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Abstract

Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention 

and impulse control, implicating neuroregulatory abnormalities within this region in mental 

dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and 

-2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are 

distributed throughout the mPFC. However, their interactive role in serotonergic cortical 

regulation is poorly understood. While the main signal transduction mechanism for both receptors 

is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A 

versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect 

neurochemical release within the mPFC. These distinct receptor effects could be caused by their 

differential cellular distribution within the cortex and/or other areas. It is known that both 

receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear 

whether they are expressed on the same or different cells. The present work employed 

immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic 
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mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor 

immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably 

co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not 

GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 

5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a 

pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This 

indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on 

GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a 

small population of local pyramidal projection cells. Thus a complex interplay of cortical 5-HT2A 

and 5-HT2C receptor mechanisms exists, which if altered, could modulate efferent brain systems 

implicated in mental illness.
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1. INTRODUCTION

The medial prefrontal cortex (mPFC) plays a critical executive role in working memory, 

attention and impulse control. Lesions of the PFC in animals (Goldman et al., 1971;Fritts et 

al., 1998; though see D'Esposito et al., 2006) and humans (Barbey et al., 2013;Tsuchida and 

Fellows, 2013) disrupt working memory. mPFC lesions also diminish the ability to attend to 

life-threatening or -enhancing environmental stimuli (Wilkins et al., 1987;Passetti et al., 

2002;Ng et al., 2007;Lovstad et al., 2012) and to restrain behavior when needed (Perret, 

1974;Muir et al., 1996;Quirk et al., 2000;Chudasama et al., 2003;although see, Eagle et al., 

2008). It is thus not surprising that abnormalities in the mPFC have been associated with 

schizophrenia, depression and drug addiction; illnesses that are characterized with these 

cognitive and behavioral disturbances (Altman et al., 1996;Drevets, 2000;George et al., 

2001;Brody et al., 2001;Stockmeier and Rajkowska, 2004;Mayberg et al., 2005;Lambe et 

al., 2007;Driesen et al., 2008;Kalivas, 2008;Covington et al., 2010;Li et al., 2011;Nocjar et 

al., 2012).

Serotonin, which interacts with at least 14 different receptor subtypes (Hoyer et al., 

1994;Roth et al., 2000;Berger et al., 2009), is thought to play an important role in these 

psychological disorders (Roth and Meltzer, 1995;Kosten et al., 1998;Aghajanian and Marek, 

2000;Manji et al., 2001;Nestler et al., 2002;Celada et al., 2004;Cunningham et al., 2013). 

The serotonin -2A and -2C receptor subtypes (5-HT2AR and 5-HT2CR, respectively) are 

widely dispersed throughout the mPFC, although density of 5-HT2ARs is higher (Leysen et 

al., 1982;Ashby et al., 1990;Mengod et al., 1990;Pompeiano et al., 1994;Lopez-Gimenez et 

al., 1997;Willins et al., 1997;Jakab and Goldman-Rakic, 1998;Clemett et al., 2000;Pandey et 

al., 2006;Liu et al., 2007;Yadav et al., 2011b). Both receptors are implicated in antipsychotic 

(Roth et al., 1992;Martin et al., 1998;Willins et al., 1999;Rauser et al., 2001;Bonaccorso et 

al., 2002), antidepressant (Cryan and Lucki, 2000;McMahon and Cunningham, 2001;Van 

Oekelen et al., 2003;Serretti et al., 2004;Millan, 2005;Opal et al., 2013) and addictive drug 

action (e.g. McMahon and Cunningham, 1999;Van Oekelen et al., 2003;Cunningham et al., 
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2013), with those localized to the mPFC purportedly playing a vital role (e.g. Aghajanian 

and Marek, 1999;Tarazi et al., 2002;Filip and Cunningham, 2003;Celada et al., 2004;Ramos 

et al., 2005;Huang et al., 2006;Pehek et al., 2006;Carli et al., 2006;Pockros et al., 2011;Opal 

et al., 2013). Impaired cortical 5-HT2AR and 5-HT2CR function could thus contribute to a 

variety of neuropsychiatric diseases, but how this might occur is unclear (Meltzer and Roth, 

2013).

The main signal transduction mechanism for 5-HT2A and 5-HT2C receptors is stimulation of 

phosphoinositide production (Roth et al., 1984;Conn and Sanders-Bush, 1986;Sanders-Bush 

et al., 1988;Araneda and Andrade, 1991;Rick et al., 1995;Garcia et al., 2007), but the direct 

cellular excitation induced by their activation can produce opposite effects downstream. 5-

HT2A versus 5-HT2C receptor activation oppositely affects dopamine release within the 

mPFC (for review see Di Matteo et al., 2001;Alex and Pehek, 2007). The receptors also 

oppositely regulate behavior controlled by the mPFC (Williams et al., 2002;Winstanley et 

al., 2004;Mirjana et al., 2004;Ramos et al., 2005;Bubar and Cunningham, 2006;Carli et al., 

2006;Pentkowski and Neisewander, 2008;Jensen et al., 2010;Pockros et al., 

2011;Cunningham et al., 2013). Although indicating that a differential cellular distribution 

of 5-HT2A and 5-HT2C receptors likely exists in the brain, it is not clear whether this occurs 

in the mPFC.

The two major cell types in the mPFC are GABA local circuit interneurons and glutamate-

containing pyramidal projection neurons (Fuster, 1997;Gabbott et al., 1997), with local 

GABA release playing a crucial regulatory function over mPFC pyramidal output (see Eyles 

et al., 2002). 5-HT2AR and 5-HT2CR expression has been seen on both GABA and 

pyramidal cells within the prelimbic mPFC (Willins et al., 1997;Jakab and Goldman-Rakic, 

1998;Jakab and Goldman-Rakic, 2000;Carr et al., 2002;Santana et al., 2004;Liu et al., 

2007), but whether they are individually expressed or localized on the same cell is still not 

clear. The present work employed immunofluorescence with confocal microscopy to 

examine this in the prelimbic mPFC of rats.

2. EXPERIMENTAL PROCEDURES

2.1 Animals

Six naive male Sprague-Dawley rats (Harlan, Indianapolis, USA) weighing 330–400 g were 

used. Rats were housed in pairs and maintained for at least 1-month after arrival in a 

temperature and humidity controlled rodent colony room with food and water available ad 

libitum. Rats were deeply anesthetized with sodium pentobarbital (100 mg/kg, IP) and 

transcardially perfused with 250ml of phosphate-buffered saline (PBS; 8g NaCl, 1.44g 

Na2HPO4, 240mg KH2PO4, 200mg KCl in 1L dH2O, pH 7.40) and then with 500 ml of a 

4% paraformaldehyde PBS solution. Brains were harvested, postfixed for 24 hours in 4% 

paraformaldehyde in PBS and then cryoprotected in a 30% sucrose PBS solution until they 

sank (~ 36–48 hrs). Brains were then rinsed in PBS, rapidly frozen on crushed dry ice and 

stored at −80°C until sectioning. 40 µm coronal sections containing the mPFC (bregma 

+3.76 to 3.20mm) were collected according to the rat brain atlas of Paxinos and Watson 

(2007) using a cryostat set to −23°C (Microm International, Germany). Alternating sections 

from the same animal were placed in two separate well-plates containing ice-cold PBS. One 
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well-plate with its free-floating sections was used and processed in Experiment II and the 

other in Experiment III (See immunofluorescent microscopy). All animal procedures were in 

strict accordance with the NIH Guide for the Care and Use of Laboratory Animals and were 

approved by the local institutional animal care and use committee. All efforts were made to 

minimize the number of animals used and their suffering.

2.2 Antibodies

This study conducted three experiments using the primary antibodies listed in Table 1. The 

D-12 mouse monoclonal 5-HT2CR antibody (Santa Cruz Biotechnology) has been shown to 

selectively detect human (Anastasio et al., 2010) and rat 5-HT2CRs (Morabito et al., 2010) 

in prior western blot work. Experiment I extended this by conducting both western blot and 

confocal immunofluorescent assessments of D-12 5-HT2CR protein detection in PO1C cells 

that express rat 5-HT2CRs and in GF62 cells that only express rat 5-HT2ARs (Experiment Ia 

and Ib, respectively).

Experiment II used immunofluorescent confocal microscopy to determine whether D-12 

also performed similar to other 5-HT2CR antibodies by detecting 5-HT2CR expression on 

GABAergic cells in the prelimbic mPFC (Liu et al., 2007). To localize GABA cell 

expression in the mPFC, the rabbit H101 anti-GAD-67 (glutamic acid decarboxylase 

isoform 67, Santa Cruz Biotechnology, California) and PV 25 anti-parvalbumin antibodies 

(Swant, Switzerland) were used as indicated in Table 1. GAD-67 is an enzyme involved in 

the synthesis of GABA, thus antibodies raised against the enzyme are useful in the 

identification of GABA-synthesizing cells in the brain. The H101 GAD-67 antibody has 

been shown to detect a similar number of GABA cells as other anti-GABA antibodies 

(Akema et al., 2005). Parvalbumin is a calcium-binding protein that is found in basket and 

chandelier subtype GABAergic cells (Conde et al., 1994;Gabbott et al., 1997) that directly 

modulate efferent signaling of cortical pyramidal neurons (Miles et al., 1996;Markram et al., 

2004;Lewis et al., 2005). Specificity of the PV 25 anti-parvalbumin antibody has been 

validated in immunohistochemistry studies of cortical and muscle tissue from wild type 

versus parvalbumin knockout mice (Schwaller et al., 1999;Schwaller et al., 2004).

Experiment III used the same D-12 5-HT2CR antibody to determine whether cells that 

express 5-HT2CRs in the prelimbic mPFC also co-express 5-HT2AR s. As indicated in Table 

1, the rabbit immunostar 5-HT2AR antibody from Neuromics was used. We and others have 

validated the receptor specificity of this antibody in western blot and immunohistochemistry 

studies of cortical tissue from 5-HT2AR knockout and wild-type mice (Magalhaes et al., 

2010;Weber and Andrade, 2010;Yadav et al., 2011a). The antibody also sensitively detects 

changes in cortical 5-HT2AR levels (Yadav et al., 2011b).

Fluorescent-conjugated secondary antibodies from Invitrogen (Eugene, OR, USA) were 

used in all experiments to visualize primary antibody staining: Alexa Fluor 488 goat anti-

mouse (fluoresces green), Alexa Fluor 594 goat anti-rabbit (fluoresces red).

2.3 Western Blots

To determine western blot D-12 5-HT2CR specificity in PO1C versus GF62 cells in 

Experiment Ia (see Antibodies above), PO1C and GF62 cells were pelleted by centrifugation 
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and then pellets were lysed in 1 mL of Hepes buffer including CHAPS and protease 

inhibitors to prepare lysates. Lysates were normalized for protein content. Half of the lysates 

for each cell type were incubated with Wheat Germ Agglutinin/lectin beads for 2 hours at 

4°C. SDS sample buffer was added to the lysates and beads, which were then incubated at 

67°C for 5 minutes. Beads were then spun down and 30 µL from the top of each sample was 

loaded onto the gel. The protein was then transferred to a nitrocellulose membrane 

overnight, followed by one hour incubation in blocking buffer (tris buffered saline [TBS], 

0.1% Tween, 5% milk) and 2 hours incubation in the primary antibody solution (1:500 D-12 

goat-anti-mouse 5-HT2CR antibody, Santa Cruz, CA). The membranes were then washed 

several times, incubated in horseradish-peroxidase secondary antibody, and washed again 

several times. Finally, the membranes were incubated in western blot substrate and 

developed.

2.4 Immunofluorescent Microscopy

To further validate D-12 5-HT2CR specificity, immunofluorescent assessments were also 

conducted on cultured PO1C and GF62 cells in Experiment Ib (see Antibodies above). Cells 

were grown on coverslips, then permeabilized with 0.3% triton X-100 (in PBS) for 15 

minutes, exposed to a PBS blocking buffer that contained 5% milk, 4% normal goat serum 

and 0.3% triton X-100 for at least one hour, and individually incubated in a solution 

containing the primary antibody (D-12 anti-5-HT2CR in blocking buffer, 1:100; see Table 1) 

for 2-hours at room temperature and then overnight at 4°C. They were then washed five 

times in 0.3% triton X-100, incubated at room temperature in secondary antibody (Alexa 

Fluor 488 goat anti-mouse, 1:200 in blocking buffer; see Antibodies) for one hour, and then 

washed four times in 0.3% triton X-100 and once in PBS. 5-HT2CR expression was then 

visualized using a Zeiss LSM Confocal Microscope with digital imaging software (Carl 

Zeiss, Thornwood, NY).

Dual immunofluorescent microscopy of rat brain tissue was conducted in Experiment II to 

determine whether D-12 performs like other 5-HT2CR antibodies by detecting 5-HT2CR 

expression on GABA cells in the prelimbic mPFC (Liu et al., 2007). Experiment III 

determined whether 5-HT2CR-IR cells within this region also expressed 5-HT2AR s. Free-

floating rat brain sections (see Animals above) were allowed to equilibrate to room 

temperature on a gentle orbital shaker for 20min. Using room temperature solutions and 

continued gentle shaking, sections were permeabilized in 0.3% Triton X-100 in PBS for 

1hour, incubated in 0.03% Triton X-100 blocking buffer (60µl Triton X-100, 1600µl normal 

goat serum and 2g non-fat dry milk in 40ml PBS) for 2-hours, and then incubated in 

blocking buffer containing two primary antibodies (Experiment II and III:D-12 and anti-

GAD-67 or anti-parvalbumin antibodies, Experiment III: D-12 and 5-HT2AR antibodies; at 

the concentrations described in Table 1) for 2 hours and then for 72 hours at 4°C. While 

under continued gentle shaking, sections were allowed to return to room temperature for 

20min, and then with room temperature solutions, were washed 3× in 0.03% Triton X-100 in 

PBS for 10min each, incubated in blocking buffer containing the secondary antibodies 

(Alexa Fluor 488 goat anti-mouse and Alexa Fluor 594 goat anti-rabbit; 1:200 and 1:300 

respectively in blocking buffer, see Antibodies) for 1hour protected from light, then washed 

4× in 0.03% Triton X-100 and 1× in PBS for 10min each. Sections were then mounted onto 
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slides with Vectashield Fluorescent Mounting Medium (Vector Laboratories), coverslipped, 

sealed with clear nail polish, air dried for 20min while protected from light and then stored 

at 4°C until viewed. Brain tissue expression of the two fluorescence tagged antibodies 

within an experiment (Experiment II and III:D-12 and anti-GAD-67 or anti-parvalbumin 

antibodies, Experiment III: D-12 and 5-HT2AR antibodies) was visualized and photographed 

as in our prior work (Nocjar et al., 2002; Burke et al., 2014) using a dual channel Zeiss 

LSM5 Confocal Microscope with digital imaging software (Carl Zeiss, Thornwood, NY). 

All digital photomicrographs were of single optical sections and analyzed in Adobe 

Photoshop CS6 (Adobe Systems Incorporated, San Jose, CA) using the count tool. 

Immunofluorescent labeling by each of the two antibodies was analyzed separately under 

either the red or green channel, with cells identified and counted under both channels 

indicating co-localized immunolabeling.

3. RESULTS

3.1 D-12 5-HT2C receptor immunoreactivity was selectively demonstrated in POIC versus 
GF62 cells

Experiments Ia and Ib were conducted to validate the receptor specificity of D-12 in POIC 

and GF62 cells that are known to differentially express the rat 5-HT2C and 5-HT2A 

receptors. As illustrated in Fig1A and 1B, POIC cells that express 5-HT2CRs consistently 

showed D-12 5-HT2CR antibody expression under Western Blot and immunofluorescent 

microscopy assessments. However, GF62 cells that only express 5-HT2ARs showed no D12 

immunoreactivity in either test, indicating that D-12 is a 5-HT2CR specific antibody.

3.2 D-12 5-HT2C receptor immunoreactivity was expressed in GABA cells of the rat 
prelimbic mPFC

Experiment II was conducted to determine whether the D12 5-HT2CR antibody colabeled 

GABAergic cells like another 5-HT2CR antibody (Liu et al., 2007). Fig 2A shows D-12 

antibody expression (green fluorescence) on GABA cells (red fluorescence) in the deep 

layers of the prelimbic mPFC (see prelimbic area assessed in B). As seen in A, D-12 detects 

5-HT2CR expression within cell soma and their initial segment. Importantly, it detected 5-

HT2CR expression in both GAD-67 and parvalbumin GABA cells in the mPFC (see white 

arrows in Fig 2A, top and bottom rows respectively) as previously reported using a different 

5-HT2CR antibody (Liu et al., 2007). Because it acted similarly to another 5-HT2CR 

antibody and selectively identified cells that expressed the rat 5-HT2CR in the above 

experiment as in prior work (Morabito et al., 2010), the D-12 5-HT2CR antibody was used 

throughout the remaining study.

3.3 5-HT2A and 5-HT2C receptors were expressed in a laminar overlapping fashion in the 
most rostral prelimbic mPFC and were co-expressed on cells in layer V

Experiment III was conducted to determine whether mPFC cells that expressed 5-HT2CRs 

also expressed 5-HT2ARs. Fig 3 shows a photomontage of 5-HT2AR and 5-HT2CR 

expression across the mediolateral extent of the most rostral level of the prelimbic mPFC 

(see AP location in the cartoon brain representation shown in B). As seen in A (middle row), 

a profuse laminar distribution of 5-HT2AR immunoreactivity was detected in the rat mPFC 
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using the Immunostar 5-HT2AR antibody from Neuromics (see Table1). The strongest 5-

HT2AR immunoreactivity was seen in layer V. Though quite profuse, the 5-HT2AR 

immunostaining produced by the antibody is typical for this cortical region (Weber and 

Andrade, 2010;Yadav et al., 2011b). Under higher magnification, a punctate 5-HT2AR 

expression could be seen on the soma and initial segment of cells in the region (see sample 

cell in B, center and left photo). Though impossible to identify in B due to dense 5-HT2AR 

staining in this layer, the middle panel in A clearly shows labeled neuronal processes in 

more superficial layers as identified previously with this antibody in the mouse prelimbic 

mPFC (Yadav et al., 2011a). The bottom row of photomicrographs in A shows that 5-

HT2CR s in the identical mPFC tissue also had a laminar distribution; which is notably 

similar to that seen in an earlier report (Liu et al., 2007). However, this figure shows a 

population of 5-HT2CR -IR cells within superficial layers II–III which was negligible in this 

earlier report at a more posterior location of the prelimbic mPFC (Liu et al., 2007); perhaps 

due to the rapid anteroposterior decrease in 5-HT2CR expression demonstrated in the mPFC 

(Pompeiano et al., 1994). Most importantly, B shows 5-HT2CR and 5-HT2AR co-

localization within the soma and initial segment of a sample cell in layer V of this rostral 

mPFC region (see black box in cartoon brain representation for approximate dorsoventral 

location of cell in subregion).

3.4 The majority of cells showing 5-HT2C receptor immunoreactivity in layer V-VI of the 
prelimbic mPFC also co-expressed 5-HT2A receptors

Fig 4 shows layer V 5-HT2C and 5-HT2A receptor expression at a more posterior level of the 

prelimbic mPFC in these same animals (see AP level in E). We first confirmed that 5-

HT2CR-IR cells (green) in layer V co-expressed the GAD-67 GABA cell marker as we 

found in the rostral prelimbic mPFC in experiment II (see sample cell with yellow arrow in 

A). Photos in B confirmed that layer V also had the same profuse laminar 5-HT2AR 

expression (red) and cellular 5-HT2CR expression (green) as we found above in the deep 

layers of the more rostral prelimbic mPFC (see Fig 3). Note the typical strong 5-HT2AR 

immunoreactivity in layer Va that rapidly diminishes laterally in layer Vb (see Fig 3; Weber 

and Andrade, 2010). Most notably, many 5-HT2CR-IR cells in Layer V of the prelimbic 

mPFC were found to co-express 5-HT2ARs. The white arrow in B shows sample cells below 

it with 5-HT2CR and 5-HT2AR co-localization in layer Va [as delineated by Weber & 

Andrade (2010)]. These cells can be seen more clearly in C. The yellow arrow shows the 

same punctate 5-HT2AR expression encircling the cell's nucleus as we found above in the 

rostral prelimbic mPFC. The white arrowhead in B shows a representative cell with 5-

HT2CR and 5-HT2AR co-localization in layer Vb [as delineated by Weber & Andrade 

(2010)]. This co-localization can be clearly seen in D. As indicated in Table2, nearly 70% of 

5-HT2CR-IR cells in layers V–VI of this prelimbic mPFC region coexpressed 5-HT2ARs 

(brain cartoon blackened box indicates area assessed according to Paxinos and Watson 

(2007)).

3.5 Most cells that expressed 5-HT2C receptors in the deep layers of the prelimbic mPFC 
were GABAergic, suggesting that the majority of cells that co-express 5-HT2C and 5-HT2A 

receptors are likely GABA cells. The remaining cells with 5-HT2C receptors must be 
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pyramidal, and we found some pyramidal-shaped cells with 5-HT2C and 5-HT2A receptor 
co-labeling

It is well known that layer V of the prelimbic mPFC contains a high number of pyramidal 

neurons with GABAergic cells dispersed throughout it. Thus we wanted to assess the 

approximate percentage of 5-HT2CR-IR cells that co-expressed GAD-67 in the region versus 

those that did not to determine the differential expression of these receptors on GABAergic 

versus pyramidal neurons in the region. Table 3 shows that approximately 73% of 5-HT2CR-

IR cells in layers V-VI of the prelimbic mPFC are GABAergic (same prelimbic level 

assessed as in Table 2). Glutamate pyramidal projection cells are the only other cells in the 

region. Thus, the remaining 27% of 5-HT2CR-IR cells in the region are likely pyramidal 

cells.

Fig 5 indicates that a portion of these pyramidal 5-HT2CR-IR cells might co-express 5-

HT2ARs. As seen in A, some cells demonstrating 5-HT2CR and 5-HT2AR co-expression in 

layer V of the prelimbic mPFC have a pyramidal shape (see arrowed sample) and tightly 

layered distribution that is typical of glutamate pyramidal projection cells. B shows another 

tightly layered 5-HT2CR cell distribution with 5-HT2AR co-localization (see white arrows). 

C however, shows a more diffuse expression of 5-HT2CR-IR cells within the same region 

with GAD-67 GABAergic co-expression (see yellow arrows). Thus although the majority of 

cells that express 5-HT2C and 5-HT2A receptor co-localization in the mPFC are likely 

GABAergic, some could be pyramidal.

4. DISCUSSION

This study found that the majority of neurons expressing 5-HT2CR-IR in layers V–VI of the 

prelimbic mPFC also co-expressed the 5-HT2AR, demonstrating that a cellular 

subpopulation within the deep layers of the prelimbic mPFC could be directly co-regulated 

by 5-HT2C and 5-HT2A receptors. These cells are likely GABAergic for the most part since 

73% of 5-HT2CR-IR cells in this region co-expressed the GABA cell marker GAD-67. 

Though 5-HT2CR and 5-HT2AR protein have each been detected previously on prelimbic 

GABAergic cells (Willins et al., 1997;Liu et al., 2007), this is the first demonstration that 

GABA cells may co-express both receptor proteins within the deep layers of the prelimbic 

cortex where GABAergic cells are known to provide a critical inhibitory control over 

efferent pyramidal projections from the mPFC (Eyles et al., 2002). Interestingly, a recent 

report found pyramidal shaped 5-HT2CR-IR cells in the prelimbic mPFC (Liu et al., 2007), 

and we found that 27% of 5-HT2CR -IR cells in the deep prelimbic mPFC were not 

GABAergic cells. Also, some cells with 5-HT2CR and 5-HT2AR co-labeling in this region 

had a pyramidal shape and tightly layered distribution that is typical of pyramidal cellular 

expression. This suggests that 5-HT2A and 5-HT2C receptors may also be co-localized on a 

small population of pyramidal cells in Layer V.

It is unlikely that the evidenced cellular 5-HT2CR and 5-HT2AR co-immunoreactivity was 

due to antibody non-specificity. Both antibodies employed are specific for their respective 

receptor. Though there has been specificity issues raised regarding some 5-HT2AR 

antibodies (Weber and Andrade, 2010), we used the Immunostar 5-HT2AR antibody that 

generates immunolabeling in wild-type but not 5-HT2AR knockout animals (Magalhaes et 
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al., 2010;Weber and Andrade, 2010). A gradient anteroposterior distribution of cortical 5-

HT2AR expression has also been identified with this antibody (Weber and Andrade, 2010) as 

seen in 5-HT2AR binding, mRNA and gene expression work (Blue et al., 1988;Pompeiano et 

al., 1994;Lopez-Gimenez et al., 1997). Specificity of the D12 5-HT2CR antibody employed 

has also been confirmed. Prior western blot work validated that D12 selectively induced 

immunolabeling in Chinese hamster ovary (CHO) cells that expressed the human 5-HT2CR 

but not in parental CHO cells that lack the receptor (Anastasio et al., 2010). 

Immunofluorescent microscopy in the current work also detected selective D-12 

immunolabeling in POIC cells that express rat 5-HT2CRs, but not in GF62 cells that express 

5-HT2ARs. The same findings were found with western blot replicating prior work 

(Morabito et al., 2010). Western blot D-12 assessments also sensitively detect increases and 

decreases in 5-HT2CR protein levels in brain tissue and mirror 5-HT2CR binding, function 

and behavioral assessments (Morabito et al., 2010; Abbas et al., 2009). Moreover, D12 co-

labeled both GAD-67 and parvalbumin -identified GABAergic cells in the deep prelimbic 

mPFC in the current work as previously seen with another 5-HT2CR specific antibody (Liu 

et al., 2007;Anastasio et al., 2010), and genetic 5-HT2CR knockdown reduced D-12 5-

HT2CR immunolabeling in mPFC tissue of rats (Anastasio et al., 2014).

We found a striking laminar distribution of both 5HT2 receptor proteins in the rat mPFC. 5-

HT2AR immunoreactivity was extremely profuse in the deep cellular layers of the prelimbic 

mPFC, particularly in layer V. In superficial layers I-III, rather sparse 5-HT2AR dispersion 

progressed laterally to a highly localized expression on neural processes. This laminar 

expression is nearly identical to that reported in mouse mPFC with the same Immunostar 5-

HT2AR antibody (Magalhaes et al., 2010;Weber and Andrade, 2010;Yadav et al., 2011a); it 

is not seen if an antibody lacks 5-HT2AR specificity (Weber and Andrade, 2010). 

Importantly, our laminar expression mirrors 5-HT2AR binding (Pazos et al., 1985;Blue et al., 

1988;Mengod et al., 1990;Lopez-Gimenez et al., 1997;Marek et al., 2000) and Hrt2A gene 

expression at the mPFC level assessed here (Weber and Andrade, 2010). A nearly identical 

pattern of 5-HT2AR mRNA has also been reported in prior in situ hybridization studies 

(Pompeiano et al., 1994;Wright et al., 1995;Amargos-Bosch et al., 2004). Also, 5-HT2AR 

mRNA, binding, gene expression and Immunostar protein labeling have all demonstrated 

that 5-HT2AR expression is most profuse in the anterior mPFC (Blue et al., 1988;Pompeiano 

et al., 1994;Lopez-Gimenez et al., 1997;Weber and Andrade, 2010) where we found cellular 

5-HT2AR and 5-HT2CR co-expression.

D-12 5-HT2CR-IR was expressed throughout the soma and initial segment of cells. 5-HT2CR 

protein levels were clearly low compared to 5-HT2AR protein within the region, supporting 

prior mRNA work (Pompeiano et al., 1994). Furthermore, 5-HT2CRs showed a distinct 

laminar distribution as seen in prior rodent receptor mRNA and protein work at a similar 

anteroposterior level of the mPFC (Pompeiano et al., 1994;Liu et al., 2007). Laminar 5-

HT2CR binding in layer III and 5-HT2CR mRNA in layer V has also been seen in primate 

cortex (Pazos et al., 1987;Pasqualetti et al., 1999;Lopez-Gimenez et al., 2001). We did not 

assess high magnification receptor co-expression in more superficial layers of the mPFC. 

However, low magnification identified 5-HT2AR -expressing neural processes within layers 

II–III of the most rostral prelimbic mPFC as seen previously within the mPFC (Yadav et al., 
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2011a); and dispersed among these fibers was a distinct population of 5-HT2CR-IR cells. 

Most interesting however, was our demonstration that a laminar distribution of 5-HT2CR-IR 

cells within the deep layers of the prelimbic mPFC co-expressed 5-HT2ARs.

In fact, 67% of 5-HT2CR-IR cells in Layers V–VI of the prelimbic mPFC co-expressed 5-

HT2AR s. Their co-expression was seen on round and fusiform shaped cells that were widely 

dispersed within these layers, suggestive of GABAergic expression, and on cells with a 

pyramidal shape and tight linear expression in layer V where large pyramidal somata are 

located (Bartos et al., 2007;Shepherd, 2009;Weber and Andrade, 2010), suggestive of 

pyramidal cell expression. However, most 5-HT2CR-IR cells in the region were found to be 

GABAergic. This indirectly demonstrates that 5-HT2CRs and 5-HT2ARs are likely co-

expressed predominantly on GABA cells and perhaps on a small population of pyramidal 

cells within the deep layers of the prelimbic mPFC.

GABA interneurons, GABA long-range projection neurons and glutamate pyramidal 

projection cells are located within the mPFC (Fuster, 1997;Gabbott et al., 1997;Lee et al., 

2014), but GABAergic cells are the major site of serotonin projection to the region (Smiley 

and Goldman-Rakic, 1996). 5-HT2AR transcript and protein has been evidenced in mPFC 

GABA cells (Willins et al., 1997;Weber and Andrade, 2010). GABAergic 5-HT2CR 

expression has also been seen, though it is region specific. In situ hybridization found few if 

any GABAergic cells that expressed 5-HT2CR mRNA in the secondary motor cortex which 

is located at the most dorsal extent of the mPFC (Puig et al., 2010). However, the current 

study replicated earlier evidence of 5-HT2CR protein expression in GAD67-identified 

GABA cells within the prelimbic mPFC, and we replicated this using a different 5-HT2CR 

antibody (Liu et al., 2007; current work). We also identified subcortical GABAergic 5-

HT2CR protein expression with the antibody (Burke et al., 2014), directly supporting 

transcriptional evidence of GABAergic 5-HT2CR mRNA in the region (Eberle-Wang et al., 

1997). Reverse transcription-PCR has also identified 5-HT2CR mRNA in GABA cells of the 

mPFC. In fact, Vysokanov and co-workers (1998) found GABAergic cells with 5-HT2CR 

and 5-HT2AR mRNA co-expression, directly supporting our 5-HT2 receptor protein co-

expression. Their percentage of GABAergic cells with 5-HT2CR mRNA was lower than we 

report, but they may have assessed a more superficial layer or posterior mPFC region. 5-

HT2CR mRNA shows a rapid anteroposterior decrease through the mPFC (Pompeiano et al., 

1994). So does 5-HT2CR protein. We identified a distinct population of 5-HT2CR-expressing 

cells within the superficial layers of the most rostral prelimbic mPFC in the current study 

which was notably sparse at a more posterior level of the prelimbic mPFC in another report 

(Liu et al., 2007). Nonetheless, 50% of the GABAergic cells that expressed 5-HT2CR 

mRNA in the above report by Vysokanov also co-expressed 5-HT2AR mRNA; strikingly 

similar to the 67% of 5-HT2CR-IR cells that co-expressed the 5-HT2AR protein within the 

prelimbic mPFC in our study.

Support of pyramidal 5-HT2CR and 5-HT2AR co-expression also exists. Each receptor has 

been shown to exist on the apical dendrites of cortical pyramidal cells (Willins et al., 

1997;Jakab and Goldman-Rakic, 1998;Cornea-Hebert et al., 1999;Clemett et al., 2000). We 

assessed 5-HT2 receptor co-expression in the deep layers of the prelimbic mPFC where large 

pyramidal cell bodies are located in layer V (see Weber and Andrade, 2010). Both 5-HT2AR 
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protein (Willins et al., 1997;Weber and Andrade, 2010) and 5-HT2CR protein (Liu et al., 

2007) are expressed in this layer, and on pyramidal shaped cells in this layer (Willins et al., 

1997;Liu et al., 2007), as we report here. Transcriptional quantification also supports 

pyramidal 5-HT2AR expression in this layer (Vysokanov et al., 1998;Carr et al., 2002;Weber 

and Andrade, 2010), but is at odds regarding 5-HT2CRs. In situ hybridization work 

(Pasqualetti et al., 1999;Lopez-Gimenez et al., 2001) found 5-HT2CR mRNA in this layer, 

but not on pyramidal cells. However, two studies that used the highly visualized single cell 

reverse transcription-PCR technique did identify mRNA for the 5-HT2CR in mPFC layer V 

pyramidal cells (Vysokanov et al., 1998;Carr et al., 2002). Furthermore, they found that 

nearly all 5-HT2CR-expressing pyramidal shaped cells co-expressed 5-HT2AR mRNA (Carr 

et al., 2002), though only 28–53% of 5-HT2AR-expressing pyramidal cells co-expressed 5-

HT2CR mRNA (Vysokanov et al., 1998;Carr et al., 2002). Though this evidence robustly 

supports our demonstration of prelimbic pyramidal-shaped cells with 5-HT2CR and 5-

HT2AR protein co-expression, future immunohistochemical work that identifies pyramidal 

cells specifically with a glutamatergic cell marker could substantiate our findings.

How might 5HT-2C and -2A receptor co-expression on a cortical cell surface affect its 

function? Intra-mPFC administration of 5-HT2AR agonists enhance local pyramidal cell 

excitation in a dose-dependent manner (Ashby et al., 1990;Arvanov et al., 1999;Lambe and 

Aghajanian, 2007), while local 5-HT2CR agonism triggers GABA cell excitation and 

transmitter release that is thought to conversely inhibit mPFC pyramidal function 

(Mackowiak et al., 1999;Abi-Saab et al., 1999;Leggio et al., 2009;Zhang et al., 2010). 

Studies suggest that 5-HT2AR pyramidal excitation is due to the receptors preferential 

location on pyramidal neurons (Santana et al., 2004;Celada et al., 2013). Furthermore, we 

and others found a preferential GABAergic 5-HT2CR localization in the prelimbic mPFC 

(Liu et al., 2007; current work); providing a viable mechanism for the indirect 5-HT2CR 

inhibition of cortical pyramidal function (Ashby et al., 1990;Bergqvist et al., 1999;Eyles et 

al., 2002). However, findings in this report do not support this clear division of receptor 

function. Although 70% of GABA cells expressed 5-HT2CRs in the deep layers of the 

prelimbic mPFC, most 5-HT2CR-IR cells also co-expressed 5-HT2ARs. This indirectly 

suggests that prelimbic GABAergic cells largely express both receptors, and are most likely 

regulated by a balance in their function.

5HT-2C and -2A receptors share a high degree of homology (Roth et al., 1998) and activate 

many of the same second messenger signaling systems. Activation of either receptor triggers 

phosphoinositide and diacylglycerol production that in turn stimulates intracellular calcium 

release and ERK production under a similar time scale and responsivity to receptor density 

(Sanders-Bush et al., 1988;Araneda and Andrade, 1991;Stanford et al., 2005;Garcia et al., 

2007;Seitz et al., 2012;Meltzer and Roth, 2013). Both 5HT2 receptors similarly activate 

phospholipase D and phospholipase A2 stimulation of arachidonic acid production 

(McGrew et al., 2002;Liu and Fanburg, 2008).

However, there are differences. 5-HT has higher affinity and potency at 5-HT2C versus 5-

HT2A receptors (Berg et al., 2005). Agonist-directed recruitment of intracellular signaling 

differs between both G-protein-coupled receptors (Berg et al., 1998b). Agonist independent 

constitutive activation for at least some editing isoforms of 5-HT2CRs is stronger than that 

Nocjar et al. Page 11

Neuroscience. Author manuscript; available in PMC 2016 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of 5-HT2ARs, which would differentially affect their sensitivity to ligand stimulation and 

recruitment of intracellular signaling pathways (Rauser et al., 2001;Shapiro et al., 2002;Berg 

et al., 2005). The surrounding ligand milieu more powerfully dampens serotonergic 

stimulation of 5-HT2CR intracellular pathways than 5-HT2AR signaling systems (Seitz et al., 

2012). The 5-HT2CR is unique in that it undergoes RNA editing (Niswender et al., 

1998;Abbas et al., 2010), which determines the receptor's trafficking, ligand response, 

constitutive activational status, and ability to couple to its G protein, trigger intracellular 

signal transduction pathways (Burns et al., 1997;Herrick-Davis et al., 1999;Berg et al., 

2001;Hoyer et al., 2002;Marion et al., 2004;Berg et al., 2005;Millan et al., 2008;Werry et 

al., 2008;Labasque et al., 2010;Cordova-Sintjago et al., 2014) and affect behavior controlled 

by the mPFC (Anastasio et al., 2014). The conformation, sensitivity and trafficking of both 

5-HT2 receptors dynamically change in response to inverse agonists, antagonists or 

endogenous 5-HT, but the constitutional status and edited state of the 5-HT2CR strongly 

determines how it changes, if at all (Willins et al., 1998;Porter et al., 1999;Berg et al., 

1999;Gray and Roth, 2001;Van Oekelen et al., 2003;Devlin et al., 2004;Berg et al., 

2005;Yadav et al., 2011b;Seitz et al., 2012;Lopez-Gimenez et al., 2013). These functional 

differences provide a physiological rationale for the dual expression of both 5-HT2 receptors 

on a cortical GABAergic or pyramidal neuron, even though the 5-HT2CR and 5-HT2AR are 

highly homologous and both activated by 5-HT.

Perhaps their dual functional state on GABAergic cells fine-tune serotonergic control of 

inhibitory function in the mPFC, an important mechanism in a region where too much 

versus too little neurotransmitter function detrimentally affects impulsivity, attention and 

working memory (Arnsten et al., 1994;Goldman-Rakic, 1995;Harrison et al., 1997;Zahrt et 

al., 1997;Granon et al., 2000;Dalley et al., 2002;Winstanley et al., 2004;Pezze et al., 2014). 

Evidence supports this hypothesis. Intra-mPFC infusion with the 5-HT -2A and -2C receptor 

(5-HT2A/2C R) agonist DOI causes GABA cell stimulation that is partially blocked by 5-

HT2CR antagonists yet completely blocked by dual 5-HT2A/2CR antagonism (Zhang et al., 

2010). GABA released by the infusion also inhibits local pyramidal excitability (Carr et al., 

2002;Wang et al., 2009).

Serotonergic heteroreceptor co-expression within the mPFC is not new (see Celada et al., 

2013). 5-HT1ARs and 5-HT2ARs are co-localized on the majority of pyramidal neurons in 

the region (Martin-Ruiz et al., 2001;Amargos-Bosch et al., 2004;Santana et al., 2004;Puig et 

al., 2010) and evidence of their opposing cross-talk has been reported (Araneda and 

Andrade, 1991;Berg et al., 1998a;Martin-Ruiz et al., 2001;Amargos-Bosch et al., 2004;Yuen 

et al., 2008). However, a recent report indicated that the inhibitory effect of 5-HT1AR s on 

NMDA-induced pyramidal excitation within the mPFC is reversed by local 5-HT2A/2CR co-

activation (Yuen et al., 2008) and cross-talk between the 5-HT1AR and both 5-HT2 receptors 

has been evidenced (Berg et al., 1998a;Zhong et al., 2008). The current study and others 

support the existence of a pyramidal subpopulation with 5-HT2A/2CR co-expression within 

the mPFC (current study; Vysokanov et al., 1998;Carr et al., 2002). Though premature to 

suggest their involvement in this 5-HT1A heteroreceptor pyramidal control, it certainly 

deserves further exploration.
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A broader anatomical understanding of serotonergic 5-HT2 receptor circuitry across sub-

regions of the mPFC is needed. This study assessed the prelimbic mPFC where an optimal 

neurochemical balance is required for memory and attentional function (Arnsten et al., 

1994;Bussey et al., 1997;Granon et al., 2000;Williams et al., 2002;Winstanley et al., 

2003;Maddux and Holland, 2011). However, an optimal mPFC function is also required to 

control impulsivity (Harrison et al., 1997;Dalley et al., 2002;Winstanley et al., 2004), a 

behavior triggered by cortical 5-HT release (Dalley et al., 2002) and selectively regulated by 

the more ventral infralimbic mPFC (Chudasama et al., 2003). Infralimbic GABA and 5-HT2 

receptor function can produce an impulsive inability to control ones behavior (Passetti et al., 

2003;Carli et al., 2006;Murphy et al., 2012; see also Winstanley et al., 2004). Future 

infralimbic 5-HT2 receptor assessment could have particular relevance to addiction 

neurocircuitry. Impulsivity and cocaine-seeking are triggered in rats by an identical 

imbalance in cortical 5-HT2A/2CR function (Filip and Cunningham, 2003;Pockros et al., 

2011;Cunningham et al., 2013;Anastasio et al., 2014; Fink et al., 2015).

In summary, this study identified a new cortical mechanism through which serotonin might 

fine-tune working memory and emotional control. 5-HT2CR-expressing cells in the deep 

layers of the prelimbic mPFC commonly co-expressed 5-HT2ARs. They also largely co-

expressed GAD-67, with only 27% showing a non-GABAergic presumably pyramidal cell 

type. Thus this study indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be 

commonly co-localized on GABA cells in the region and perhaps on a minor population of 

layer V pyramidal neurons. Importantly, it indicates that 5-HT2A/2CRs might perform a key 

direct interactive role in GABA's inhibitory control of pyramidal function within the 

prelimbic mPFC. It is not clear how 5HT2 receptors might interactively modulate 

intracellular signaling pathways within a cortical cell, but such knowledge could provide 

new molecular strategies in psychotherapeutic treatment for schizophrenia, depression and 

drug abuse.
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Abbreviations

GAD Glutamic acid decarboxylase

mPFC medial prefrontal cortex

5-HT Serotonin

5-HT2CR Serotonin2c receptor

5-HT2CR-IR Serotonin2c receptor immunoreactivity

5-HT2AR Serotonin2a receptor
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5-HT2A/2CRs Serotonin2a and 2c receptors

GABA y-aminobutyric acid
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• Most GABA cells in Layer V of the rat prelimbic mPFC expressed 5-HT2C 

receptors

• Likewise, most 5-HT2C receptor-expressing cells were GABAergic

• Most 5-HT2C receptor-expressing cells also co-expressed 5-HT2A receptors
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Fig1. Western blot and immunofluorescent microscopy (see Experimental Procedures) indicate 
that the D-12 5-HT2CR antibody used throughout this study is specific for the 5-HT2CR
POIC cells that express 5-HT2CRs consistently showed D-12 5-HT2CR-antibody expression 

under both Western Blot (see A, black bars in histogram) and Immunohistochemical 

assessment (see B, confocal microscopy image of green cellular 5-HT2CR 

immunofluorescence). However, GF62 cells that only express 5-HT2AR s showed no D-12 

antibody expression in either test (see A and B). Scale bar = 20 µm.
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Fig2. GABA cells within the deep layers of the rat prelimbic medial prefrontal cortex (mPFC) 
express 5-HT2CRs
A, confocal photomicrographs of mPFC tissue showing D-12 5-HT2CR antibody 

immunoreactivity (green florescence) and of cells expressing the GABA cell markers, 

GAD67 or parvalbumin (red immunostaining, top and bottom rows respectively). White 

arrows depict the identical cell across each row of photos. The left and middle photos show 

each antibody separately. Yellow staining in far right photos (under BOTH) illustrates 5-

HT2CR and GABA cell co-localization. B, Cartoon representation of prelimbic mPFC region 

assessed in this experiment (see black box) according to the rat brain atlas of Paxinos and 

Watson (2007). 5-HT2CR, serotonin 2C receptor; GAD67, glutamic acid decarboxylase 
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isoform 67; Parval, parvalbumin; PL mPFC, prelimbic subregion of medial prefrontal 

cortex. All confocal photomicrographs that were used to assess dual-immunolabeling in this 

report, including those presented in this figure through Fig 5, were of single optical sections 

(see experimental procedures, section 2.4). Scale bar = 20 µm.
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Fig3. 5-HT2AR and 5-HT2CR expression and cellular co-localization in the rostral prelimbic 
mPFC
A, All three rows show the identical confocal photomontage collected across layers I to VI 

of the prelimbic mPFC (cartoon in B indicates the anteroposterior brain level assessed 

according to Paxinos and Watson, 2007). A distinct laminar 5-HT2AR immunoreactivity 

(see red, middle row), laminar 5-HT2CR immunoreactivity (see green, bottom row) and 

overlapping 5-HT2AR and 5-HT2CR expression (see green and red staining in top row) was 

seen. Note the distinct subpopulation of 5-HT2CR-IR cells amongst 5-HT2AR 

immunoreactive fibers in superficial layers II–III and another within the dense 5-HT2AR 
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expression in layer V. B, High magnification confocal image of a sample cell in layer V 

showing 5HT-2A and -2C receptor co-localization. The middle and end photos show the 

cells 5-HT2AR (red) and 5-HT2CR (green) immunoreactivity, while the left photo shows its 

5-HT2AR and 5-HT2CR co-expression (yellow staining). The black box in the brain cartoon 

shows where the cell was sampled (Paxinos and Watson, 2007). 5-HT2AR, serotonin 2A 

receptors; 5-HT2CR-IR, serotonin 2C receptor immunoreactivity; other abbreviations and 

confocal microscopy, see Fig 2. Scale bar = 100µm (A) and 20µm (B).
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Fig4. GABA cell 5-HT2CR expression and cellular 5-HT2CR and 5-HT2AR co-expression in 
Layer V at a more posterior level of the prelimbic mPFC
A, confocal photomicrographs of prelimbic tissue showing GAD67-identified GABA cells 

with 5-HT2CR co-immunoreactivity (top photo, yellow and arrowed cells) in layer V at the 

anteroposterior level depicted in E. The middle and bottom photos show each antibody 

separately. White arrows depict the identical cell. B, confocal photomicrographs at the same 

level of the prelimbic mPFC showing 5-HT2CR-expressing cells with 5-HT2AR co-

immunoreactivity in layer Va and layer Vb (see top photo, white arrow and arrowhead, 

Nocjar et al. Page 30

Neuroscience. Author manuscript; available in PMC 2016 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively) as delineated by Weber & Andrade (2010). Cells in layer Va that are seen 

between the white and yellow arrows in the top photo were magnified in C to more clearly 

show their 5-HT2CR and 5-HT2AR co-expression (yellow staining). The cell in layer Vb (see 

white arrowhead in B) was magnified in D to more clearly show its 5HT-2C and -2A 

receptor co-expression. The middle and bottom photos show each antibody separately. 

White arrows depict the identical cells. Abbreviations and confocal microscopy, see Fig 2 & 

3. Scale bar = 20 µm.
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Fig5. Cells with a pyramidal shape and layered expression show 5-HT2AR and 5-HT2CR co-
labeling in layer V of the prelimbic mPFC
A. Immunofluorescent confocal images of potential pyramidal 5-HT2AR and 5-HT2CR co-

labeling (see sample cell above arrowhead with green 5-HT2CR immunolabeling and yellow 

punctate staining around its nucleus indicative of 5-HT2AR co-expression). B. A confocal 

image showing a population of linearly expressed pyramidal-shaped cells in layer V of the 

prelimbic mPFC with green 5-HT2CR expression and punctate 5-HT2AR co-labeling around 

their nucleus (see arrows in the end photo). The first and middle photos show each antibody 
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separately (see same arrowed cells). C. A comparison population of widely dispersed red 

GAD67-identified GABA cells in the same layer with 5-HT2CR co-expression (see yellowed 

cells with arrows in the end photo). The first and middle photos show each antibody 

separately (see same arrowed cells). Abbreviations and confocal microscopy, see Fig 2 & 3. 

Scale bar = 20 µm.
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Table 1

Primary antibodies employed within experiments.

Antibody 5-HT2CR (D-12) 5-HT2AR GAD-67 (H101) Parvalbumin
(PV25)

Experiment Exp Ia &1b, Exp II Exp III Exp III Exp II Exp II

Immunogen Human 5-HT2CR C-terminus 
(374–458)

Rat 5-HT2AR N-
terminus (22–41)

Human GAD-67 N-
terminus (1–101)

Rat muscle Parvalbumin calcium 
binding protein

Manufacturer Santa Cruz Biotechnology, Santa 
Cruz,CA Sc-17797

Exp II:Neuromics, 
Edina, MN

Santa Cruz 
Biotechnology (Santa 
Cruz, CA)

Swant, Marly1, Switzerland

Catalog # Sc-17797 RA24288 sc-5602 PV25

Host/clonality Mouse monoclonal Rabbit polyclonal Rabbit polyclonal Rabbit polyclonal

Dilution 1:500 (Exp 1a)
1:100 (Exp Ib)
1:50 (Exp II; Exp III)

1:100 1:50 1:2000
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Table 2

Immunohistochemical localization of 5-HT2ARs on 5-HT2CR-IR cells within the deep layers of the prelimbic 

mPFC (mean ± SEM) in experiment III

Number of
5-HT2CR-IR

cells

Number of
cells with

5-HT2CR + 5-HT2AR
co-labeling

% of 5-HT2CR-IR
cells that

express 5-HT2ARs

281 ± 6.2 189 ± 9.3 67.4 ± 1.81
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Table 3

Immunohistochemical validation of 5-HT2CR-IR on GAD67 labeled GABAergic cells within the deep layers 

of the prelimbic mPFC (mean ± SEM) in experiment II

Number of
5-HT2CR-IR

cells

Number of
cells with

5-HT2CR + GAD67
co-labeling

% of 5-HT2CR-IR
cells that

express GAD67

Number of
GAD67

cells

% of GAD67
cells that express

5-HT2CRs

285 ± 13.0 209 ± 9.0 73.3 ± 0.18 297 ± 9.5 70.2 ± 0.78
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