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Abstract
Transforming growth factor β1 (TGF-β1) and miRNAs play important roles in cholangiocar-

cinoma progression. In this study, miR-29a level was found significantly decreased in both

cholangiocarcinoma tissues and tumor cell lines. TGF-β1 reduced miR-29a expression in

tumor cell lines. Furthermore, anti-miR-29a reduced the proliferation and metastasis capac-

ity of cholangiocarcinoma cell lines in vitro, overexpression of miR-29a counteracted TGF-

β1-mediated cell growth and metastasis. Subsequent investigation identified HDAC4 is a

direct target of miR-29a. In addition, restoration of HDAC4 attenuated miR-29a-mediated

inhibition of cell proliferation and metastasis. Conclusions: TGF-β1/miR-29a/HDAC4 path-

way contributes to the pathogenesis of cholangiocarcinoma and our data provide new ther-

apeutic targets for cholangiocarcinoma.

Introduction
Cholangiocarcinoma, arising from the bile duct epithelium, is a malignant tumor associated
with high mortality rates. The incidence of cholangiocarcinoma is increasing worldwide[1].
Because of late diagnosis and early metastasis, surgical resection and conventional chemother-
apy do not effectively prolong long-term survival[2]. It is thus necessary to identify a new
means of early diagnosis and effective treatment of cholangiocarcinoma.

The transforming growth factor (TGF)beta family, which consists of three isoforms within
mammary tissues(TGF-β1, TGF-β2 and TGF-β3), regulates tumor initiation, progression and
metastasis[3,4]. TGF-β1 expression is more abundant than the other two isoforms during
tumorigenesis[5]. Increasing evidence demonstrates that dysregulation of TGF-β1 has been
identified in several cancers[6–10], including cholangiocarcinoma[6,7]. However, the biologi-
cal effects for TGF-β1 in the development of cholangiocarcinoma has not been fully elucidated.

Besides TGF-β signaling, many other cytokines and signaling pathways are also associated
with the modulation of cancer progression and metastasis. MicroRNAs (miRNAs), 18 to 25
nucleotides in length, are noncoding RNAs mediating degradation of specific mRNA targets
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via sequence-specific interactions with the mRNA 30 untranslated regions (UTRs) [11]. MiR-
NAs play critical roles in many physiological and pathological processes, including prolifera-
tion, apoptosis, invasion and migration[12–16]. Aberrant miRNAs expression are involved in
cholangiocarcinoma development, such as miR–21, miR–370, miR–373 and miR–200[17–21].

miR-29a has emerged as a potential tumor suppressor in multiple human neoplasms. Sev-
eral studies have shown that miR-29a was significantly downregulated in gastric, lung, and
hepatocellular cancer[22–24]. In gastric cancer, it can inhibit cell proliferation and induce cell
cycle arrest by downregulating p42.3. Exogenous overexpression of miR-29a can significantly
reduce cell proliferation and tumor formation in vivo in lung cancer. Consistent with these
observations, we found decreased expression of miR-29a in cholangiocarcinoma tissues com-
pared with matched non-neoplastic tissues. However, the molecular mechanism responsible
for the dysregulation of miR-29a in cholangiocarcinoma remains largely unknown.

Growing evidence supports the interactions between TGF-β1 and miRNAs, however,
whether and how TGF-β1 could regulate miR-29a during cholangiocarcinogenesis process
remains to be determined. Here, we demonstrated that miR-29a was significantly reduced in
cholangiocarcinoma cells and tissues. Furthermore, miR-29a inhibited cholangiocarcinoma
cell growth and metastasis by targeting HDAC4. Our findings will help to elucidate the roles of
TGF-β1/miR-29a/HDAC4 in the pathogenesis of cholangiocarcinoma and provide new thera-
peutic targets.

Materials and Methods

Cell lines and tissue samples
The human cholangiocarcinoma cell line FRH–0201, CCLP–1 and the human intrahepatic bile
duct epithelial cell line HIBEC, which were all purchased from American Type Culture Collec-
tion(ATCC, USA), were cultured in RPMI–1640 (Gibco, USA) supplemented with 10% (v/v)
fetal bovine serum (Gibco, USA) at 37°C in a humidified chamber under 5% (v/v) CO2.

Forty matched samples of cancer-adjacent tissue and cholangiocarcinoma tissue were
obtained from patients undergoing surgical resection at the Guangdong General Hospital, after
written informed consent was obtained from all patients. The matched cancer- adjacent sam-
ples were obtained at least 5 cm away from the tumor site. This study was approved by the
Research Ethics Committee of Guangdong General Hospital (The approval number was
GDREC2015097H).

Quantitative real-time RT-PCR (qRT-PCR) analysis
Total RNA was extracted from cells using the TRIzol reagent (Invitrogen, USA) and cDNA
was synthesized using a cDNA synthesis kit (TaKaRa, Japan) with 1μg amounts of total RNA
as templates. qRT-PCR was performed with the aid of an SYBR Green PCR kit (TaKaRa,
Japan) and an Applied Biosystems 7500 Sequence Detection System, following the manufactur-
ers’ protocols. β-actin served as the internal control. The specific primers used to amplify
HDAC4 were: Forward: 50- CGCACAGTCCTTGGTTGG–30 and reverse: 50-CTGCTGG
AACTGCTGCTTG–30; the β-actin specific primers were 50-ACTCGTCATACTCCTGCT–30

(forward) and 50-GAAACTACCTTCAACTCC–30 (reverse).
MicroRNA quantitative RT-PCR was performed using an All-in-One First-Strand cDNA

Synthesis Kit (GeneCopoeia) and a Hairpin-it miRNA qPCR Quantitation Kit (GenePharma);
U6 served as the miRNA control. Each sample was measured in triplicate, and gene expression
levels were calculated using the 2-44Ct method.
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Cell transfection
Cells were transfected using the X-tremeGENE siRNA Transfection Reagent (Roche, China)
following the protocol of the manufacturer. Cells were seeded into six-well plates at 30% con-
fluence on the day prior to transfection. MiR-29a mimic (sense, 5’-UAGCACCAUCUGA
AAUCGGUUA–3’; antisense, 5’-ACCGAUUUCAGAUGGUGCUAUU–3’) and inhibitor (5’-
UAACCGAUUUCAGAUGGUGCUA) were obtained from GenePharma (shanghai,China).
To regulate miR-29a expression, both mimics (50 nM) and inhibitors (100 nM) of miR-29a
were transfected. Overexpression of HDAC4 was performed by transfecting pcDNA3.1-H-
DAC4 as described previously[25].

Cell proliferation assay
Cells were plated in 96-well plates at 5,000 /well, after 24 h of incubation, next transfected with
miR-29a, an miR control, or siHDAC4 respectively. Cells were cultured for a further 24, 48, or
72 h, and then analyzed using a Cell Counting Kit–8 (Dojindo, Japan), according to the manu-
facturer’s instructions.

Cell migration and invasion
To investigate the migration and invasion of cholangiocarcinoma cells in vitro, wound healing
assay and transwell assay were performed respectively.

For wound healing assay, tumor cells in 12-well plates (11,000 cells per well) were trans-
fected with miR-29a mimic or NC, scratch wounds were made using a sterilized 100ul plastic
pipette tip. The width of wounds were measured under inverted microscope and wound- heal-
ing percentage was calculated.

For transwell assay, the membrane was coated with Matrigel in advance.1640 supplemented
with 10%FBS was added to the lower chamber. Tumor cells were resuspended in serum-free
1640 (5×105cells/ml) and 200μL was added to the upper chambers. After 8 hours incubation,
cells which migrated to the lower face of the membrane were fixed with methanol and stained
by crystal violet. After being washed by PBS for 3 times, the invasion rate was measured by
counting the migrating cells under the microscope.

DNA constructs and the dual-luciferase reporter assay
The pmirGLO Dual-Luciferase miRNA target expression vector, which uses firefly luciferase
(luc2) as the primary reporter and Renilla luciferase (hRluc-neo) as the control reporter, was
purchased from Promega. To construct plasmid pmirGLO-wt-HDAC4 (containing the wild-
type HDAC4 30-UTR binding site), 259 bp of the HDAC4 30-UTR were PCR-amplified from
human genomic DNA and cloned into the pmirGLO vector between the SacI and SalI restric-
tion sites. To construct plasmid pmirGLO-mHDAC4 (containing a mutant HDAC4 30-UTR),
a mutation identified using Targetscan (http://www.TargetScan.org/) was induced using a Site-
Directed Mutagenesis kit (SBSGenetech, China), following the manufacturer’s instructions.
One day after transfection, luciferase activity levels were measured using the dual-luciferase
reporter assay system (Promega) according to the manufacturer’s instructions. Each transfec-
tion was performed in triplicate.

Western blotting
Different groups of cells were lysed in RIPA lysis buffer (keyGEN), and total protein concentra-
tion was measured by BCA assay kit (KeyGEN). Western blotting was performed as described
previously [24] with rabbit anti-TGFβ1 pAb (dilution 1:500, BOSTER), rabbit anti-HDAC4
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mAb (dilution 1:1,000, CST), rabbit anti-vimentin mAb (dilution 1:1,000, CST), rabbit anti-
E-Cadherin mAb (dilution 1:1,000, CST), rabbit anti-MMP–2 mAb (dilution 1:1,000, CST)
and rabbit anti-MMP–9 mAb (dilution 1:1,000, CST), whereas a rabbit anti-β-actin monoclo-
nal antibody (dilution 1:1,000, CST) detected the internal control protein.

Statistical analysis
Statistically significant differences between the two groups were identified using Student’s t
test. Data are expressed as means ± standard deviation (SD) of at least three independent
experiments. P<0.05 was considered to reflect statistical significance.

Results

Expression of miR-29a was reduced in human clinical
cholangiocarcinoma samples and cell lines
The expression of miR–29 family was first examined by quantitative real-time PCR(qRT-PCR)
in 40 matched cholangiocarcinoma and cancer-adjacent tissues. As shown in Fig 1A, miR-29a
level was significantly reduced in the majority of cholangiocarcinoma tissues compared to can-
cer-adjacent tissues (P<0.01), whereas decreased expression of miR29b/c did not reach statisti-
cal significance (S1 Fig).

To further characterize the expression of miR–29 in cholangiocarcinoma cells, we per-
formed qRT-PCR in two tumor cell lines:FRH–0201, CCLP–1,in comparison with the human
intrahepatic bile duct epithelial cell line HIBEC. Similar to the result from the tissues, miR-29a
was down-regulated in the two cholangiocarcinoma cell lines (Fig 1B), whereas no significant
differences were detectable in miR29b/c levels. (S1 Fig).

These data suggest that dysregulation of miR-29a might contribute to the tumorigenesis.

TGF-β1 dependent downregulation of miR-29a in cholangiocarcinoma
Overexpression of TGF-β1 are associated with tumor progression and metastasis in cholangio-
carcinoma[6–7]. Recent reports also showed that miR-29a can be regulated by TGF-β1 during

Fig 1. The expression of miR-29a was decreased in cholangiocarcinoma samples and cell lines. (A) The average expression level of miR-29a was
measured in forty human cholangiocarcinoma tissues and matched cancer-adjacent (normal) tissues. (B) Expression of miR-29a in the human intrahepatic
bile duct epithelial cell line HIBEC and two cholangiocarcinoma cell lines. Data are shown as mean±SD; *P<0.05.

doi:10.1371/journal.pone.0136703.g001
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liver fibrogenesis[26], therefore we hypothesized whether TGF-β1 facilitates tumorigenesis by
reducing miR-29a expression in cholangiocarcinoma.

To verify this speculation, two independent cholangiocarcinoma cell lines(FRH–0201 and
CCLP–1 cells)were stimulated with recombinant TGF-β1 (5ng/ml), and the expression of miR-
29a was examined by qRT-PCR. As shown in Fig 2A and 2B, TGF-β1 dramatically reduced the
expression of miR-29a in the two cell lines examined.

Overexpression of miR-29a attenuates TGF-β1-mediated
cholangiocarcinoma cell growth and metastasis
The above findings prompted us to ascertain the biological effects of miR-29a in cholangiocar-
cinoma development. miR-29a level was highly increased or decreased respectively in FRH–

0201 cells after transfection with miR-29a mimic or the miR-29a inhibitor (anti-miR-29a) (S2
Fig). This result was reproducible in CCLP–1 cells(S2 Fig). To investigate the role of miR-29a
in cholangiocarcinoma cell growth, cell proliferation assay was performed in FRH–0201 and
CCLP–1 cells. According to the data of the CCK–8 assay kit (Dojindo, Japan), we drew the
absorbency curves at the wave length of 450nm. The cell proliferation curves showed that the
growth rate of the two tumor cells were significantly increased in a time-dependent manner,
compared to the negative control when transfected with inhibitors of miR-29a. Interestingly,
overexpression of miR-29a counteracted TGF-β1-mediated cell proliferation (Fig 3A and 3B).

Moreover, wound healing assay and transwell assay were used to evaluate the effect of miR-
29a overexpression on the migration and invasion mediated by TGF-β1 in tumor cells. As a
result, miR-29a inhibitor increased the migration and invasion respectively in the two tumor
cells (Figs 4 and 5). Importantly, up-regulation of miR-29a by treatment with miR-29a mimic
attenuated TGF-β1-mediated cell migration and invasion. Collectively, these results indicate
that miR-29a contributes to TGF-β1-induced cholangiocarcinoma progression.

HDAC4 is a direct target of miR-29a
We then explored the underlying mechanism by which miR-29a functions in cholangiocarci-
noma. Among the hundreds of miR-29a targets predicted by Targetscan, HDAC4 was selected
for further study, because the seed sequence in HDAC4 mRNA 30-UTR completely match to

Fig 2. TGF-β1 reduced the expression of miR-29a in the two cholangiocarcinoma cell lines. (A and B) qRT-PCR was performed respectively in FRH–
0201 and CCLP–1 cell lines after treatment with 5ng/ml TGF-β1 for 48h. Data are shown as mean±SD; *p<0.05;**P<0.01.

doi:10.1371/journal.pone.0136703.g002
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miR-29a, more importantly, it has been proved to be linked with tumorigenicity. HDAC4 is a
confirmed target of miR-29b in mouse osteoblast differentiation[27], but it has not been vali-
dated in tumor cells.

To confirm that HDAC4 was indeed a direct target of miR-29a in human cells, we used
luciferase reporter constructs containing wild-type and mutant HDAC4-30-UTRs, both with
the putative binding site of miR-29a (Fig 6A). As shown in Fig 6B, miR-29a decreased the lucif-
erase activity of the reporter vector containing the wild-type HDAC4 30-UTR compared to the
control (P< 0.05), in contrast, only a minimal effect on the mut-HDAC4 30-UTR reporter was
evident.

In addition, further research showed that transfection with miR-29a mimic decreased
HDAC4 protein in both two cell lines (Fig 6C), in contrast, miR–29 inhibitor resulted in the
up-regulation of HDAC4 protein. Interestingly, no significant change in HDAC4 mRNA levels
was evident(P> 0.05) (Fig 6D). These data suggest that miR-29a negatively regulated HDAC4

Fig 3. Up-regulation of miR-29a attenuates TGF-β1-mediated cholangiocarcin- oma cell growth.Cell proliferation assay was performed in FRH–0201
(A) and CCLP–1 (B) cells, 48h after transfection with anti-miR-29a. When the two tumor cell lines were treated with miR-29a mimic, cell proliferation assay
was performed after additional treatment with 5ng/ml TGF-β1 for 48h. Data are shown as mean±SD; *p<0.05;**P<0.01.

doi:10.1371/journal.pone.0136703.g003
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expression at the posttranscriptional level by directly targeting HDAC4 mRNA–30UTR seed
sequence.

Fig 4. Enhanced expression of miR-29a attenuates TGF-β1-mediated cholangio- carcinoma cell metastasis.Wound healing assay was performed in
FRH–0201 and CCLP–1 cells (A-C), 48h after transfection with anti-miR-29a. When the two tumor cell lines were treated with miR-29a mimic, wound healing
assay was performed after additional treatment with 5ng ml-1TGF-β1 for 48h. Data are shown as mean±SD; *p<0.05;**P<0.01;*** P<0.001.

doi:10.1371/journal.pone.0136703.g004
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We next determined the biological role of HDAC4 in cholangiocarcinoma cells. The CCK–
8 assay data showed that restoration of HDAC4 counteracted miR-29a-mediated inhibition of
cell proliferation (Fig 7A). Similarly, enhanced HDAC4 expression abrogated the anti-meta-
static role of miR-29a (Fig 7B and 7C).

Given that MMPs and EMT were involved in tumor cells metastasis, we further investigated
the link between HDAC4 expression and E-cadherin, Vimentin, MMP2 and MMP9 expres-
sion. Western blot analysis showed that overexpression of HDAC4 increased MMP2 and

Fig 5. Transwell cell invasion assay. (A and B) Transwell assay was administrated in the two tumor cell lines, 48h after treatment with anti-miR-29a. When
the two tumor cell lines were treated with miR-29a mimic, the migrating cells were counted after additional incubation with 5ng ml-1TGF-β1 for 48h. Data are
shown as mean±SD; **P<0.01;*** P<0.001.

doi:10.1371/journal.pone.0136703.g005
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Vimentin, decreased E-cadherin expression in FRH–0201 cells, however, there was no signifi-
cant change in MMP9 level(Fig 8A). This result was reproducible in CCLP–1 cells (Fig 8B).

Taken together, these data suggest that TGF-β1-mediated miR-29a inhibition may contrib-
ute to cholangiocarcinoma cell proliferation and metastasis, which are partly associated with
HDAC4-induced EMT.

Discussion
Cholangiocarcinoma, associated with high mortality and a poor prognosis, is one of the most
deadly cancers. Although remarkable improvement in cholangiocarcinoma therapy, local
tumor growth, early metastasis and direct hepatic invasion remain to be major challenges in
cancer treatment. However, the molecular mechanism that modulate the process of carcino-
genesis remains largely unknown.

In the present study, downregulation of miR-29a was confirmed in clinical cholangiocarci-
noma tissues compared with adjacent non-tumor tissues, as well as in the two tumor cell lines.
Since aberrant miRNA expression contributes to tumor initiation and progression [15–17],
thus the mechanisms inducing dysregulation of miR-29a expression in cholangiocarcinoma
are of significant interest.

TGF-β1 has been revealed to play key roles in regulating mammary carcinoma initiation,
progression and metastasis[3–7]. It has been confirmed that mutations in components of the
TGF-β1 signaling pathway promote the malignant phenotype of a given tissue in pancreatic
cancer and colon carcinoma[28,29]. For cholangiocarcinoma, TGF-β1 acts as a promoter of
tumorigenesis through Sp1-dependent transcriptional activation of vascular endothelial
growth factor(VEGF) or Snail activation[6,7]. In this report, we found expression of TGF-β1

Fig 6. HDAC4 is a target of miR-29a. (A) Predicted putative (upper) and mutated (lower, shown in red) binding sequence in the 3’UTR of HDAC4mRNA,
displayed from 5’ to 3’. (B) The relative luciferase activity. miR-29a mimic (50nM) or NC (50nM) were co-transfected with wt or mut–3’UTR luciferase reporter.
(C) Western blot analysis was performed in FRH–0201 and CCLP–1 cells. HDAC4 was reduced by miR-29a mimic (50nM), compared with NC. (D) The
relative mRNA expression of HDAC4. Data are shown as mean±SD; **P<0.01.

doi:10.1371/journal.pone.0136703.g006
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notably increased in cholangiocarcinoma clinical specimens (S3 Fig), which is consistent with
previous studies[6,7]. Furthermore, it could reduce miR-29a level in the both two tumor cell
lines. In addition, upregulation of miR-29a suppresses tumor cells proliferation, migration and
invasion, whereas silencing of miR-29a promotes TGF-β1-induced tumor progression.
Although TGF-β1-dependent downregulation of miR-29a was demonstrated to be associated
with oncogenesis, the underlying molecular mechanism for the regulation is currently
unknown. miRNAs expression are always regulated by binding to the promoter or regulated
process of microRNA precursors[30–33]. Further investigations are needed to elucidate
whether TGF-β1 direct effects on the promoter regions or in cooperation with other transcrip-
tion factors in regulating miR-29a expression.

As reported previously, miR-29a plays complex roles in various models of tumorigenesis
[22–24]. MiR-29a acts as a tumor promoter in chronic lymphocytic leukemia (B-CLL) and
acute myeloid leukemia (AML) [34,35], whereas in lung, pancreatic, and gastric cancer it func-
tions as a tumor suppressor [22,23]. Thus, the roles played by miR-29a differ according to the
cellular background. In our research, miR-29a acted as a tumor suppressor in cholangiocarci-
noma. Previous reports have showed that MMP–2, Bcl–2 and Mcl–1 are direct targets of miR-
29a in regulating tumor progression in different cancer cells[24,36,37]. Among the hundreds of
predicted targets, HDAC4 was confirmed as a direct target of miR-29a, by various methods
including bioinformatics, dual-luciferase activity report system and functional studies. Our
data revealed that HDAC4 expression was negatively regulated by miR-29a at the posttran-
scriptional level.

Histone deacetylases (HDACS) regulate the expression levels of many proteins involved in
both initiation and progression of cancer[38,39]. Aberrant HDAC expression is associated
with carcinogenesis[40,41]. HDAC inhibitors (HDACIs) have been reported to induce apopto-
sis or trigger cell cycle arrest of cholangiocarcinoma cells[42,43]. HDAC4 belongs to class II of
the HDACs[44]. A later study showed that HDAC4 became associated with Sp1 at the proxi-
mal p21 promoter, and promoted cancer cell growth via repression of p21 in an Sp1-dependent

Fig 7. Enhanced HDAC4 expression abrogated the tumor suppressive function of miR-29a in cholangiocarcinoma. (A) Cell proliferation assay was
performed in FRH–0201 and CCLP–1 cells, 48h after transfection with NC, miR-29a mimic or miR-29a mimic/pcDNA3.1- HDAC4. (B and C) Transwell assay
was carried out in the two tumor cell lines, 48h after treatment with NC, miR-29a mimic or miR-29a mimic/pcDNA3.1- HDAC4. Data are shown as mean±SD;
*p<0.05;**P<0.01;*** P<0.001.

doi:10.1371/journal.pone.0136703.g007

Fig 8. HDAC4 overexpression induces an EMT phenotype. (A) Enhanced HDAC4 expression led to
increased MMP2 and Vimentin, decreased E-cadherin expression in FRH–0201 cells and CCLP-1cells (B).

doi:10.1371/journal.pone.0136703.g008
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manner[38]. Yuan et al found that downregulation of miR-200a enhanced the proliferation
and migration of hepatocellular carcinoma cells, by targeting HDAC4[25]. In our report,
knockdown of HDAC4 suppressed cell proliferation and metastasis in vitro, which phenocop-
ied the consequence of enhanced miR-29a expression, in contrast, reintroduction of HDAC4
partially mitigated miR-29a-mediated inhibition of cell proliferation and metastasis. Our
observation suggest that the aberrant TGF-β1 expression in cholangiocarcinoma may led to
reduced miR-29a level, which in turn affects the histone acetylation level and thereby facilitates
carcinogenesis and tumor progression. However, the responsible mechanisms involved remain
unknown. EMT is associated with the invasion and metastasis in different tumor cells[45]. In
the present study, we found that enhanced HDAC4 expression led to dysregulation of hall-
marks of EMT.

It is suggested that, the increased level of TGF-β1 in cholangiocarcinoma is responsible for
the inhibition of miR-29a,followed by the activation of HDAC4 signaling, which may in turn
promote EMT. During these complex processes, MMP–2 might also play a crucial role. Our
data provide novel insight into the mechanism of TGF-β1/miR-29a/HDAC4 pathway in the
pathogenesis of cholangiocarcinoma and provide new therapeutic targets for
cholangiocarcinoma.

Supporting Information
S1 Fig. The expression of miR-29b and miR-29c in cholangiocarcinoma samples and cell
lines. (A and B) The average expression level of miR-29b /miR29c was measured in forty
human cholangiocarcinoma tissues and matched cancer-adjacent (normal) tissues. (C and D)
Expression of miR-29b/miR29c in the human intrahepatic bile duct epithelial cell line HIBEC
and two cholangiocarcinoma cell lines. Data are shown as mean±SD.
(TIF)

S2 Fig. The relative expression levels of miR-29a. (A and B) The expression levels of miR-29a
after transfection with miR-29a mimic(50 nM) and anti-miR-29a (100 nM) respectively in
FRH–0201 cells. (C and D) The levels of miR-29a were measured in CCLP–1 cells.
(TIF)

S3 Fig. The expression of TGF-β1 is increased in cholangiocarcinoma tumors (T) compared
with the tumor-adjacent tissues (N) by Western blotting.
(TIF)
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