extra X chromosome are pre-
disposed to developing POI.

45,X and 45,X/46,XX
Turner syndrome, often but not universally associated with X mono-
somy, leads to ovarian dysgenesis and accelerated follicular atresia. X
monosomy without mosaicism is more typically found in primary amen-
orrhea and cases were almost universally understood to present with this
phenotype. However, many early series were recruited from pediatric
clinics, not among adult women. In 1975, Simpson (1975) reported
that 3% (5/178) of 45,X patients actually menstruated. 45,X/46,XX
and other forms of association also are associated with secondary
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amenorrhea (POI). Either haploinsufficiency of pivotal genes on the X
chromosome or non-specific meiotic impairment could explain the
accelerated atresia of 45,X oocytes. Variability would be expected
given potential heterozygosity of alleles in genes subjected to
X-inactivation.

47,XXX
47,XXX women may experience oligomenorrhea, secondary amenor-
rhea, and early menopause, but relative risk has not been well studied.
Goswami et al. (2003) reported the prevalence of 47,XXX in 52
women with POI to be 3.8%, whereas in our much larger Chinese
series we observed 1.5% (8/531) (Jiao et al., 2012). The presence of
three X chromosomes plausibly leads to meiotic disturbance and, sec-
ondarily, ovarian failure. Additionally, overexpression of genes that
escape X-inactivation could cause POI in 47,XXX. Mechanisms
remain to be defined (Tartaglia et al., 2010). A confounder is that an as-
sociation exists between 47,XXX and autoimmune diseases (Holland,
2001; Goswami et al., 2003).

X-structural abnormalities and X-autosome translocations
X chromosome deletions and X-autosome balanced translocations have
long been observed in POI and were once the only approach available to
localize causative genes. This strategy was illustrated in the 1970s by a
region on the X chromosome appearing critical for the POI phenotype
(Sarto et al., 1973). A critical region was delineated that gave boundaries
for breakpoints of X-autosome translocations associated with ovarian
failure. This region extends from Xq13-Xq21 (POI2) to Xq23-q27
(POI1). It has been proposed by Rizzolio and colleagues that
Xq13-Xq21 governs epigenetic regulations that down-regulate
oocyte-expressed autosomal genes (Rizzolio et al., 2006, 2007, 2009).

Irrespective of mechanisms involved in the critical region, almost all
terminal deletions originating at Xq13 are associated with primary amen-
orrhea, lack of breast development and complete ovarian failure
(Simpson and Rajkovic, 1999; Simpson, 2008). By contrast, terminal

deletions arising at Xq25 or Xq26 are characterized by the more
common phenotype being not primary amenorrhea but premature
ovarian failure. The gene designation POI1 is applied to this region.
The more distal deletions arise at Xq27 or Xq28 and exert a less
severe effect on stature and reproductive function than do proximaldele-
tions (Simpson, 1975; Simpson and Rajkovic, 1999). Gene(s) in this POI-
causing regionareconsidereddistinct from Fragile X mental retardation 1
(FMR1), located at Xq27 and premutation of which is the most common
single cause of POI.

Multiple genes on the X chromosome have been identified by
X-autosomal translocations. These include Diaphanous-related formin
2 (DIAPH2, Xq22) (Bione et al., 1998), X-prolyl aminopeptidase (amino-
peptidase P) 2, membrane-bound (XPNPEP2, Xq25) (Prueitt et al.,
2000), Dachshund family transcription factor 2 (DACH2, Xq21.3)
(Prueitt et al., 2002), Premature ovarian failure, 1B (POF1B, Xq21.1)
(Lorda-Sanchez et al., 2000; Bione et al., 2004), Choroideremia (CHM,
Xq21.1) (Lorda-Sanchez et al., 2000; Mansouri et al., 2008), Progester-
one receptor membrane component 1 (PGRMC1, Xq24) (Mansouri
et al., 2008), Collagen, type IV, alpha 6 (COL4A6, Xq22.3) (Nishimura-
Tadaki et al., 2011) and Nuclear RNA export factor 5 (NXF5, Xq22.1)
(Bertini et al., 2010). Some will individually be discussed below.

Autosomal rearrangements
Autosomal translocations—Robertsonian and reciprocal—have been
observed in sporadic cases in Belgian, American, Japanese and Chinese
women (Hens et al., 1989; Orczyk et al., 1989; Kawano et al., 1998; Jiao
et al., 2012). Perturbations presumably confer haploinsufficiency or inter-
rupt pivotal genes in these regions. Non-specific defective meiotic pairing
or a position effect on contiguous genes is also a potential explanation
(Simpson, 2008; Persani et al., 2009). No autosomal region appears pref-
erentially involved, long frustrating investigators seeking touse breakpoints
to localize regions containing autosomal genes of relevance. Searches for
autosomal regions disrupted in X-autosome translocations have similarly
not proved fruitful in identifying autosomal roles in POI.

.............................................................................................................................................................................................

Table I Frequency of chromosomal abnormalities (CA) in different population studies.

Reference Frequency of CA (%) No. of CA Sample size Clinical characteristics Population

Ayed et al. (2014) 18.0 18 100 PA, SA Tunisian

Kalantari et al. (2013) 10.05 18 179 PA, SA Iranian

Jiao et al. (2012) 12.1 64 531 PA, SA Chinese (Jinan, Beijing, Shenzhen)

Baronchelli et al. (2011) 10.0 27 269 PA, SA, EM Italian

Lakhal et al. (2010a) 10.8 108 1000 PA, SA Tunisian

Ceylaner et al. (2010) 25.3 19a 75 SA Turkish

Janse et al. (2010) 12.9 19 147 SA Dutch

Portnoi et al. (2006) 8.8 8 90 PA, SA French

Zhang et al. (2003) 12.5 13 104 POI Chinese (Chongqing)

Devi and Benn (1999) 13.3 4 30 SA American

Davison et al. (1998) 2.5 2 79 PA, SA FSH.20 IU/l English

Castillo et al. (1992) 32.0 15 47 POI Chilean

Rebar and Connolly (1990) 25.4 16 63 PA, SA American

Chromosomal ‘abnormalities’ means visible structural changes in karyotype that are sufficiently large to cause clinical abnormalities. Variants (e.g. prominent satellites) are not included.
CA, chromosomal abnormalities; PA, primary amenorrhea; POI, primary ovarian insufficiency; SA, secondary amenorrhea; EM, early menopause.
aIncluding 2 46,XY gonadal dysgenesis (Swyer syndrome).
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Single genes causing non-syndromic POI
Aside from regions of interest defined by chromosome deletions and
translocations, the other traditional strategy to identify candidate
genes in POI is to study genes whose product is known and plays a
role in human folliculogenesis or shows an organ-specific effect based
on murine knockout models (candidate genes). Many genes have been
interrogated for these reasons. In this section we specifically review all
genes for which data warrant strong consideration as a candidate gene
for POI. Table II and Supplementary Table SII contain available details
of reported studies.

Variants occurring in evolutionary conserved regions are more likely
to carry functional significance. These include missense, nonsense, inser-
tion or deletion variants and were considered as plausible causative var-
iants with clinical significance. Thus, perturbations should yield a severe
functional defect. A nonsense mutation that results in truncated protein
should lead to haploinsufficiency; a splicing site mutation or insertion/
deletion should result in a frameshift that leads to a different protein
product; a missense mutation may change the amino acid and cause a
dominant negative effect.

Those regions or genes found only by genome-wide studies, including
genome-wide association study, cytogenomic study, whole-exome se-
quencing, and next generation sequencing (NGS), are cited separately.

Genes on the X chromosome
Bone morphogenetic protein 15 (BMP15) (Xp11.2). BMP15 is located on
chromosome Xp11.2. The possible involvement of BMP15 in POI patho-
genesis was initially supported by evidence from animal models. Inver-
dale and Hanna sheep with a naturally occurring Bmp15 mutation had
increased ovulation rate and twin and triplet births in heterozygotes,
but ovarian failure results from impaired follicular development beyond
the primary stage in homozygotes (Galloway et al., 2000). Bmp15 knock-
out female mice also were subfertile, showing decreased ovulation rates,
reduced litter size and decreased number of litters per lifetime (Yan et al.,
2001).

In humans BMP15 was first implicated in POI by Di Pasquale et al.
(2004), who reported a heterozygous p.Y235C missense mutation in
each of two sisters having ovarian failure. The authors presented in
vitro evidence for a dominant negative mechanism. Other variants have
been identified in Caucasian, Indian and Chinese women with POI,
albeit with quite different frequencies (1.5–15%) (Di Pasquale et al.,
2006; Dixit et al., 2006c; Laissue et al., 2006; Ledig et al., 2008; Lakhal
et al., 2009, 2010b; Rossetti et al., 2009; Wang et al., 2010b). Merely
showing different frequencies between a given single nucleotide poly-
morphism (SNP) in POI and control is a less robust method than
finding a unique perturbation with functional validation in a case
(Zhang et al., 2007; Ledig et al., 2008). However, some variants found
in higher frequency indeed show marked reduction of mature protein
production (Rossetti et al., 2009).

Of relevance is that BMP15 is a member of the transforming growth
factor (TGF) family, with dimerization occurring with other TGF proteins
such as GDF9, to be discussed below. Most reported BMP15 variants are,
in fact, in the region corresponding to the propeptide of the protein,
which is essential for dimerization and subsequent post-translational
processing into biologically active proteins.

Progesterone receptor membrane component 1 (PGRMC1) (Xq22-q24).
PGRMC1 was first described in 1998 as a putative progesterone-binding

membrane receptor (Losel et al., 2008). This protein is expressed in
various tissues, e.g. liver, kidney, adrenal glands, uterus and leukocytes
and involves progesterone signaling in the reproductive system (Cahill,
2007; Losel et al., 2008; Mansouri et al., 2008). PGRMC1 mediates pro-
gesterone’s anti-apoptotic effects on granulosa cells (Engmann et al.,
2006; Peluso et al., 2006; Losel et al., 2008; Mansouri et al., 2008).

Mansouri et al. (2008) identified a motherand daughter with POI, both
of whom carried an X;autosome translocation [t(X;11)(q24;q13)]. Sys-
tematic mapping of the Xq breakpoint and performing RNA expression
studies revealed reduced expression of PGRMC1. Mutation screening of
67 females with idiopathic POI identified a third patient having a missense
mutation (p.H165R), located in the cytochrome b5 domain. The
p.H165R mutation abolishes binding of cytochrome P450 7A1
(CYP7A1) to PGRMC1 and attenuates PGRMC1’s ability to mediate
the anti-apoptotic action of progesterone in ovarian cells. These findings
suggest that mutant or reduced levels of PGRMC1 may cause POI
through impaired activation of the microsomal cytochrome P450 and
increased apoptosis of ovarian cells. A recent study in Chinese patients
with POI identified a novel missense mutation (C.556C.T, p. P186S),
but there was no functional study to confirm a deleterious effect
(Wang et al., 2014b).

Androgen receptor (AR) (Xq12). The AR gene encodes the androgen recep-
tor and is involved in sex differentiation and reproduction. Its perturb-
ation in 46,XY individuals results in the well-known sex reversed
phenotype of androgen insensitivity, testosterone produced by testis
exerting no effect on androgen-dependent differentiation. In the ovary,
AR is expressed in developing follicles, mainly granulosa cells. Deficiency
of Ar in female mice results in a POI-like phenotype and dysregulation of a
number of major genes critical for folliculogenesis, indicating that normal
folliculogenesis requires AR-mediated androgen action (Shiina et al.,
2006). An association between CAG repeat length in exon 1 of the AR
gene and POI has been proposed but remains controversial (Bretherick
et al., 2008; Chatterjee et al., 2009; Sugawa et al., 2009; Panda et al.,
2010). An example is a repeat of two missense mutations (p.T650A
and p.O658K) in Indian women with POI (Panda et al., 2010).

Forkhead box O4 (FOXO4) (Xq13.1). The FOXO4 gene encodes a
member of the O class of winged helix/forkhead transcription factor
family (FOXO). FOXO4 is expressed in granulosa cells in mice and
human, and is involved in the PI3K (phosphoinositide 3-kinase)/Akt
(v-akt murine thymoma viral oncogene homolog 1)/Cdkn1b (cyclin-
dependent kinase inhibitor 1B) molecular pathway, which suggests a
functional role in ovarian physiology (Pisarska et al., 2009). Mutation
screening in 116 Tunisian patients identified only one intronic variant;
IVS2 + 41T.G; therefore, FOXO4 might not be a common cause of
POI in the Tunisian population (Fonseca et al., 2012a).

Premature ovarian failure, 1B (POF1B) (Xq21.2). Alluded to previously, this
‘gene’ is actually a region, but codified by OMIM. Its significance is its loca-
tion within the critical POI1 region. It was found to be interrupted by a
breakpoint in an X-autosome translocation in a patient with secondary
amenorrhea (POI). Subsequent mutation analysis in an Italian POI
cohort (N ¼ 223) only revealed 30 SNPs (Bione et al., 2004). In a Leba-
nese family having five sisters with POI, Lacombe et al. (2006) established
linkage to Xq21 using whole-genome SNP typing and homozygosity-
by-descent mapping. Sequencing identified a homozygous p.R329Q
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Table II Variants identified in candidate genes on the X chromosome for idiopathic and sporadic POI.

Gene Location Cases
(N)

Controls
(N)

Ethnicity MRa Sequence
variation

Amino acid
change

FC Mechanism Reference

BMP15 Xp11.2 50 214 Caucasian
North Africa
Asia

2 (4.0%) c.242A.G p.H81R Tiotiu et al. (2010)
c.595G.A p.G199R

100 100 Chinese 1 (1.0%) c.985C.T p.R329C Wang et al. (2010b)
300 216 Caucasian 12 (4.0%) c.13A.C p.S5R Yes Slightly affects transactivation of BRE-luc in

COV434 granulosa cells
Rossetti et al. (2009)

c.202C.T p.R68W Markedly reduces mature protein production and
affects transactivation of BRE-luc in COV434
granulosa cells

c.413G.A p.R138H
c.443T.C p.L148P
c.538G.A p.A180T No effect on protein production or

transactivation
20 93 Germany None Ledig et al. (2008)
92 76 Chinese None Zhang et al. (2007)

203 54 Caucasian
African Asian

3 (1.5%) c.443T.C p.L148P Laissue et al. (2006)
c.538G.A p.A180T
c.468G.A Sense
c.831T.C Sense
c.852C.T Sense

133 197 Indian 14 (10.5%) c.181C.T p.R61W Dixit et al. (2006c) and
Inagaki and Shimasaki
(2010)

c.182G.A p.R61E
c.226C.T p.R76C Yes Decreased mature protein production, weaker

Smad1/5/8 phosphorylation in COV434 cells
and decreased granulosa cell proliferation

c.227G.A p.R76H
c.538G.A p.A180T
c.538G.T/
c.539C.T

p.A180F/S+V

c.588T.A p.N196K
c.617G.A p.R206H Yes Decreased mature protein production, weaker

Smad1/5/8 phosphorylation in COV434 cells
and decreased granulosa cell proliferation

c.631C.T p.E211X
c.661T.C p.W221R
c.727A.G p.L243G
c.381A.G Sense
c.*40dupG 3′UTR

166 181 Caucasian 7 (4.2%) c.202C.T p.R68W Di Pasquale et al. (2004,
2006)c.538G.A p.A180T

c.704A.G p.Y235C Yes Diminished GC proliferation with a dominant
negative effect

38 51 New Zealand None Chand et al. (2006)
15 3 Japanese None Takebayashi et al.

(2000)
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mutation, which impaired the capacity to bind nonmuscle actin filaments,
and might lead to exaggerated germ-cell apoptosis and POI.

Dachshund family transcription factor 2 (DACH2) (Xq21.3). DACH2, also
named dachshund family transcription factor 2, is located on Xq21.3. It
was first identified by fine mapping of the disrupted region in an X;auto-
some translocation in POI patients (Prueitt et al., 2002). Subsequent mu-
tation screening revealed two novel missense mutations—p.R37L and
p.F316S—in an Italian cohort of POI patients (Bione et al., 2004).
However, no subsequent evidence of involvement of DACH2 in mamma-
lian gonads or additional mutations in other ethnic population has been
reported.

Fragile X mental retardation 1 (FMR1) (Xq27.3). One of the commonest
causes of POI is a premutation of FMR1, which when fully perturbed
(.200 CGG repeats) causes fragile X syndrome but paradoxically not
POI. A prototype of pleiotropic single gene disorders in which POI is
one component, FMR1 is discussed in the ‘Pleiotropic Single Gene Dis-
orders Having POI’ section, along with other pleiotropic genes.

Genes on autosomes
In this section we will review autosomal genes for which data appear to
warrant strong consideration as a candidate gene for POI. Supplemen-
tary Table SII contains available details on studies generating this conclu-
sion.

Growth differentiation factor 9 (GDF9) (5q31.1). Expressed in oocytes,
GDF9 is an attractive candidate gene for POI because it is, like BMP15,
a member of the TGF gene family. Increased frequencies of certain
novel variants have been detected in European, Caucasian and Asian
patients (Dixit et al., 2005; Laissue et al., 2006; Kovanci et al., 2007;
Zhao et al., 2007), but not in Japanese and New Zealand populations
(Takebayashi et al., 2000; Chand et al., 2006). All variants were hetero-
zygous. Recently, high-resolution array comparative genomic hybridiza-
tion (CGH) (2.2 kb resolution) was applied in 26 POI Swedish cases,
finding one partial GDF9 gene duplication (475 bp) (Norling et al.,
2014). Unfortunately, parents were not available to exclude a heritable
copy number variant (CNV) less likely to carry significance. This pitfall
is discussed further in ‘Genome-Wide Studies in POI’ section.

Heterozygous changes could result in a dominant negative effect, quite
plausible given dimerization with fellow members of the TGF gene family
(e.g. BMP15). The proportion of POI due to GDF9 perturbations is,
however, unclear. If a hydrophobic amino acid replacing a hydrophilic
amino acid were causative, GDF9 perturbations could account for a sub-
stantial number (1–4%) of POI cases.

Folliculogenesis specific bHLH transcription factor (FIGLA) (2p13.3). FIGLA,
also named factor in the germline, alpha, is a germ-cell specific, basic
helix-loop-helix (bHLH) transcription factor, that plays a crucial role in
the formation of the primordial follicle and coordinates expression of
zona pellucida genes. Zhao et al. (2008) screened 100 Chinese women
with POI and identified three variants in four women: missense mutation
p.A4E in two women; deletion p.G6fsX66 in one woman, resulting in a
frameshift that leads to haploinsufficiency; and deletion p.140delN in a
fourth woman. Functional analyses by the yeast two-hybrid assay
demonstrated that the p.140delN mutation disrupted FIGLA binding
to the TCF3 helix-loop-helix (HLH) domain. These findings show that
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a subset of Chinesewomen with sporadic POI harbor mutations in FIGLA.
Recently, another novel intronic variant was found in 219 Indian POI
cases (Tosh et al., 2015). Further functional validation is warranted.

Newborn ovary homeobox gene (NOBOX) (7q35). NOBOX is an oocyte-
specific homeobox gene that plays a critical role in early folliculogenesis.
The causative role was discovered by Rajkovic et al. (2004). In mice
Nobox deficiency disrupted early folliculogenesis and oocyte-specific
gene expression. Lack of Nobox accelerated post-natal oocyte loss and
abolished the transition from primordial to growing follicles in mice. In
female mice lacking Nobox, follicles are replaced by fibrous tissue in a
manner similar to non-syndromic ovarian failure in women. Genes pref-
erentially expressed in oocytes, including Pou5f1 (POU class 5 homeo-
box 1) and Gdf9, are also down-regulated in Nobox2/2 mice.
Lechowska et al. (2011) showed that POI in Nobox deficient mice
results from faulty signaling between somatic and germ line components
during embryonic development. In addition, the extremely unusual
presence of abnormal adherens junctions between unseparated
oocytes within syncytial follicles indicates that faulty communication
between somatic and germ cells is involved in, or leads to, abnormalities
in the cell adhesion program. Qin et al. (2007a) were the first to dem-
onstrate that a perturbation (p.R355H) in NOBOX was responsible for
human POI. The mutation disrupted NOBOX homeodomain binding
to NOBOX DNA-binding element (NBE) and had a dominant negative
effect. Our functional studies demonstrated that haploinsufficiency was
involved in the genetic mechanism in humans for POI. Mutations in the
homeobox domain of NOBOX proved not to be a common explanation
for POI in Chinese women (0/200) (Qin et al., 2009) but Bouilly et al.
(2011, 2015) subsequently reported that novel NOBOX loss-of-
function mutations accounted for 6.2 and 5.6%, respectively, of cases
in two large ‘primary ovarian insufficiency’ cohorts of Caucasian and
African ancestry.

Nuclear receptor subfamily 5, group A, member 1 (NR5A1); Steroidogenic
factor-1(SF-1) (9q33). NR5A1 encodes an orphan nuclear receptor that
regulates transcription of an arrayof genes involved in reproduction, ster-
oidogenesis and male sexual differentiation. These include anti-Mullerian
hormone (AMH), Nuclear receptor subfamily 0, group B, member 1
(DAX1), Cytochrome P450, family 11, subfamily A, polypeptide 1
(CYP11A), steroidogenic acute regulatory protein (StAR), as well as
genes encoding steroid hydroxylases, gonadotrophins, and aromatase.
Inactivation of Nr5a1 specifically in mouse granulosa cells causes infertil-
ity associated with hypoplastic ovaries.

Philibert et al. (2010) identified NR5A1 mutations as a frequent cause
of ‘primary amenorrhea’ in 46,XY phenotypic female adolescents with a
low testosterone concentration. Lourenco et al. (2009) sequenced
NR5A1 in four families (each having at least one family member with a
46,XY disorder of sex development and another with 46,XX POI) and
25 subjects with sporadic POI, and they identified 19 different mutations
in the NR5A1 gene. Functional studies indicated that these mutations sub-
stantially impaired the transactivational activity of NR5A1. Subsequently
additional mutations were identified in different ethnicities with low fre-
quencies (Supplementary Table SII). Janse et al. (2012) sequenced the
coding regions of NR5A1 in a large, well-phenotyped cohort of 356
Dutch women with POI, finding 9 different mutations in 10 patients.
Functional prediction showed low to intermediate pathogenicity for all
non-conserved mutations. However, the novel p.Y5D mutation,

detected in a non-domain region, was presumed to result in haploinsuf-
ficiency in Chinese patients with POI (Jiao et al., 2013).

FSH receptor (FSHR) (2p21-p16). FSH/FSHR signaling plays a key role
in normal gonadal function by regulating follicular growth, estrogen
production and oocyte maturation. Mutation in FSHR was the first
autosomal molecular explanation for POI, elucidated prior to the con-
temporary era. Aittomäki (1994) and Aittomäki et al. (1995, 1996)
ascertained 75 primary or secondary amenorrhea cases, and found
homozygous mutations (c.566C.T, p.A189V), in the extracellular
portion of this G-protein receptor, in women of six Finnish families
with hypergonadotrophic ovarian dysgenesis. This mutation resulted
in a dramatic reduction of binding capacity and signal transduction,
but with apparently normal ligand-binding affinity (Aittomäki et al.,
1995). The frequency of the c.566C.T mutation is 0.96% in a
Finnish population (Jiang et al., 1998). However, subsequent screening
in cohorts of different ethnicities seldom found mutations (da Fonte
Kohek et al., 1998; Jiang et al., 1998; Conway et al., 1999; Takakura
et al., 2001; Tong et al., 2001; Sundblad et al., 2004; Chen et al.,
2006; Ledig et al., 2008; Vilodre et al., 2008; Prakash et al., 2009;
Woad et al., 2013). Therefore, FSHR mutations are not uncommon
in XX gonadal dysgenesis in Finland, but apparently rare elsewhere
(Supplementary Table SII).

TGF, beta receptor III (TGFBR3) (1p33-p32). Human TGFBR3 is located at
1p33-p32 and encodes the TGF-beta type III receptor. The encoded re-
ceptor is a membrane proteoglycan that often functions as a co-receptor
with other TGF-beta receptor superfamily members. Two missense var-
iants, p.E459G and p.P825L, were identified in Chinesewomen with idio-
pathic POI, both predicted to have functional and structural impacts on
the TGFBR3 protein (Qin et al., 2011). Another missense mutation—
p.P775S—was found in an Indian POI case (Dixit et al., 2006b).

G protein-coupled receptor 3 (GPR3) (1p36.1-p35). The GPR3 gene,
located in 1p36.1-p35 and having 2 exons, is a member of the G protein-
coupled receptor family. Predominantly expressed in oocytes, GPR3
maintains meiotic arrest in antral follicles until the LH surge through path-
ways involved in cAMP and cGMP regulation. In Gpr32/2 mice, the
majority of oocytes in antral follicles had unscheduled premature re-
sumption of meiosis (Mehlmann et al., 2004). A synonymous variant
(c.135G.A, p.V45V) was found in one Chinese patient (Zhou et al.,
2010), and another study also failed to find any potential disease-
associated changes in 82 North American Caucasian women with POI
(Kovanci et al., 2008).

Wingless-type MMTV integration site family, member 4 (WNT4)
(1p36.23-p35.1). WNT4 encodes a secreted extracellular signaling
protein that is expressed in human ovaries early in fetal development
(Jaaskelainen et al., 2010), and plays a critical role in female sex determin-
ation and differentiation. In the ovaries of Wnt4 mutant mice, the rate
of apoptosis was similar to that of wild type mice at birth; however,
apoptotic cells progressively increased during follicular development
(Jaaskelainen et al., 2010). By sequencing the coding region of WNT4
in 55 Tunisian women with POI, a synonymous variant in exon 2
(c.99G.A, p.S33S) was identified (Lakhal et al., 2012). Mutational ana-
lysis was also performed in 145 Chinese women with POI with no causa-
tive variants found (Chen et al., 2011b).

Genetics of primary ovarian insufficiency 793

http://humupd.oxfordjournals.org/lookup/suppl/doi:10.1093/humupd/dmv036/-/DC1
http://humupd.oxfordjournals.org/lookup/suppl/doi:10.1093/humupd/dmv036/-/DC1


Inhibins: inhibin, alpha (INHA) (2q35); inhibin, beta A (INHBA) (7p15-p13);
inhibin, beta B (INHBB) (2cen-q13). Inhibin is a dimeric glycoprotein
hormone. Belonging, like BMP-15 and GDF9, to the superfamily of
TGF-b, inhibin is a negative regulator of FSH. Inhibin encompasses
inhibin, alpha (INHA) (2q35), inhibin, beta A (INHBA) (7p15-p13), and
inhibin, beta B (INHBB) (2cen-q13).

The missense mutation c.769G.A (p.A257T) in the INHA gene
was more frequently found in patients with POI in New Zealand (7%)
(Shelling et al., 2000), India (11.2%) (Dixit et al., 2004) and Italy (4.5%)
(Marozzi et al., 2002). Increased susceptibility to POI was associated
with impaired inhibin B bioactivity (Chand et al., 2007). The additional
novel missense mutations c.275G.A (p.S92N), c.525C.G
(p.H175Q) and c.545C.A (p.A182D) were exclusively identified in
Indian POI patients (1.25% for each mutation) (Dixit et al., 2006a). It is
unclear whether polymorphisms in the INHA promoter result in
reduced inhibin expression, but the promoter variant c.-16C.T was sig-
nificantly under-represented in patients with POI in NewZealand (Harris
et al., 2005). The INHBA and INHBB gene encode inhibin bA and inhibin
bB subunits. Causative mutations were not found in the two genes,
however, except possibly for one synonymous mutation c.1032C.T
in the INHBA gene (Shelling et al., 2000; Chand et al., 2010).

POU class 5 homeobox 1 (POU5F1) (6p21.31). The POU5F1 transcription
factor gene, located on 6p21.31, is significantly down-regulated in Nobox
knockout mice. Thus, POU5F1 becomes a potential candidate gene for
POI, a downstream target of NOBOX. Wang et al. (2011) sequenced
175 Chinese POI cases and found one non-synonymous variant
(p.P13T), a heterozygous hydrophobic to hydrophilic substitution.

MutS homolog 4 (MSH4) (1p31) and MSH5 (6p21.3). MSH4 and MSH5
belong to the DNA mismatch repair gene family, playing pivotal roles
in meiotic recombination. Mammalian MSH4 and MSH5 proteins form
a heterodimeric complex and exert essential functions for normal
chromosome synapsis during zygotene. Disruption of Msh4 or Msh5 in
female mice resulted in sterility, degenerated ovaries and progressive
loss of oocytes due to meiotic failure (de Vries et al., 1999; Kneitz
et al., 2000). In a case–control study in a Caucasian population, in
which both genes were sequenced, a heterozygous mutation p.P29S in
MSH5 was found in 2 of 41 cases. The mutation was located in the
Hmsh4-binding domain of MSH5 which could disrupt the integrity of
the protein interaction between MSH5 and MSH4 (Mandon-Pepin
et al., 2008).

Forkhead box O3 (FOXO3) (6q21). Forkhead transcription factor FOXO3,
located at 6q21, encodes a master regulator and potent suppressor of
primordial follicle activation. Loss of Foxo3 function in mice leads to
POI due to global follicle activation (Liu et al., 2007). The frequency of
variants in POI patients differs in different ethnic groups (Supplementary
Table SII), but in several populations the frequencies of FOXO3 variants
are not insignificant (6% in French and 13.3% in Chinese). However, the
pathological role of these variants needs to be determined by functional
studies.

Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal
domain, 2 (CITED2) (6q23.3). CITED2 is essential for early embryonic de-
velopment. This is evidenced by delayed differentiation of gonads in
Cited22/2 mice (Combes et al., 2010). Fonseca and colleagues reported

a novel missense mutation p.P202T in one of 116 Tunisian POI cases
(Fonseca et al., 2012b). Further studies in other populations are
warranted.

Spermatogenesis and oogenesis specific basic helix-loop-helix transcription
factor 1 (SOHLH1) (9q34.3) and SOHLH2 (13q13.3). As germ cell
specific master-master transcription factors, SOHLH1 and SOHLH2
orchestrate different oocyte-specific genes essential for early folliculo-
genesis. Sohlh1/2-deficient mice exhibit atrophied ovaries devoid of
follicles due to defective primordial-to-primary follicle transition
(Pangas et al., 2006; Choi et al., 2008). Novel distinct heterozygous var-
iants were identified in both SOHLH1 and SOHLH2 in large cohorts of
women with POI of Han Chinese and Serbian origin (Qin et al., 2014a;
Zhao et al., 2015). Plausible pathogenesis might involve disturbing
the expression, transactivation or homo-/hetero-dimerization of
SOHLH1 or SOHLH2 proteins. No subsequent reports exist, to our
knowledge.

Phosphatase and tensin homolog (PTEN) (10q23.3). Localized on chromo-
some 10q23.3, PTEN plays a causative role in early activation of primor-
dial follicles by negatively regulating the PI3K pathway (Reddy et al.,
2008). Primordial follicles become depleted in Pten null mice in early
adulthood, mimicking the phenotype of POI in humans. However, no
causative mutation was detected in coding regions of PTEN gene in
Japanese and Chinese women with POI (Shimizu et al., 2009; Zhao
et al., 2011).

Nanos homolog 1, 2, 3 (Drosophila) (NANOS1, 10q26.11; NANOS2,
19q13.32; NANOS3, 19p13.13). The NANOS gene family is known to
be required for primordial germ cell (PGC) development and mainten-
ance. Three homologs (NANOS1, NANOS2 and NANOS3) exist. Disrup-
tion of Nanos1 in mice did not affect germ cell development, but
knockout of Nanos2 or Nanos3 resulted in infertility with decreased
gonad size due to loss of PGC. Nanos2 deficiency only resulted in sperm-
atogonia loss whereas Nanos3 impaired PGC maintenance in both males
and females (Tsuda et al., 2003).

Mutations in NANOS3 were investigated in 80 Chinese and 88 Cauca-
sian women with POI (Qin et al., 2007b). No causative mutations were
found in coding exons. However, one potentially relevant heterozygous
mutation (c.457C.T; p.R153W) was identified in another study involv-
ing 100 Chinese POI patients (Wu et al., 2013). Functional studies
showed decreased stability of NANOS3, potentially resulting in a hypo-
morph. And a homozygous mutation (c.358G.A, p.E120K) was found
in two sisters with primary amenorrhea from 85 Brazilian women with
POI. In vitro and in silico functional studies revealed that this mutation
impaired the ability of NANOS3 to prevent apoptosis, suggesting a
mechanism for POI involving increased PGC apoptosis during embryonic
cell migration (Santos et al., 2014). Taken together, these results suggest
a role for NANOS3 mutation in some cases of POI.

Cyclin-dependent kinase inhibitor 1B (CDKN1B) (12p13.1-p12). CDKN1B,
also known as P27 and KIP1, encodes a cyclin-dependent kinase inhibitor
that regulates proliferation and differentiation in many tissues. It sup-
presses ovarian follicle endowment and activation, and promotes follicle
atresia. Premature follicle depletion occurred due to accelerated activa-
tion in Cdkn1b knockout mice (Rajareddy et al., 2007). Sequence analysis
of CDKN1B found one novel heterozygous mutation c.356T.C
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(p.I119T) in one of 87 Tunisia POI patients (Ojeda et al., 2011).
However, no variants were identified in Chinese cohorts (Wang et al.,
2010a; Zhao et al., 2013), suggesting that mutations in CDKN1B are
not common in POI, at least in this population.

Anti-Mullerian hormone receptor, type II (AMHR2) (12q13). AMHR2
encodes a receptor in the AMH pathway which plays a crucial role in
the development and maintenance of reproductive organs in
mammals. Polymorphism c.-482 A.G (rs2002555) in AMHR2 was
revealed to be associated with age at menopause in interaction with
parity in Dutch women, but no association was found with POI in
Korean and Chinese women (Yoon et al., 2013; Qin et al., 2014b). Nega-
tive results in AMHR2 were also reported in 16 Japanese women with
POI (Wang et al., 2002). However, Qin et al. (2014b) identified two
novel missense mutations (p.I209N and p.L354F) in a cohort of
Chinese POI women.

KIT ligand (KITLG) (12q22). The human KITLG gene, located at 12q22,
encodes the ligand of a tyrosine-kinase receptor. KIT/KITLG plays a crit-
ical role during oogenesis and folliculogenesis. Mice with a deficiency in
Kitlg manifested impaired PGCs (Matsui et al., 1991). However, no per-
turbations were reported in the coding region of KITLG from 40 Cauca-
sian POI patients (Hui et al., 2006).

Forkhead box O1 (FOXO1) (13q14.1). FOXO1, another member of the
forkhead family of transcription factors, is important in granulosa cell
function and follicle maturation. Watkins et al. (2006) identified one
5′UTR mutation (c.-30C.T) and one missense mutation (p.P84L) in
60 New Zealand and Slovenia POI patients.

Spalt-like transcription factor4 (SALL4) (20q13.2). SALL4, a zinc finger tran-
scription factor, is expressed in murine oocytes. SALL4 binds to POU5F1
and could regulate its expression. Both Sall4 and Pou5f1 are drastically
down-regulated in Nobox2/2 newborn ovaries (Zhang et al., 2006;
Choi et al., 2007). Wang et al. (2009) screened the coding regions of
SALL4 in 100 Han Chinese females with non-syndromic POI and identi-
fied two heterozygous missense mutations (p.V181M and p.T817A) in
the conserved region. These may or may not be POI-associated gene
variants. Further studies are needed to determine the functional effect
of these variants.

Meiotic protein covalently bound to DSB (SPO11) (20q13.31). SPO11 is
involved in meiosis, forming the double-strand breaks (DSBs) that initiate
meiotic recombination. Spo112/2 mice are infertile with premature de-
pletion of oocyte because of defective meiosis. However, no novel var-
iants were found in 41 women with non-syndromic POI (Mandon-Pepin
et al., 2008). It is not clear whether an association between SPO11 mu-
tation and sporadic POI exists in human.

DNA meiotic recombinase 1 (DMC1) (22q13.1). Genes perturbing meiosis
are logical candidates for non-syndromic POI. DMC1 encodes a member
of the superfamily of recombinases, which are important for repairing
double- strand DNA breaks during mitosis and meiosis. Among 41
French women with POI, Mandon-Pepin et al. (2008) found one POI
case with homozygous mutation p.M200V. However, a subsequent
screening revealed no mutation but two known SNPs in 192 Chinese
women with POI (Wang et al., 2012).

Pleiotropic single gene disorders in POI
Distinct from non-syndromic POI, pleiotropic Mendelian disorders may
manifest POI as part of their phenotypic spectrum. Indeed, the most
common single genetic explanation for POI is represented by such a dis-
order—premutation for fragile X syndrome (Table III).

Fragile X syndrome: familial mental retardation 1 (FMR1) (Xq27.3)
Perturbations of FMR1 are responsible for fragile X syndrome. Clinical
features include mental retardation, characteristic facial features with
large ears and prominent jaw, connective tissue findings ( joint laxity),
large testes after puberty, and behavioral abnormalities. Fragile X syn-
drome occurs in males when CGG repeats number above 200. In
females �70% of women with .200 CGG repeats show intellectual dis-
ability (de Vries et al., 1996). The incidence of fragile X syndrome in males
is approximately 1 in 4000, and in females 1 in 8000 (ACOG committee
opinion, 2006a)

The normal numberof CGG repeats in FMR1 is 32. Thereafter, there is
a stage (premutation) in which 54–200 CGG repeats exist. Pathogenic
effects including mental retardation and ataxia may exist, as well as
POI. About 15–20% of women with a FMR1 premutation develop
POI (Wittenberger et al., 2007). Conversely, 5% of sporadic cases and
10–15% of familial cases in the Caucasian population are explained by
FMR1 premutations. For reasons that are not clear, the number of
CGG repeats significantly correlates with risk of POI only within selected
ranges. There is only a slightly increased risk of expansion associated with
40–79 repeats; but higher risk with 80–99 repeats, yet no further
increased risk occurs after .100 repeats, and as noted POI is not
observed with the full mutation (.200 CGG) (Allingham-Hawkins
et al., 1999). One possible explanation is that certain genes are sup-
pressed in the 54–100 premutation range and link to POI, whereas
other genes become suppressed only with higher numbers of CGG
repeats. Perhaps, then, phenotypes in the two groups differ because
some ovarian genes are inhibitory and others are the converse. Thus,
ovarian function may be initially suppressed but later return to normal
function.

Given the comparatively higher frequency of premutation of FMR1 in
POI than the general population (Supplemental Table SIII), FMR1 testing
has become part of the work-up for women with POI. It is formally
recommended in Europe (Foresta et al., 2002; European Society of
Human Genetics; European Societyof Human Reproduction and Embry-
ology, 2006b). In other populations the prevalence is lower. Guo et al.
(2014) reported thatonly 2 premutation carriers were found in 379 spor-
adic Chinese POI cases (0.49%); none were found in 402 controls. The
frequency in Chinese women is thus considerably lower than in Cauca-
sian women (3.3–6.7%). Frequencies are 1.56% in Japanese (Ishizuka
et al., 2011) and 4.8% in Slovenian women (Gersak et al., 2003).

Blepharophimosis-ptosis-epicanthus syndrome (BPES): forkhead box
L2 (FOXL2) (3q23)
Blepharophimosis-ptosis-epicanthus syndrome (BPES) is a pleiotropic
autosomal dominant syndrome in which FOXL2 is perturbed and prema-
ture ovarian failure occurs (Crisponi et al., 2001). That FOXL2 plays a key
if not the pivotal role in ovarian development initially came from study of
BPES kindreds. More than one hundred unique FOXL2 mutations have
now been described in BPES in different populations (Beysen et al.,
2004). By contrast, constitutional mutations are uncommon but
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Table III Candidate genes responsible for Mendelian disorders that manifest POI.

Gene Location Mendelian syndrome Somatic features Reference

FMR1 Xq27.3 Fragile X syndrome Attention deficits, hyperactivity, social deficits, anxiety disorder, deficits in cognitive
flexibility.

Reiss and Hall (2007) and Spath et al. (2010)

FOXL2 3q23 Blepharophimosis-ptosis-epicanthus BPE type
I syndrome, BPES I

BPES type I is a complex eyelid malformation associated with POI. The major features of
the eyelid malformation involve (i) narrowed horizontal aperture of the eyelids
(blepharophimosis), (ii) drooping of the upper eyelid (ptosis), (iii) the presence of a fold of
skin arising from the lower eyelid that runs inward and upward (epicanthus inversus), and
(iv) lateral displacement of the inner canthi (telecanthus).

Zlotogora et al. (1983) and Oley and
Baraitser (1988)

GALT 9p13 Galactosemia Cataracts, speech defects, poor growth, poor intellectual function, neurologic deficits
(predominantly extrapyramidal findings with ataxia).

Schadewaldt et al. (2004)

AIRE 21q22.3 Autoimmune
polyendocrinopathy-candidiasis-ectodermal
dystrophy syndrome, APECED

Candidiasis, Addison’s disease, hypoparathyroidism, type 1 diabetes, alopecia, vitiligo,
ectodermal dystrophy, celiac disease and other intestinal dysfunctions, chronic atrophic
gastritis, chronic active hepatitis, autoimmune thyroid disorders, pernicious anemia.

Fierabracci et al. (2012)

EIF2B EIF2B2
-14q24.3;
EIF2B4-
2p23.3; EIF2B5-
3q27.1

Central nervous system leukodystrophy and
ovarian failure, ovarioleukodystrophy

Neurological disorder characterized by involvement of the white matter of the central
nervous system. When Leukodystrophies associated with premature ovarian failure
referred to as ovarioleukodystrophy.

Mathis et al. (2008)

POLG 15q25 Progressive external ophthalmoplegia, PEO Manifestations range from involvement limited to the eyelids and extraocular muscles. Graziewicz et al. (2007)

NOG 17q22 Proximal symphalangism, SYM1 Ankylosis of the proximalinterphalangeal joints. Kosaki et al. (2004)

PMM2 16p13 PMM2-CDG CDG-1 (a previously known as
congenital disorder of glycosylation type 1a)

Cerebellar dysfunction (ataxia, dysarthria, dysmetria), non-progressive cognitive
impairment, stroke-like episodes, peripheral neuropathy with or without muscle wasting,
absent puberty in females, small testes in males, retinitis pigmentosa, progressive scoliosis
with truncal shortening, joint contractures, and premature aging

Sparks and Krasnewich (2005)

HSD17B4
HARS2
CLPP
LARS2
C10orf2

5q21
5q31.3
19p13.3
3p21.3
10q24

Perrault syndrome, PS Sensorineural deafness in both males and females, and neurological manifestations in some
patients.

Jenkinson et al. (2013), Morino et al. (2014),
Pierce et al. (2011), Pierce et al. (2013) and
Pierce et al. (2010)

BLM 15q26.1 Bloom syndrome Chromosomal breakage leading to early onset of aging, short stature and elevated rates of
most cancers.

Ellis and German (1996)

ATM 11q22-q23 Ataxia telangiectasia, A-T Progressive cerebellar degeneration, telangiectasias, immunodeficiency, recurrent
infections, insulin-resistant diabetes, premature aging, radiosensitivity, and high risk for
epithelial cancers in surviving adults.

Gatti et al. (1991) and Su and Swift (2000)

WRN 8p12 Werner syndrome Premature aging of the skin, vasculature, and bone and elevated rates of certain cancers,
particularly sarcomas.

Epstein et al. (1966)

RECQL4 8q24.3 Rothmund–Thomson syndrome, RTS Cutaneous rash, sparse hair, small stature, skeletal and dental abnormalities, cataracts,
premature aging, and an increased risk for cancer, especially malignancies originating from
bone and skin tissue.

Wang et al. (2001)

FMR1: Fragile X mental retardation 1; FOXL2: forkhead box L2; GALT: galactose 1-phosphate uridyl transferase; AIRE: autoimmune regulator; EIF2B: eukaryotic translation initiation factor; POLG: polymerase (DNA directed), gamma; NOG:
noggin; PMM2: Phosphomannomutase 2; HSD17B4: Hydroxysteroid (17-beta) dehydrogenase 4; HARS2: Histidyl-tRNA synthetase 2, mitochondrial; CLPP: caseinolytic mitochondrial matrix peptidase proteolytic subunit; LARS2: leucyl-tRNA
synthetase 2, mitochondrial; C10orf2: Chromosome 10 open reading frame 2; BLM: Bloom syndrome, RecQ helicase-like; ATM: ATM serine/threonine kinase; WRN: Werner syndrome, RecQ helicase-like; RECQL4: RecQ protein-like 4.
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reported in non-syndromic POI. Perhaps 2–3% of isolated POI cases
have a FOXL2 mutation (De Baere et al., 2002; Harris et al., 2002) (Sup-
plementary Table SII).

Galactosemia: galactose 1-phosphate uridyl transferase (GALT)
(9p13)
Galactosemia is caused by deficiency of galactose 1-phosphate uridyl
transferase (GALT). Ovarian failure is a common long-term complica-
tion in girls and women with galactosemia, first described by
Kaufman and coworkers (Kaufman et al., 1979, 1981), who observed
POI in 12 of 18 (67%) galactosemic women. Later Waggoner et al.
(1990) reported that 17% (8/47) galactosemic women presented
with ovarian failure. However, with regard to duarte galactosemia, a
mild variant of GALT deficiency, no apparent ovarian dysfunction was
reported (Badik et al., 2011). Pathogenesis involves excess galactose
toxicity that impairs folliculogenesis, induces resistance to gonadotro-
phins and accelerates follicular atresia (Fridovich-Keil et al., 2011;
Banerjee et al., 2012).

Carbohydrate-deficient glycoprotein syndrome type I (CDG-Ia):
phosphomannomutase 2 (PMM2) (16p13)
In type 1 carbohydrate-deficient glycoprotein deficiency, also named
phosphomannomutase deficiency, mannose-6-phosphate cannot be
converted to mannose-1-phosphate. This lipid linked oligosaccharide
is necessary for formation of secretory glycoproteins. Neurologic abnor-
malities and ovarian failure occur (de Zegher and Jaeken, 1995; Kristians-
son et al., 1995). Located on 16p13, PMM2 is typically caused by a
missense mutation (Bjursell et al., 1997).

Proximal symphalangism (SYM1) and multiple synostoses syndrome
(SYNS1): noggin (NOG) (17q22)
NOG encodes a secreted polypeptide that binds to and inactivates
members of the TGF-b superfamily (i.e. BMP2, 4, 7, 14 and GDF5).
NOG is expressed in various tissues including female reproductive
organs. NOG mutations are known to explain proximal symphalangism
(SYM1) and multiple synostoses syndrome (SYNS1) (Gong et al.,
1999). In addition, Kosaki et al. (2004) described a heterozygous muta-
tion (p.E48K) in NOG in a female presenting with SYM1 and also having
POI. However, Laissue et al. (2007) concluded the relationship between
NOG mutations and non-syndromic POI was not clear, having screened
the coding sequence of NOG in 100 non-syndromic sporadic POI patients
and identifying only one heterozygous mutation (p.G92E) (Supplemen-
tary Table SII). Actually this experience mirrors the situation involving
other pleiotropic genes causing POI.

Autoimmune regulation/autoimmune
polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED):
autoimmune regulator (AIRE) (21q22.3)
The AIRE gene can if perturbed lead to multi-system abnormalities: alo-
pecia, vitiligo, keratopathy, malabsorption, hepatitis and mucocutaneous
candidiasis. Ovarian hypoplasia often occurs, usually in the third decade
(Wang et al., 1998). Many different AIRE perturbations have been found
in this autosomal dominant disorder, not only nonsense mutations but
also frame shifts. No particular mutation leads to ovarian failure as dis-
tinct from other autoimmune phenomena. AIRE mutations have not
yet been sought in women with isolated POI (non-syndromic).

Ovarian leukodystrophy: eukaryotic translation initiation factor
(EIF2B): subunit 2 beta, 39 kDa (EIF2B2) (14q24.3); subunit 4 delta,
67 kDa (EIF2B4) (2p23.3); subunit 5 epsilon, 82 kDa (EIF2B5)
(3q27.1)
‘Vanishing white matter’ leads to variable but progressive neurological
degeneration. Ovarian failure may coexist (Schiffmann et al., 1997;
Boltshauser et al., 2002). That the causative gene (EIF2B) allows
denatured stress-related proteins to accumulate makes plausible the
relevance to oogenesis, given ongoing oocyte degeneration. Fogli et al.
(2003) found variants in EIF2B2, EIF2B4 and EIF2B5 in seven POI cases
with neurologic abnormalities, but in 93 non-syndromic POI none
were found positive (Fogli et al., 2004). Therefore, EIF2B genes have
not yet been shown to be responsible for non-syndromic POI.

Perrault syndrome: hydroxysteroid (17-beta) dehydrogenase 4,
HSD17B4, 5q21; histidyl-tRNA synthetase 2, mitochondrial,
HARS2, 5q31.3; leucyl-tRNA synthetase 2, mitochondrial, LARS2,
3p21.3; caseinolytic mitochondrial matrix peptidase proteolytic
subunit, CLPP, 19p13.3; chromosome 10 open reading frame 2,
C10orf2, 10q24
Perrault syndrome is a well-recognized pleiotropic autosomal recessive
disorder characterized by ovarian failure in females, progressive sensori-
neural deafness in both males and females, and in some patients, neuro-
logical manifestations. Only recently have the underlying genes been
identified and proved to be heterogeneous. In a family of mixed European
ancestry with two sisters presenting with Perrault syndrome, compound
heterozygous variants - c.650A.G (p.Y217C) and c.1704T.A
(p.Y568X), in HSD17B4 were found. Then with similar genomic strat-
egies with linkage analysis or whole-exome sequencing (WES), muta-
tions in HARS2, LARS2, CLPP and C10orf2 have been found in the
context of Perrault syndrome (Pierce et al., 2011, 2013; Jenkinson
et al., 2013; Morino et al., 2014). All these genes are essential for
normal mitochondrial function. This group of causative genes is detailed
in ‘Mitochondrial Genes Causing POI’ Section.

Other pleiotropic disorders
Table III lists other nuclear genes causing syndromes in which POI is a
feature. These include POLG associated with progressive external oph-
thalmoplegia (PEO, detailed in ‘Mitochondrial Genes Causing POI’
section), BLM with Bloom syndrome, AIRE with Ataxia telangiectasia,
WRN with Werner syndrome and RECQL4 with Rothmund–Thomson
syndrome. A common feature of several is chromosomal breakage,
best exemplified by Bloom syndrome (Simpson and Elias, 2003;
Simpson, 2014).

In aggregate these and other conditions in Table III explain no more
than 1% of cases of POI. From a scientific perspective however, elucidat-
ing the role these genes play in reproduction offers novel clues to integrity
needed for normal ovarian differentiation. Clinicians caring for females
with these syndromes should thoroughly investigate and evaluate any
reported menstrual irregularities.

Mitochondrial genes causing POI
Perturbations of mitochondrial genes or nuclear genes affecting mitochon-
dria are good candidates for POI because the mature oocyte has the great-
est number of mitochondria of any human cell. Mature oocytes readily
accumulate mitochondria during oogenesis, mitochondrial biogenesis
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playing an essential role in oocyte maturation, fertilization and embryo de-
velopment. Dysregulation of mitochondrial dynamics contributes to
excess oxidative stress and initiation of apoptosis, thus accelerating follicle
depletion. A marked quantitative decrease of mitochondrial DNA (mt
DNA) in oocytes and peripheral blood cells has been well documented
in women with ovarian insufficiency (May-Panloup et al., 2005; Bonomi
et al., 2012). Thus, any gene affecting mitochondria involving muscular
and neurological disturbance is a candidate, because these systems are
so dependent on mitochondrial integrity. Genes governing mitochondrial
functions may be located in the nucleus, like those discussed in ‘Single
Genes Causing Non-syndromic POI’ section, or in mitochondria itself
(mt DNA). To date, those of relevance to POI have been nuclear genes.

Progressive external ophthalmoplegia (PEO): polymerase (DNA
directed), gamma (POLG) (15q25)
mtDNA mutations usually affect muscular and neurological systems. In
progressive external ophthalmoplegia (PEO) clinical features are prox-
imal myopathy, sensory ataxia and parkinsonism. The causative mutation
lies in thegene encoding polymerase gamma (POLG), which is responsible
for mtDNA replication and repair. In three of seven families studied by
Luoma et al. (2004), POI cosegregated with PEO. A p.Y955C mutation
in POLG was found in two of these three families. p.Y955C (tyrosine to
cytosine) affects a highly conserved region, rending functional plausibility.
Compound heterozygosity (N468D/A1105T) was observed by Pagna-
menta et al. (2006) in another 3-generation family in which multiple family
members were affected with both PEO and POI. Mutation screening of
POLG in isolated POI, has, however, yielded few perturbations. A single
p.R953C mutation was found in 201 POI cases (0.5%) cumulatively
reported by Tong et al. (2010). No novel mutations were identified in
Italian and British women with POI (Pagnamenta et al., 2006; Bonomi
et al., 2012; Duncan et al., 2012) (Supplementary Table SII). Therefore,
POLG variation is not a common explanation for sporadic POI in the
absence of clinical suspicion for other mitochondrial-associated physical
signs.

Perrault syndrome: HARS2, 5q31.3; LARS2, 3p21.3; CLPP, 19p13.3;
C10orf2, 10q24
As reviewed in ‘Pleiotropic Single Gene Disorders Having POI’ Section,
ovarian failure is one of the characterized features in Perrault syndrome in
females. The genes listed encode mitochondrial tRNA synthetase, cham-
bered protease and primase-helicase and have been found to harbor
mutations responsible for POI in Perrault syndrome (Pierce et al.,
2011, 2013; Jenkinson et al., 2013; Morino et al., 2014). Through WES
in a consanguineous Palestinian family and a nonconsanguineous Sloven-
ian family with Perrault Syndrome, homozygous mutation c.1565C.A
(p.T522N) and compound heterozygous mutation c.1077delT and
c.1886C.T (p.T629M) in the LARS2 gene were identified, respectively
(Pierce et al., 2013). WES was also performed in a nonconsanguineous
family of mixed European ancestry, showing compound heterozygous
mutations c.598C.G (p.L200V) and c.1102G.T (p.V368L) in the
HARS2 gene (Pierce et al., 2011). The homozygous mutations
c.433A.C (p.T145P), c.440G.C (p.C147S) and c.270+4A.G in
the CLPP gene were observed in three consanguineous Pakistani families
with Perrault Syndrome (Jenkinson et al., 2013). In a Japanese family,
affected individuals carried compound heterozygous p.R391H and
p.N585S in the C10orf2 gene essential for replication of mtDNA; mean-
while compound heterozygous mutations p.W441G and p.V507I were

responsible for this disease in another family of European ancestry
(Morino et al., 2014).

In aggregate, the above supports a critical role for genes controlling
mitochondria in the maintenance of ovarian function and their roles in
non-syndromic POI warrant further investigation.

Multiple malformation syndromes
characterized by POI
In other syndromes, POI or primary ovarian failure (gonadal dysgenesis)
is accepted as one component but the causative gene has not been found.
Supplementary Table SIV lists these conditions. Of particular interest is
POI associated with cerebellar ataxia (Simpson, 2013).

Genome-wide studies in POI
Contemporary genetic strategies applied to locate susceptible loci or
genes causing POI have extended beyond suspected candidate gene inter-
rogations to genome-wide approaches. Approaches include linkage ana-
lysis in families with multiple affected members, CGH for CNV,
genome-wide association studies (GWAS), genome-wide sequencing of
exomes (WES) and, in the future, whole genome sequencing (WGS).

GWAS
In GWAS, also known as whole genome association study (WGAS), one
examines many common genetic variants in different individuals to see if
any variant is associated with a trait. In GWAS one searches agnostically
through the entire genome to identify variants (SNPs) more common in
cases than controls of similar ethnicity. No a priori expectations exist. Six
GWAS have been performed to identify variants associated with POI,
but not all adhered to accepted criteria. Sample sizes were often very
small and replicates not sought (Table IV). The first GWAS showed as-
sociation with the PTH-responsive B1 gene (PTHB1) in a small discovery
set of 24 women and 24 controls (Kang et al., 2008). Knauff et al. (2009)
identified an association of an intron SNP in ADAM metallopeptidase
with thrombospondin type 1 motif, 19 (ADAMTS19) with POI in a discov-
ery set of only 99 Dutch women and 181 controls; no replication set
existed. Laminin, gamma 1 (LAMC1) was then reported to be significantly
associated with POI in Korea in 122 cases versus242 controls (Pyun et al.,
2012).

Our group conducted the largest GWAS with an initial discovery set of
391 cases versus 895 controls; the independent replication set consisted
of 400 cases and 800 controls. The most significant association was at
8q22.3 (1.6 × 1026–3.86 × 1026). This falls short of the canonical
1028 expected to confer unequivocal significance. This region does
not contain a protein coding candidate gene (Qin et al., 2012b).
However, it is now appreciated that 90% of significant GWAS associa-
tions are in intragenic or intergenic regions, portions of the 98.5% of
the genome not coding for protein. These regions include a host of regu-
latory genes and networks (ENCODE). 8q22.3 may be an important yet
undefined long-distance regulatory region affecting ovarian differenti-
ation and oogenesis. Disruption might lead to ovarian failure, analogous
to disruption of the region upstream of Sex determining region Y-box 9
(SOX9) that causes XY sex reversal in mice and humans (Qin et al., 2003,
2004). Replication in independent cohorts needs to be performed to de-
termine potential causative roles.

GWAS have revealed multiple loci potentially associated with POI in
Chinese, Korean, and Dutch women. However, in each it was difficult
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to implicate specific novel genes, and in none did significance exceed
1026; positive findings were not always replicated. The most likely ex-
planation for these data is limitation based on small sample size. In no
study did sample number exceed 1000, thus lacking statistical power suf-
ficient to detect a modest association when evaluating hundreds of thou-
sands of SNPs. That POI is a rarer condition than polycystic ovary
syndrome or endometriosis makes it difficult to accrue the requisite
sample size possible in studying those disorders (Uno et al., 2010;
Chen et al., 2011a; Shi et al., 2012).

GWAS involving family linkage analysis
Table IV includes two genome-wide association linkage studies involving
single extended families. In a Dutch POI family subjected to a genome-
wide linkage scan 5q14.1-q15 was found to be a susceptibility region
(Oldenburg et al., 2008). Caburet et al. (2012) performed genome-wide
linkage and homozygosity analysis in a large consanguineous
Middle-Eastern POI-affected family showing autosomal inheritance.
Two regions—7p21.1-p15.3 and 7q21.3-q22.2—were identified as can-
didate regions by homozygosity mapping. However, sequencing the
three most plausible candidate genes in this region—DLX5, DLX6 and
DSS1—failed to reveal mutations.

GWAS involving age of menopause
Insights derived from shared genetic susceptibility between POI and
either age at natural menopause (AANM) or early menopause (EM) re-
present another potential path identifying novel entry points for unravel-
ing genetic mechanism involved in POI. Thus, we gathered 36 SNPs
shown from previous GWAS studies seeking SNPs associated with
AANM or EM, plus 3 additional SNPs in ESR1 and 2 additional SNPs in
PTHB1. Differential association was then sought in 371 POI and 800

controls, all of Chinese Han origin (Qin et al., 2012c). Three SNPs,
rs2278493 in hexokinase 3 (HK3), rs2234693 in estrogen receptor 1
(ESR1) and rs12611091 in BR serine/threonine kinase 1 (BRSK1),
showed nominally significant association with POI. Thus, a plausible re-
lationship could exist between POI and ESR1, BRSK1, HK3.

Cytogenomic studies (CNV)
There is increasing interest toward whole genome studies based on
CNVs. Using CGH, one can efficiently search for small duplications or
deletions potentially associated with a complex trait (such as POI).
The purpose of identifying CNVs is that they may contain or be linked
to a causative gene for the disorder studied. Seven array CGH studies
have identified CNVs associated with POI (Supplementary Table SV).

In 2009, Aboura et al. (2009) reported that 8 previously known CNVs
in 99 POI French patients located near 5 potential candidate genes—
Dynein, axonemal, heavy chain 5 (DNAH5), NLR family, apoptosis inhibi-
tory protein (NAIP), Dual specificity phosphatase 22 (DUSP22), Nuclear
protein, transcriptional regulator, 1 (NUPR1), and AKT1. However, this
and all other CGH studies have the major pitfall of usually lacking infor-
mation on parents. A large, de novo, CNV deletion is more likely to be
pathogenic than an inherited CNV. Another array CGH study involving
74 German patients with POI or ovarian dysgenesis identified 44
losses or gains at autosomes and X chromosome that might explain
POI (Ledig et al., 2010). McGuire et al. (2011) identified 17 novel micro-
duplications and 7 novel microdeletions among 89 POI patients, all but
one located at autosomes. Included were two novel microdeletions
causing haploinsufficiency for Synaptonemal complex central element
protein 1 (SYCE1) and Cytoplasmic polyadenylation element binding
protein 1 (CPEB1), genes known to cause ovarian failure in knockout
mouse models (Bolcun-Filas et al., 2009; Novoa et al., 2010). Recently,

.............................................................................................................................................................................................

Table IV Genome-wide association studies for POI.

Kang et al. (2008) Knauff et al.
(2009)

Qin et al.
(2012b)

Pyun et al. (2012) Oldenburg
et al. (2008)

Caburet et al. (2012)

Ethnicity Korean Caucasian
(Dutch)

Chinese Korean Dutch Middle-Eastern

Discovery set

No. of cases 24 99 391 24 10 5

No. of controls 24 181 895 24 5 4

Associations in
discovery set

PTHB1 at 7p14 showed
strongest association.
Ht1 GAAAG:
POI-susceptible
haplotype;
Ht2 TGTGC:
POI-resistant haplotype.

rs246246
mapped to
ADAMTS19
intron

8q22.3
(1026)

22 SNPs in LAMC1
associated with POI

Susceptible
locus:
5q14.1-q15

Susceptible loci:
7p21.1-15.3, 7q21.3-22.2

Replication set

No. of cases 101 60 400 98 – –

No. of controls 87 90 800 218 – –

Results of
replication set

PTHB1 associated with
POI; Ht1 confers
susceptibility to POI.

Association not
confirmed.

Frequencies of 9 SNPs
and 1 haplotype were
higher in POI than in
control.

– Sequencing three candidate
genes DLX5, DLX6 and DSS1
did not reveal causal
mutations

PTHB1: Bardet–Biedl syndrome 9 (BBS9); ADAMTS19: ADAM metallopeptidase with thrombospondin type 1 motif, 19; LAMC1: laminin, gamma 1; DLX5, 6: distal-less homeobox 5
and 6; DSS1: split hand/foot malformation (ectrodactyly) type 1.
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a high-resolution array CGH identified eleven unique CNVs in 11
patients with POI. Among these CNVs, a tandem duplication of
475 bp containing 3 NOBOX-binding elements and an E-box important
for GDF9 gene regulation in the promoter of GDF9 is likely causative of
POI (Norling et al., 2014).

Using a complete X chromosome tiling path array, Quilter et al. (2010)
found 15 novel discrete X chromosome intervals in 20/42 (48%) women
with POI in the UK. However, in patients from New Zealand, Dudding
et al. (2010) detected only two microduplications (Xp22.33 and
Xq13.3) in a low frequency of 4%. Knauff et al. (2011) found one CNV
in Xq21.3 to be associated with POI, specifically in a region where Pro-
tocadherin 11 X-linked (PCDH11X) and TGFB-induced factor homeo-
box 2-like, X-linked (TGIF2LX) are located. Interestingly, no deletions
were found in other regions, several considered on the basis of traditional
cytogenetic studies to be pivotal (Simpson and Rajkovic, 1999).

Differing array CGH platforms and definitions for pathogenicity prob-
ablyexplain some of the discrepant results among the above studies. Also
problematic is the limited sample size and lack of parental studies to
exclude a CNV ostensibly associated with POI merely having been trans-
mitted from a normal mother.

WES
Low prevalence and impaired fecundity resulting in limited numbers of
POI pedigrees without associated somatic anomalies (non-syndromic)
has led to increasing application of WES, another agnostic approach.
WES has identified several genes in POI not previously anticipated.

In POI associated with somatic features, causative perturbations have
been found by WES for HSB17B4, LARS2, CLPP and C10orf2 in Perrault
syndrome (Pierce et al., 2010, 2013; Jenkinson et al., 2013;Morino
et al., 2014) (detailed in ‘Mitochondrial Genes Causing POI’ section
and Table V). Up to the present, there have been six WES conducted
in non-syndromic POI pedigrees. Interestingly, almost all plausible candi-
date genes identified were involved in meiosis and DNA repair (Table V).

ATP-dependent DNA helicase homolog (HFM1) (1p22.2). HFM1, a meiotic
gene encoding DNA helicase preferentially expressed in germ-line
tissues such as testis and ovary, is necessary for homologous recombin-
ation and synapsis during meiosis (Tanaka et al., 2006). Hfm12/2 female
mice had significantly reduced ovaries and follicle numbers and an in-
crease in stromal cells (Guiraldelli et al., 2013). The recent report by
Wang et al. (2014a) identified a compound heterozygous mutation
(c.1686-1G.C and c.2651T.G, p.I884S) in the HFM1 gene in two
affected Chinese sisters. Screening for HFM1 mutations in a cohort of
69 Chinese women with sporadic POI identified another patient with
compound heterozygous mutations (c.2206G.A, p.G736S and
c.3929_3930 delinsG, p.P1310R fs*41). These variants were not found
in 316 matched controls or databases.

Minichromosome maintenance complex component 8 and 9 (MCM8,
20p12.3; MCM9, 6q22.31). MCM8 and MCM9, recently discovered
members of the highly conserved mini-chromosome maintenance pro-
teins (MCM), are genes implicated in homologous recombination and
repair of double-stranded DNA breaks. The MCM8/MCM9 complex
is required for the resolution of dsDNA breaks that occur during hom-
ologous recombination in pachytene of meiosis I. Failure to resolve
breaks predictably leads to oocyte death and small or absent ovaries.
Mcm8 and Mcm9-deficient mice are infertile and have small gonads

due to germ cell depletion (Lutzmann et al., 2012). Recently, Rajkovic
and colleagues (AlAsiri et al., 2015; Wood-Trageser et al., 2014) discov-
ered homozygous mutations in MCM8 and MCM9 genes in consanguin-
eous families with POI (primary amenorrhea), using WES. One of the
two mutations found in MCM9 is c.1732+2T.C, which resulted in ab-
normal alternative splicing and truncated forms of MCM9 that are unable
to be recruited to sites of DNA damage. The other mutation c.394C.T
(p.R132*) results in loss of function of MCM9. It is suspected that pref-
erential sensitivity of germline meiosis to MCM9 functional deficiency
and compromised DNA repair in the somatic component most likely
account for the ovarian failure and short stature. A homozygous
mutant c.446C.G (p.P149R) found in MCM8 inhibited recruitment of
MCM8 to sites of DNA damage and led to genomic instability. ASNP
rs16991615 in MCM8 was also found associated with the age of
natural menopause in the GWAS previously discussed (Chen et al.,
2012). The role the novel MCM8/MCM9 pathway plays in women
with idiopathic POI needs to be explored further.

Stromal antigen 3 (STAG3) (7q22.1). STAG3 encodes a subunit of cohesin,
a large protein complex that is essential for proper pairing and segrega-
tion of chromosomes during meiosis. A homozygous frameshift mutation
resulting from a 1-bp deletion (c.968delC, p.F187fs*7) in STAG3 was
identified in a highly consanguineous Palestinian pedigree; in which a
10-Mb region on 7q21.3–22.2 and a 3-Mb region on 7p21.1–15.3 had
been previously identified to show significant linkage with the POI pheno-
type (Caburet et al., 2012, 2014). Deficiency of Stag3 in female mice
results in severe and early ovarian dysgenesis, with distinctive lack of
oocytes and ovarian follicles. Early meiotic arrest and the centromeric
chromosomal cohesion defects were observed in Stag32/2fetal
oocytes providing further evidence that Stag3 is essential for assembly
of the meiotic cohesin ring and the synaptonemal complex (Caburet
et al., 2014).

Synaptonemal complex central element 1 (SYCE1) (10q26.3). The SYCE1
gene encodes a component of the synaptonemal complex where
paired chromosome homologs closely associate in meiosis (synapsis)
before crossover. Syce12/2 mice were infertile with smaller gonads,
and showed loss of follicles in ovaries and postmeiotic cells in testis.
Early meiosis arrest at prophase\xE2\x85followed by cell apoptosis
could explain the phenotype (Bolcun-Filas et al., 2009). Different micro-
deletions of SYCE1 have also been reported in Caucasian and Chinese
POI patients (McGuire et al., 2011; Zhen et al., 2013). In a consanguin-
eous Israeli Arab family, a homozygous nonsense mutation
(c.613C.T, p.Q205*) in SYCE1 was identified in two sisters with
primary amenorrhea, presumably inherited in autosomal recessive
fashion (de Vries et al., 2014).

Eukaryotic translation initiation factor 4E nuclear import factor 1 (eIF4ENIF1)
(22q11.2). eIF4ENIF1, a transport protein, plays an important role in
repressing translation through eIF4E. Both genes appear to play import-
ant roles in ovarian germ cell development (Villaescusa et al., 2006). A
heterozygous nonsense mutation (c.1286C.G, p.S429*) was identified
in eIF4ENIF1, segregating with ovarian insufficiency (menopause age 29–
35 years) in a large French Canadian family. No additional mutations
were identified in eIF4ENIF1 or eIF4E in 38 unrelated women with iso-
lated POI. Haploinsufficiency or nuclear sequestration might disrupt
the development of a normal oocyte complement (de Vries et al., 2014).
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The whole exome studies in familial POI mentioned above mainly
involve genes crucial during meiosis, such as generating and repairing
DSBs, chromosome synapsis and recombination, and sister chromatid
cohesion. This implies that perturbation of genes encoding proteins
that regulate meiosis can result in autosomal recessive primary ovarian
insufficiency in humans. Despite some negative candidate gene results
with meiotic genes (DMC1, SPO11 and MSH4) in POI, WES results still
provide reasons to pursue other genes participating in meiosis and
DNA repair in ubiquitous pathways.

NGS
Future studies on targeted candidate genes of POI can be anticipated
using NGS. A recent abstract (Fonseca et al., 2015) reported a study
of 12 POI cases having non-syndromic POI and 176 control women
whose menopause had occurred after age 50 years. A further 345
women from the same ethnic origin were stated to be recruited to
assess allele frequency for potentially deleterious sequence variants. In
the 12 POF cases, complete coding regions of 70 candidate genes
were fully sequenced with mutations claimed in ADAMTS19, BMPR2
and LHCGR genes. Full details are awaited.

Regulatory genes and networks
Seeking POF genes has to date largely focused on coding variants, pre-
suming plausible protein disruption. However, only 1.5% of the
genome is protein-coding. Indeed, many POF-associated variants in
whole genome studies map within, or in linkage disequilibrium to, intron-
ic or intergenic regions; thus, these regions likely contain causative regu-
latory genes or networks. In our own POI GWAS, for example, ‘gene
desert’ 8q22.3 was the region of most significance by association (Qin
et al., 2012b).

Non-coding variants must be more robustly interrogated. Perturba-
tions sought should include involving non-coding RNA (microRNA
[miRNA], long non-coding RNA [lncRNA]), disruption or creation of al-
ternative splicing or transcription factor-binding sites, and epigenetic
modifications (DNA methylation patterns, chromatin modification).
Large epigenetic consortia, such as ENCODE (http://genome.ucsc.
edu/ENCODE/), Roadmap (http://www.roadmapepigenomics.org/)
and iHEC (http://www.ihec-epigenomes.org/) point to approaches
used to characterize the regulatory landscape of susceptibility regions
for specific cell types. Unfortunately, ENCODE (Birney et al., 2007;
ENCODE Project Consortium, 2012; Stamatoyannopoulos et al.,

.............................................................................................................................................................................................

Table V Whole-exome sequencing for syndromic or isolated POI.

Gene Location Mutation Function Compound
Het/Homo/Het

Reference

HSB17B4 5q21 c.650A.G (p.Y217C);
c.1704T.A (p.Y568X)

Reduced expression with mutant protein Compound
heterozygous

Pierce et al. (2010)

CLPP 19p13.3 c.433A.C (p.T145P), Alter the structure of the CLPP barrel chamber that
captures unfolded proteins and exposes them to
proteolysis

Homozygous Jenkinson et al. (2013)
c.440G.C (p.C147S)

c.270+4A.G Weakens donor splice-site function

LARS2 3p21.3 c.1565C.A (p.T522N) Partially functional in Yeast complementation assay Homozygous Pierce et al. (2013)
c.1077delT;
c.1886C.T (p.T629M)

Nonfunctional in Yeast complementation assay Compound
heterozygous

C10orf2 10q24 c.1172G.A (p.R391H)
c.1754A.G (p.N585S)

Affect interactions of the linker domain
Likely affect enzyme activity

Compound
heterozygous

Morino et al. (2014)

c.1321T.G (p.W441G)
c.1519G.A (p.V507I)

Affect interactions of the linker domain Compound
heterozygous

HFM1 1p22.2 c.1686-1G.C
c.2651T.G (p.I884S)

Compound
heterozygous

Wang et al. (2014a)

c.2206G.A (p.G736S);
c.3929_3930 delinsG,
(p.P1310R fs*41)

Compound
heterozygous

MCM9 6q22.31 c.1732+2T.C Abnormal splicing and truncated protein that are
unable to be recruited to sites necessary for DNA
damage

Homozygous Wood-Trageser et al.
(2014)

c.394C.T (p.R132*) Repair of chromosome breaks impaired in lymphocytes Homozygous

STAG3 7q22.1 c.968delC (p.F187fs*7) Homozygous Caburet et al. (2014)

SYCE1 10q26.3 c.613C.T (p.Q205*) Homozygous de Vries et al. (2014)

MCM8 20p12.3 c.446C.G (p.P149R) Impedes the repair of MMC-induced chromosomal
breaks; inhibits MCM8 recruitment to sites of DNA
damage; impairs DNA binding ability at the N-terminus

Homozygous AlAsiri et al. (2015)

eIF4ENIF1 22q11.2 c.1286C.G (p.S429*) Heterozygous Kasippillai et al. (2013)

HSD17B4: Hydroxysteroid (17-beta) dehydrogenase 4; CLPP: Caseinolytic mitochondrial matrix peptidase proteolytic subunit; LARS2: leucyl-tRNA synthetase 2, mitochondrial;
C10orf2: Chromosome 10 open reading frame 2; HFM1: ATP-dependent DNA helicase homolog; MCM8, MCM9: minichromosome maintenance complex component 8 and 9; STAG3:
stromal antigen 3; SYCE1: synaptonemal complex central element; eIF4ENIF1: eukaryotic translation initiation factor 4E nuclear import factor 1.
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2012) bypassed the reproductive track (males and females), and thus an
ovarian ENCODE does not yet exist.

In order to generate the reproductive ENCODE, human ovarian
tissue of specific cell types must be studied. Then, differences in regula-
tory genes between affected and normal individuals can be determined.
Massive parallel sequencing using RNA-seq, or Methyl-seq will facilitate a
systematic study of the transcriptome in ovaries in relation to genotypes
and variants in POI. Chromatin immunoprecipitation followed by se-
quencing (ChIP-Seq) and RNA-Seq can also help identify novel transcrip-
tional and epigenetic regions and, hence, mechanisms that potentially
underlie POI. To analyze the complete proteomes and quantification
of post-translational modifications, mass spectrometry would be the
most attractive approach.

Having accumulated the requisite information, network and pathway-
based analyses of assembled datasets can be assembled using systems
biology approaches. Cascades of transcriptional regulation can be eval-
uated simultaneously, identifying overlap among genes or putative net-
works that currently constrain key variables in model systems.

The ultimate proof that an identified variant has a pathological effect
traditionally relies on constitutive or conditional knock in/out or cell
lines with a mutation signature. Increasingly, other approaches will be uti-
lized. Patient-specific induced pluripotent stem cells (iPSCs) lines might
offer an individually targeted genetic model system to identify and ma-
nipulate pathologic pathway. Use of iPSCs should be of particular value
in assessing regulatory genes, which may have a quantitative deleterious
effect rather than ‘all or none’ qualitative effect, observed or assumed, in
missense or nonsense protein-coding mutations.

Conclusion: current status of
genes causing POI
The POI—causative genes surveyed and found to date allow us to reach
several conclusions.

First, many genes have emerged as POI candidates (Fig. 1), but in non-
syndromic POI only a minority have been provenequivocally causative by
functional validation. These include BMP15, PGRMC1, and FMR1 premu-
tation on the X chromosome and on autosomes GDF9, FIGLA, FSHR,
NOBOX, NR5A1, NANOS3, STAG3, SYCE1, MCM8/9 and HFM 1. No per-
turbations have been found in a dozen other plausible candidates for
which murine knockouts show ovarian failure, but this may simply
reflect small sample sizes or interrogation restricted to a single ethnic
group.

Second, notable differences in frequency exist among different popula-
tions. This is predictable for any genetic condition, and in POI this has
already been observed in FSHR, BMP15, NOBOX, FOXL2, TGFBR3,
CDKN1B and FOXO3A (Supplementary Table SII). Future genetic studies
should involve different ethnic groups and larger sample sizes. Clinically,
caution should apply when counseling on the basis of data derived from
an ethnic group different from that of the counseled individual.

Third, causative POI genes are increasingly being shown not only to be
restricted to expression in ovaries but also expressed ubiquitously. True,
POF5 (NOBOX) and POF6 (FIGLA) are restricted to the ovaries.
However, PTEN is a major regulator of the PI3K pathway involved in sys-
temic cell proliferation, survival, migration and metabolism. PTEN also
plays a vital role in the activation of primordial follicles. The spectrum
of candidate genes potentially causing POI is being enriched.

Fourth, many genes that currently appear isolated in function actually
may be interrelated within yet to be defined pathways. It is logical to strat-
ify by gene function in ostensibly distinct systems: endocrine, folliculogen-
esis, cell cycle, meiosis, mitochondrial, as examples. More difficult are
gene-gene or protein-protein interactions, acting in ways not yet
evident. This review thus unavoidably overestimates the role that
protein-coding genes play to the detriment of upstream and downstream
regulatory genes. Until recently, exome studies had to be restricted to
sequencing individual candidate genes. Continued advances in sequen-
cing techniques and contemporary bioinformatives will facilitate finding
additional genes responsible for POI in other portions of the genome.

Figure 1 Schematic representation of chromosomal location of plausible genes associated with primary ovarian insufficiency.
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Fifth, elucidating the etiology and molecular basis of POI is of para-
mount importance not only in understanding ovarian physiology but
also in providing genetic counseling and fertility guidance. Once addition-
al variants are detected, it will be increasingly possible to predict the age
of menopause. Women having certain perturbations of POI can be
offered the option of oocyte cryopreservation, with later thawing and
use in assisted reproductive technology at the appropriate age.

Supplementary data
Supplementary data are available at http://humupd.oxfordjournals.org/.
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