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Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonosis affecting domestic and wild ruminants,
camels and humans. Outbreaks of RVF are characterized by a sudden onset of abortions and high mortality
amongst domestic ruminants. Humans develop disease ranging from a mild flu-like illness to more severe
complications including hemorrhagic syndrome, ocular and neurological lesions and death. During the RVF
outbreak in South Africa in 2010/11, a total of 278 human cases were laboratory confirmed, including 25 deaths.
The role of the host inflammatory response to RVF pathogenesis is not completely understood.

Methods: Virus load in serum from human fatal and non-fatal cases was determined by standard tissue culture
infective dose 50 (TCIDsy) titration on Vero cells. Patient serum concentration of chemokines and cytokines involved
in inflammatory responses (IL-8, RANTES, CXCL9, MCP-1, IP-10, IL-13, IL-6, IL-10, TNF and IL-12p70) was determined

Results: Fatal cases had a 1-log; higher TCIDso/ml serum concentration of RVF virus (RVFV) than survivors (p < 0.05).
There were no significant sequence differences between isolates recovered from fatal and non-fatal cases. Chemokines
and pro- and anti-inflammatory cytokines were detected at significantly increased (IL-8, CXCL9, MCP-1, IP-10, IL-10) or
decreased (RANTES) levels when comparing fatal cases to infected survivors and uninfected controls, or when
comparing combined infected patients to uninfected controls.

Conclusions: The results suggest that regulation of the host inflammatory responses plays an important role in the
outcome of RVFV infection in humans. Dysregulation of the inflammatory response contributes to a fatal outcome. The
cytokines and chemokines identified in this study that correlate with fatal outcomes warrant further investigation as

Background

Rift Valley fever (RVF) is a mosquito-borne zoonotic dis-
ease endemic to Africa, the Arabian Peninsula and
islands in the Indian ocean off the east coast of Africa
[1, 2]. RVF virus (RVFV), a member of the Phlebovirus
genus in the Bumyaviridae family, infects domestic
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livestock, wild ruminants and humans. Humans acquire
infection through the bite of infected mosquitoes or
from contact with infected tissues or body fluids [3, 4].
High mortality rates have been reported in newborn and
juvenile animals, while abortion storms are a prominent
feature of RVF outbreaks in domesticated livestock [1].
Infected humans develop symptoms ranging from mild,
flu-like illness to severe hemorrhagic fever, encephalitis
and death in a small proportion of individuals [5, 6].

The non-structural protein encoded by the small (S)
segment of the virus, NSs, has been implicated as the
major virulence factor. It counteracts antiviral effects of
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the host type 1 interferon response through blocking the
assembly of the transcription factor TFIIH, blocking
IFN-a/p transcription through interaction with host
SAP30 protein and post-transcriptional downregulation
of protein kinase R [7-14]. The 14-kDa non-structural
protein encoded by the medium (M) segment, NSm, has
been shown to suppress virus induced apoptosis, and
therefore it is believed that virulence of RVFV is under
polygenic control [15, 16]. There are no commercially
available RVF vaccines or therapeutics for humans, and
the available livestock vaccines require multiple doses or
have adverse effects [17, 18]. However, various vaccine
candidates and experimental therapeutics were recently
developed and tested in animal models [19-28].

The contributory role of human inflammatory re-
sponses to pathogenesis of RVFV infection has not been
intensively studied largely due to lack of clinical mater-
ial. We previously studied the expression of genes in-
volved in innate and adaptive immunity after infection
of BALB/c mice with a lethal dose of RVFV, compared
to similar infection of mice protected by anti-NP im-
munity [29]. Various genes involved in pro-inflammatory
responses and with pro-apoptotic effects were upregu-
lated, and anti-apoptotic genes downregulated in infected
mice with lethal outcome when compared to surviving
mice. However, improperly timed high expression levels of
interleukin-10 (IL-10), an anti-inflammatory immunosup-
pressive cytokine, in mice with a lethal outcome compared
to survivors indicated an imbalance in the regulation of
the inflammatory response, possibly contributing to patho-
genesis and/or immune evasion early after infection [29].
A different study measuring actual protein concentra-
tion in samples from C57BL/6 mice infected with viru-
lent (ZH-501) and attenuated RVFV (MP-12 vaccine
strain) reached the same conclusion, with inflammatory
cytokines significantly elevated in serum, liver and
spleen of ZH-501 infected mice (100 % lethality) com-
pared to those infected with MP-12 (100 % survival). In
addition, a strong pro-inflammatory and anti-apoptotic
response was detected in the brains of ZH-501 com-
pared to MP-12 infected mice, which could explain de-
velopment of neurological disease [30].

Contrary to the abovementioned studies in mice which
showed a correlation between a pro-inflammatory re-
sponse and lethal outcome, a recent study of human
serum collected during the 2000/01 RVF outbreak in Saudi
Arabia from laboratory confirmed cases found the oppos-
ite correlation. A total of 26 human sera, 6 from fatal and
20 from non-fatal cases were tested using a multiplex assay
to determine serum concentration of 39 cytokines [31].
The investigators showed significant differences in concen-
trations of five soluble factors between fatal and non-fatal
cases. Levels of the chemokine GRO (Growth related
oncogene; CXCL1) and soluble CD40L (CD154) were
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significantly elevated in non-fatal vs fatal cases, while the
contrary was true for cytokines IL-1a (proinflammatory)
and IL-10 (immunosuppressive) as well as IL-1RA (a nat-
ural inhibitor that through binding the IL-1R counters the
proinflammatory effects of IL-1a and IL-1f). The investi-
gators concluded from their data that an overall proin-
flammatory response may be associated with patient
survival. The ability of infected individuals to effectively
control replication of RVFV, which is likely affected by
various factors including immune competence, underlying
conditions, co-infections, host genetics and overall health,
contributes to a good prognosis. This is evidenced by data
showing a clear correlation between virus concentration in
serum and disease outcome, with virus replicating on to
an average of 2.3 logs (TCIDs() higher in fatal cases com-
pared to non-fatal cases [32].

In this study we evaluated the role of chemokines and
inflammatory cytokines in RVF pathogenicity by testing
stored serum from patients who became infected during
the 2010/11 outbreak of RVF in South Africa. Our results
indicate that individual host innate response to infection,
specifically inflammation, is likely an important contribut-
ing factor to pathogenesis. The up- or downregulation of
certain inflammatory cytokines and chemokines correlated
with either a good prognosis or a lethal outcome of infec-
tion. The data presented in our study further demonstrate
the contributory role of dysregulated inflammatory re-
sponses in host individuals to RVF pathogenesis.

Results

Clinical data

Patients presented with non-specific symptoms such as
fever, myalgia, malaise and headache. More detailed clin-
ical information was available only for a portion of the
fatal cases (n=18). The information is summarized in
Table 1. Not all of these cases were included in the virus
titer and/or cytokine analysis due to insufficient sample
volume. A total of 12 of the 18 fatal cases had severely
raised liver enzymes (either one or both ALT and AST)
on admission to hospital (liver enzymes could not be mea-
sured in two cases due to poor sample quality or insuffi-
cient volume); 12 had raised urea and creatinine; 16 had
thrombocytopenia; 14 presented with hemorrhagic symp-
toms and four presented with encephalitis. Of note, three
of the four fatal cases that presented with encephalitis
were HIV positive (case submission data). Of the four, two
presented only with encephalitis, one with additional
thrombocytopenia and the last also with hepatitis, renal
failure, thrombocytopenia and hemorrhagic syndrome.

Serum RVF virus titers

Recent infection with RVF virus was confirmed in 278
cases, of which 25 were fatal, by one or more of the fol-
lowing methods: RT-PCR, IgM ELISA, virus isolation.



Table 1 Clinical laboratory values for the individual fatal cases for which these values were available from the referring hospital

Sample ID  ALT  Elevated/ low AST  Elevated /low Platelets Elevated /low  White cell Elevated /low  Urea Elevated/low  Creatinine Elevated/low Included in
(U/L)  (normal ALT  (U/L)  (normal AST ~ (x 10°%/L) (normal platelet count (x 10°L) (normal white  (mmol/L) (normal urea (Mmol/L)  (normal creatinine cytokine analysis?
range 10-40) range 10-40) range 140-420) cell range 4-11) range 2.5-6.7) range 57-113)
SPU100/10 6397  Elevated 13149 Elevated 54 Low na. na. na. na. na. na. Yes
SPU105/10 2965  Elevated 6280  Elevated 50 Low 6.07 Normal 49 Normal 96 Normal Yes
SPU59/10 3148  Elevated 6938  Elevated 113 Low 126 Elevated 15.5 Elevated 504 Elevated Yes
SPU97/10 1912 Elevated 7824 Elevated 13 Low 1.98 Low 223 Elevated 385 Elevated Yes
SPUB6/10 8007  Elevated 17719 Elevated 40 Low 6.23 Normal 16.2 Elevated 460 Elevated Yes
SPU162/10 2906  Elevated 6424  Elevated 9 Low 791 Normal 34.1 Elevated 711 Elevated Yes
SPU68/10 2991  Elevated 4742 Elevated 2 Low 9.11 Normal 59 Elevated 1421 Elevated Yes
SA1372/10 4710  Elevated 9130 Elevated 13 Low 1376 Elevated 209 Elevated 66.2 Normal Yes
SA1151/10 3079  Elevated 913 Elevated 96 Low 14.28 Elevated 126 Elevated 501 Elevated Yes
SA1457/10b 8353  Elevated na. na. 36 Low 8.96 Normal 16.9 Elevated 188 Elevated Yes
SA979/10 30 Normal 87 Elevated 27 Low 16.85 Elevated 543 Elevated 2031 Elevated Yes
SA1598/10% 37 Normal 108  Elevated 49 Low 491 Normal 33 Normal 55 Low Yes
SA744/10 3359  Elevated 8192  Elevated 8 Low 6.16 Normal 226 Elevated 286 Elevated Yes
SA1245/10% 39 Normal 126 Elevated 279 Normal 10.32 Normal 11.5 Elevated 66 Normal No
SA559/10 na. na. na. na. 56 Low 2 Low na. na. na. na. No
SA663/10 na. na. na. na. 65 Low 16.6 Elevated 159 Elevated 560 Elevated No
SA596/10 10000 Elevated 14000 Elevated 8 Low 6 Normal na. na. 647 Elevated No
SA558/10° 46 Elevated 107 Elevated 209 Normal 6.2 Normal 7.1 Elevated 109 Normal No

ALT alanine transferase, AST aspartate transferase. The asterisk (°) indicates the three HIV positive cases, which presented with encephalitis. The hash sign (b) indicates the case which presented with encephalitis but
with unknown HIV status
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Of the 25 fatal cases, virus titration was performed on
13 samples only due to limited volume (n=38), and a
portion of fatal cases were sampled only after the
viremic stage (n=4). Of the remaining 253 non-fatal
RVF cases, virus was titrated from 85 samples. The
remaining samples (# = 168) were excluded either due to
insufficient sample volume or because the patients were
no longer viremic at the time of blood collection. Due to
insufficient number of samples taken on individual days
post disease onset, statistical significance of differences
in individual viral loads was calculated on the overall av-
erages spanning all days post onset in fatal and non-fatal
cases. The median serum viral loads, with confidence in-
tervals and p-values to denote statistical significance,
were determined. Individual serum viral loads are shown
in Fig. 1. Blood was collected from fatal cases on average
(median) 5 days post disease onset (range 0 — 10) and
yielded a median viral load of log;y 4.5 TCIDs5e/ml
serum (log;o 3.7 — 5.3 at 95 % confidence). Blood collec-
tion from non-fatal cases occurred on average (median)
1 day post onset (range 0 — 7) and yielded a median viral
load 1-log lower than that observed for fatal cases (logig
3.5 TCID5o/ml serum, range log;o 2.9 — 4.1 at 95 % con-
fidence). The differences between fatal and non-fatal
cases of collection post disease onset (p=0.002) and
viral load (p = 0.04) were statistically significant.

Virus whole genome sequences

There were no significant nucleic acid sequence differ-
ences between isolates from fatal (#z =6) and non-fatal
(n = 6) cases.
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Serum cytokine concentrations
From a total of 25 fatal cases, we performed cytometric
bead array (CBA) cytokine analysis only on 19 samples [col-
lected on average (median) 5 days post onset, range 0—10].
The six excluded samples could not be tested due to insuffi-
cient sample volume. A total of 33 serum samples from
non-fatal cases were selected to represent the closest pos-
sible match to days post onset in fatal cases (and based on
available volume) from the outbreak serum panel [collected
on average (median) 2 days post onset, range 0 — 13]. A
total of eight serum samples from healthy and RVF sero-
logically negative (IgM and IgG, results not shown) individ-
uals sampled during a post-outbreak survey were used as
negative controls (representing healthy uninfected persons).
Due to the same limitations as for measuring the viral
loads, statistical significance of differences in cytokine
responses were initially calculated using the overall aver-
ages spanning all days post disease onset. The results
from individual cases are shown along with averages for
specific days, in Table 2 and Fig. 2. For those cytokines
and chemokines showing significant differences when
analyzed using the overall data, the results from fatal
and non-fatal cases were subsequently grouped in two
groups according to early (days O — 3) and later periods
(days 4 — 13) after disease onset and analyzed again be-
tween these two groups. The detection of serum tumor
necrosis factor (TNF) and the p70 active heterodimer of
interleukin-12 (IL-12p70) was very low and intermittent
in all sample groups. The overall average concentration
of interleukin-1-beta (IL-1B) was similar in all three
groups, and in general detected at low concentrations.
Serum levels of monokine-induced-by-gamma-interferon
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Fig. 1 Individual and average RVFV viral loads in serum over time. Individual viral loads in serum are indicated per each time point post onset of
disease: blue squares indicate individual non-fatal cases and red dots indicate individual fatal cases. Median viral loads at each time point are indicated

by open blue squares (non-fatal) and red circles (fatal). Certain days are represented by only one data point per data set, in which case no medians are

shown (days 5, 6, 10). Maximum two samples for respective days were available from fatal cases, thus averages are shown and not medians
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Table 2 Chemokine and cytokine concentrations in individual samples studied
Sample ID Patient Day post Disease  IL-8/ CXCL8 IL-1Bpg/ml IL-6 IL-10 TNF  IL-12p70 CCL5/ RANTES CXCLY/ MIG  CCL2/ MCP- CXCL10/ IP- Comments

gender onset outcome pg/ml pg/ml pg/ml  pg/ml pg/ml  pg/ml pg/ml 1 pg/ml 10 pg/ml

SPU100/10 M 8 Fatal 7355 183 6526.7 5924 183 132 3179 217886 49430.5 254483 Hemorrhagic

SPU105/10 M 10 Fatal 1486.7 54 379.0 96.3 0.0 0.0 665.1 314371 330423 231763 Hemorrhagic

SPU59/10 M 0 Fatal 10046.3 220 89566 1610 7.5 0.0 368.6 191859 13389.9 273930 Hemorrhagic

SPU97/10 M 7 Fatal 15565.7 122 540055 9156 23 0.0 486.9 10273 110083 18799.8 Hemorrhagic

SPU86/10 M 5 Fatal 3218 2.8 3212 380.8 6.1 0.0 6249.8 75359 61358 24694.0 No hemorrhagic syndrome

SPU126/10 F 3 Fatal 13129 10.1 13717 679 9.7 0.0 6104 26129 1176.5 281424 Sindbis IgM
positive

SPU162/10 F 2 Fatal 5852 7.0 949.5 834 0.0 0.0 285.0 42258 7587 281424 Hemorrhagic

SPU115/10 M 0 Fatal 658.7 59 4767 11800 00 0.0 13250 8430.9 13114 28335.1

SPU68/10 M 5 Fatal 1933 56 44.0 16.2 348 00 1141 1696.1 5293 252762 Hemorrhagic

SA1372/10 M 3 Fatal 1298.1 52 3009 1384 52 52 3247 8670.0 700.1 12711.7 Hemorrhagic, Sindbis
IgM positive

SA1151/10 M 8 Fatal 3320.7 27.7 48731 606 26 57 506.2 34137.3 159786 217045 Hemorrhagic

SA1457/10 M 6 Fatal 3853 0.0 4546 1108 0.0 6.2 23206 2790.1 5615 3829.0 Hemorrhagic; Encephalitis;
HIV status unknown

SA979/10 F 7 Fatal 1524.6 7.3 783.2 54 0.0 22 4575 2910.1 747.6 766.1 Normal liver enzymes;
Hemorrhagic; Sindbis
IgM positive

SA1598/10 F 8 Fatal 7824 46 1527 65 0.0 6.2 6043.0 9164 1721 3239 HIV+; encephalitis only; Normal
liver enzymes; No hemorrhagic
syndrome

SA744/10 M 2 Fatal 4330 0.0 160.3 287 22 50 3679 45226 14306 20833.0 Hemorrhagic; Sindbis
IgM positive

SA868/10 M 1 Fatal 5430 0.0 29.0 1337 0.0 64 71317 1429.9 511.8 214512

SA486/10 M 3 Fatal 13809.7 21.1 140559 1260 24 74 10131 567344 22156.8 195444

SA1325/10 M 8 Fatal 6503.5 6.8 940.1 1732 27 6.0 4679.1 28687.8 271273 20772.2

SA1448/10 F 5 Fatal 2618 0.0 39.7 120 0.0 5.1 15101.6 3926 936 1322 Sindbis IgM positive

MEDIAN RESULTS IN FATAL CASES 7824*% 59 476.7 1108%** 23 50 61047 ¥xxx 4527 6% ** 1311.4* 21451.2%**

SA342/11 M 0 Survivor  303.7 26 184 0.0 23 0.0 24828.0 105.6 1564.9 27541 Hospitalized

SA257/10 M 2 Survivor 736 0.0 119 538 0.0 0.0 16970.3 256.3 7889 57444 Hospitalized; Sindbis
IgM positive

SA591/10 M 0 Survivor  69.3 27 258 0.0 0.0 0.0 43974 110.7 49343 2100.1 Hospitalized

SA921/10 M 1 Survivor - 34.0 8.1 276 0.0 0.0 0.0 13747.7 236.0 33309 176521 Hospitalized

SA1601/10 M 7 Survivor  184.0 9.8 967.3 15.1 0.0 0.0 42580 84.2 11369 668.8 Hospitalized
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Table 2 Chemokine and cytokine concentrations in individual samples studied (Continued)
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SA327/11
SA250/10
SA317/10
SA093/10
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SA523/11
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Survivor
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Survivor
Survivor
Survivor
Survivor
Survivor
Survivor
Survivor

Survivor

Survivor

Survivor

Control

Control

150.2
295.7

3764.8
1844.0
1341.5
4657.3
2657
132.7
1159
296.0
4996
54.2
10789.3
469.1

36647.8
171.2%
14.5
37.7

28
0.0

102.7
194
8.1
36.9
0.0
30
0.0
76
94
4.9
2028
14.9
9.0
8.8
0.0
58
2.7
0.0
5.1
0.0
0.0
0.0
55
0.0

0.0
921.1
49
6.0
0.0

478
322

3403.8
864.8
370.1
8.0
514
127.8
10.5
3098
3143
793
32289
179.8
96
17.2
257
481
266
403
94.2
9.1
534
26.8
224
174

74
37442
40.3
5.7

6.9

0.0
0.0

108
0.0
6.7
0.0
325
6.7
0.0
70.2
0.0
0.0
0.0
136
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
32

1718
584
50
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
22
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
2.7
0.0
0.0
0.0

0.0
32

24
2.7
0.0
0.0
28
0.0
00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
55
49
3.2
2.7
0.0
53

26
33
0.0
0.0
0.0

3686.7
6099.1

9180.2
6815.2
4776.0
121429
7936.6
17843.0
6680.6
45704
8316.3
102599
16001.6
16421.8
18602.3
125049
6213.1
51028
84804
19184.5
58102
7534.2
5295.1
8815.6
191919
14600.1

197582
19391.7
8815.6
4606.7
15593.2

13904.5
3539

112504
856.5
8724.8
16954
58326
3465.7
3259
92173
3069.1
23929
40624
3479.0
2380
7294
4903
449.0
22145
2179.7
1849.5
7728
4027.0
1520.0
626.6
1064.3

5535
5394
1695.4*
2137
2193

109183
7293

15232.2
3805.3
7047.2
614.6
17407.5
108164
29239
179782
5206.3
35614
1010.0
8817.0
35992
2622.1
9184
23656
104473
8363.5
1286.1
23574
8440.0
2786.1
4289.8
40009

832.6
900.0
3599.2%
9.3
135.2

Hospitalized

Hospitalized; WNV and
Sindbis IgM positive

Hospitalized
Hospitalized
Hospitalized
Hospitalized

Hospitalized

Sindbis IgM positive

Sindbis IgM positive

WN and Sindbis
IgM positive
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Table 2 Chemokine and cytokine concentrations in individual samples studied (Continued)

SPU332/10/27
SPU332/10/11
SPU332/10/2
SPU332/10/6
SPU332/10/8
SPU332/10/25

MEDIAN RESULTS IN CONTROLS

N/A
N/A
N/A
N/A
N/A
N/A

Control
Control
Control
Control
Control

Control

46.8

9.5
375

6.2
89
0.0
0.0
50
00
25

13.1
58
212
0.0
7.5
0.0
6.4

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
2.2
2.2
4.8
24
1.1

176583
15274.5
14419.2
245403
17996.2
54.8

15433.8

21793

843.8
132.2
227.5
00

179.8

501.1
374
601.2
459
205
0.0
129.8

* denotes statistical significant increase relative to results in controls (p < 0.01)

** denotes statistical significant increase relative to results in survivors (p < 0.01)
*** denotes statistical significant decrease relative to results in controls (p < 0.01)
**** denotes statistical significant decrease relative to results in survivors (p < 0.01)
Note: because of the 1:4 dilution of serum for the cytokine analysis, a “0 pg/ml” value represents a limit of detection rather than absolute absence of the detected protein
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than absolute absence of the detected protein

Fig. 2 Individual and average cytokine concentrations in serum over time. Individual cytokine concentrations in serum are indicated per each time point
post onset of disease: blue squares indicate individual non-fatal cases and red dots indicate individual fatal cases. Average concentrations at each time
points are indicated by open blue squares (non-fatal) and red circles (fatal). The continuous green line indicates the average concentration in negative
control samples (RVF naive individuals) and thus has no bearing on the days indicated on the x-axis. Certain days are represented by only one data point
per data set, in which case no medians are shown (days 1, 4, 6, 10 and 13). For days where less than three samples were available per dataset, averages
are shown instead of medians. Note: because of the 1:4 dilution of serum for the cytokine analysis, a “0 pg/ml” value represents a limit of detection rather

(CXCL9/MIG), interferon gamma-induced protein 10
(CXCL10/1P-10) and interleukin-10 (IL-10) were signifi-
cantly increased in samples from fatal cases relative to
survivors and controls using the overall data. When
comparing early samples (day 0 — 3; p =0.08) and later
samples (day 4 — 13; p=0.03) from fatal cases to non-
fatal cases, the differences in CXCL9/MIG concentration
were not statistically significant. CXCL10/IP-10 was sig-
nificantly increased in early samples (p <0.0001) from
fatal cases compared to early samples from non-fatal
cases, but not in later samples (p = 0.06). When compar-
ing IL-10 levels in early (p=0.12) and later (p =0.05)
samples from fatal and non-fatal cases as opposed to
using overall data, differences were not statistically sig-
nificant. Serum levels of Interleukin-8 (IL-8/CXCL8) and
monocyte chemotactic protein-1 (CCL2/MCP-1) were
significantly increased in samples from fatal cases and
non-fatal cases compared to negative controls, but not
between fatal and non-fatal cases when using overall
data. Interestingly, three fatal cases (SA979/10, SA1598/
10 and SA1448/10) had significantly lower IP-10 levels
compared to other fatal cases. Interleukin-6 (IL-6) serum
levels were substantially higher (>10 fold) in serum from
fatal cases compared to non-fatal cases and negative con-
trols, but the differences were not statistically significant
(p=0.13 and 0.1) due to substantial variations in samples
from fatal cases. IP10 and IL-6 were also increased in sur-
vivors relative to controls, but to lower levels than in fatal
cases and not with statistical significance in the case
of IL-6. It is noteworthy that chemokine ligand 5
(CCL5/RANTES) was significantly decreased in serum
from fatal cases compared to survivors and controls using
overall data. Serum samples collected from fatal cases
early after onset contained significantly less RANTES than
serum from non-fatal cases collected in the same time
frame (p <0.0001). The decreased RANTES in later sam-
ples from fatal cases compared to non-fatal cases was also
statistically significant (p = 0.01).

Three of the fatal patients had strikingly low concentra-
tions of IP-10 compared to the median of 21451.19 pg/ml
in fatal cases. Clinical data were unavailable for one of these
cases but interestingly the remaining two did not present
with any liver involvement (normal liver enzyme counts). A
heat-map diagram showing relative levels of each chemo-
kine or cytokine is shown in Fig. 3, with main functions in

the host response to infection. Positive correlations were
observed when comparing viral load in fatal cases to IP-10
(r=0.649; p=0.003) and TNF (r=0521; p=0.022) re-
spectively (Fig. 4). Positive correlations were observed when
comparing viral load to IP-10 (r=0.548; p = 0.01) and MIG
(r=0.575; p=0.008) in a subset of the non-fatal cases
(non-hospitalized patients; n=21). No other statistically
significant correlations were observed.

Discussion

The clinical manifestations of severe RVF during the
2010/11 RVF outbreak in South Africa included liver
failure, renal failure, thrombocytopenia, encephalitis and
hemorrhaging; they are similar to those reported previ-
ously [5]. A small number of both fatal and surviving pa-
tients had IgM antibodies against other common
arboviral diseases in South Africa, including West Nile
virus and Sindbis virus. The high percentage of positive
HIV status amongst RVF cases associated with encephal-
itis noted in our study corresponds to earlier observa-
tions. A high percentage (89 %) of human cases during
the 2007 Tanzania outbreak presented with encephalop-
athy and all patients with known HIV status, of whom
75 % died, were among this group [6].

It was previously shown that RVFV replicates to sig-
nificantly higher levels in patients with fatal outcome
compared to survivors [32]. Our results point to the
same conclusion, but we only found a 1-log;, difference
in average virus titer (TCIDso/ml) in serum between
fatal and non-fatal cases, compared to a 2.3 log;, differ-
ence shown in the previous study. This difference is
likely due to differences in time of sample collection
post disease onset. Samples were collected on average
3 days post onset from both fatal and non-fatal cases in
the previous study (ranges 1-7 days from fatal, and 0 to
10 days from non-fatal), compared to 5 days from fatal
(range 0-10) and 1 day post onset (range 0-7) from
non-fatal cases in this study. The immune response of
the host plays a role in the pathogenesis and thus the se-
verity of disease in an infected individual. Dates of dis-
ease onset were recorded by healthcare professionals at
the hospitals, clinics or general practitioners consulted
by patients. Day post onset of blood collection from a
number of cases was established as zero (0) due to onset
date being recorded as the same date as blood collection.
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This could likely be attributed to increased awareness of
RVF during the outbreak resulting in sick people seeking
medical attention immediately upon feeling unwell. One
can, however, not rule out incorrect information re-
corded by professionals or incorrect/inaccurate informa-
tion supplied by patients, which is a limitation of this
study. There was no significant sequence difference be-
tween isolates recovered from fatal and non-fatal cases.
The role of the host inflammatory response in RVF
disease development has not been extensively studied
and most studies have been conducted in laboratory ani-
mal models which do not necessarily accurately reflect
the response in a host species. Studies in the mouse

model revealed a strong involvement of inflammatory
and anti-apoptotic responses in lethal outcome [29, 30].
The only previous study in humans concluded that a
pro-inflammatory response was required for patient sur-
vival after comparing concentrations of soluble factors
in serum from six fatal (serum collected average 4.8 days
post onset) and 20 non-fatal cases (serum collected aver-
age 3.75 days post onset) sampled during the Saudi Arabia
outbreak of 2000/01 [31]. Based on results from these
previous studies, all pointing towards involvement of the
inflammatory response in RVF disease outcome, we
investigated the concentration of cytokines involved in
inflammation in a larger panel of human serum
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Fig. 4 Correlations between viral load and chemokine/cytokine levels. The relationship between serum levels of chemokines/cytokines and viral load
(log) was evaluated using the Spearman correlation coefficient. Obvious outliers were excluded from analyses. Only significant correlations (P <0.05)
are shown and were observed in non-hospitalized non-fatal cases (a) and in fatal cases (b). The P values are indicated
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samples collected from a more recent outbreak to gain
more knowledge of this aspect of RVF pathogenesis.

Although, on average, samples were collected later
after onset of illness from fatal cases than survivors, the
inclusion of data from healthy control individuals serves
to normalize the data within the period of acute RVFV
infection. To further account for the possible effect of
sample time collection, data were compared between
fatal and non-fatal cases using the overall dataset, and
further grouped according to early and later time points
after disease onset. The very low to absent detection of
IL-1p and TNF corresponds to the previous study using
human samples [31]. Similar to the previous study, we
found an increase in the immunosuppressive cytokine
IL-10 in fatal cases, while the previous study also found
an increase in pro-inflammatory cytokines CXCL1/GRO,
which binds to one of the IL-8 receptors CXCR2, and
sCD40L in survivors leading the authors to conclude
that a pro-inflammatory response is indicative of survival
from RVFV infection [31]. In contrast, we found that
upregulation of certain proinflammatory cytokines sig-
nificantly correlates with a fatal outcome, which corre-
sponds to the two previous studies in mice and is likely
influenced by the specific cytokines analyzed in the dif-
ferent studies [29, 30].

In this study IL-6 and IL-8, were detected at similar
levels in fatal cases and survivors, and were increased
when grouped together as RVFV infected individuals
(fatal cases and survivors) compared to uninfected indi-
viduals (negative controls). Both cytokines can play a
role in inflammation, which confirms that, regardless of
disease outcome, inflammation is triggered during RVEV
infection in humans, as has been reported in other viral
hemorrhagic fevers [33-37]. Interleukin-8 (IL-8) is a
pro-inflammatory mediating chemokine produced by
macrophages in response to infection, while IL-6 is an
inflammatory cytokine that also mediates fever. It’s im-
portant to note that fatal outcome from Ebola virus dis-
ease (EVD) correlates strongly with significantly higher
IL-6 and IL-8 compared to non-fatal outcome [38], con-
trary to our results which show similar levels of both in
fatal cases and survivors. However,, EVD has a notably
higher fatality rate than RVF and their etiologic agents
have different mechanisms by which they counteract
host immune responses. A higher level of both cytokines
are indicative of liver involvement and damage, as IL-8
has been shown to strongly contribute to liver inflamma-
tion [39] while IL-6 is involved in liver regeneration after
damage [40].

The following pro-inflammatory chemokines were signifi-
cantly increased in fatal cases when compared to survivors
and negative controls: CXCL9/MIG and CXCL10/IP-10; or
in fatal cases and survivors compared to negative controls:
CCL2/MCP-1. The chemokines CXCL9 and CXCL10 bind
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to the same receptor CXCR3. These results correspond to
observations on other viral hemorrhagic fevers (VHFs) such
as hemorrhagic fever with renal syndrome (HFRS), Severe
Fever with Thrombocytopenia (SFTS), Crimean-Congo
hemorrhagic fever (CCHF) and Ebola virus disease (EVD)
[33-38, 41]. The proinflammatory chemokines are involved
in the mobilization of various immune cells to the site of in-
fection that include natural killer cells, dendritic cells, and
monocytes/macrophages. It is also interesting that three fatal
cases that had very low levels of IP-10 compared to other
fatal cases (between 27 and 60 fold lower compared to me-
dian for the fatal group), which corresponded to absence of
liver failure in two (detailed clinical information not available
for the third). The positive correlation between viral load
and IP-10 found in fatal cases and non-fatal cases (non-hos-
pitalized) suggests that high viral load possibly contributed
to liver damage in the individuals in this study.

It is noteworthy that the immunosuppressive anti-
inflammatory IL-10 was also increased in fatal cases versus
survivors and negative controls, which suggests an imbal-
ance in inflammatory response, however increased IL-10 is
a common occurrence in patients infected with VHF path-
ogens mentioned above. Interestingly the serum concentra-
tion of CCL5/RANTES, a chemokine also involved in
chemotaxis of lymphocytes, monocytes, and eosinophils,
was significantly decreased in fatal cases compared to sur-
vivors and negative controls. RANTES plays a role in the
activation and proliferation of T-cells and is thus pro-
inflammatory, further pointing towards the dysregulation of
the inflammatory response during RVF infection. RANTES
levels have been shown to be low in severe and fatal cases
of bacterial sepsis, meningococcal disease, Chikungunya
fever and cerebral malaria in children [42—-45]. Two studies
have shown similar levels of RANTES during infection with
Ebola and Sudan viruses, when comparing fatal to non-fatal
cases [37, 38], while a recent study found increased
RANTES levels in surviving pediatric Ebola virus disease
patients [46]. RANTES is released by a variety of cell types,
including platelets [47-50] which play a major role in blood
clotting. From the limited number of fatal cases for which
more detailed clinical information was available (#=18),
four did not display hemorrhagic manifestations. Two of
these were not included in our cytokine analysis due
to insufficient sample volume. However, we noted
that the remaining two non-hemorrhagic cases,
which were included in the cytokine analysis, had
strikingly higher levels of RANTES (10 fold at
6249.81 pg/ml and 6042.98 pg/ml) compared to
other fatal cases (median 610.4 pg/ml). Although
statistically weak in terms of sample numbers, this
result is interesting and might point towards an as-
sociation of low RANTES and hemorrhagic manifest-
ation of RVF. No correlation was observed between
platelet counts and RANTES levels (R*=0.005)
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within the fatal case group and platelet counts were
not available for non-fatal cases.

When the fatal and non-fatal datasets were grouped
according to early and later after disease onset, only two
cytokine/chemokine concentration differences remained
statistically significant; RANTES (early and later after
disease onset) and IP-10 (early after onset). The loss of
statistical significance of factors previously identified as
significant in the overall groups is likely due to the de-
creased sample numbers once data were stratified ac-
cording to time. A very strict alpha (a) value of 0.01 was
also used as opposed to the usual 0.05 to ensure robust-
ness of statistical conclusions.

A number of the cytokines and chemokines that were
raised or decreased in fatal cases versus survivors and nega-
tive controls, were in turn also significantly, albeit to a
much lesser extent, raised or decreased when comparing
RVF survivors to negative controls. This indicates that a
certain level of inflammation is normally elicited by RVFV
infection, even when the host is able to overcome the infec-
tion, but that the inflammatory response in these surviving
individuals is much less severe and at a more appropriate
level, or that the ability to terminate inflammatory re-
sponses were less effective in fatal cases. Inflammatory cy-
tokines and chemokines form an integral part of the innate
response to infection, responsible for recruiting and activat-
ing various immune cells and acting as co-stimulatory sig-
nals to induce adaptive immunity. Therefore a certain level
of elevated cytokines is required for a host to mount an ef-
ficient immune response to infection. The balance and level
of these cytokines seem to be very important in RVE, with
dysregulation likely contributing to a fatal outcome. The
underlying host factors that might contribute to either a
well-controlled or uncontrolled inflammatory response
during RVFV infection and other hemorrhagic fever virus
infections remains to be investigated. These differential re-
sponses and outcomes, aside from the extent of viral ex-
posure, are likely influenced by host genetics, lifestyle, diet,
underlying conditions or medication.

Conclusions

An uncontrolled inflammatory response to RVFV infec-
tion correlated with a fatal outcome in certain individ-
uals infected with the virus during the 2010/11 RVF
outbreak in South Africa. The cytokines identified in our
study could be used as indicators of fatal outcome, but
more importantly could help focus efforts on treatment
therapies, possibly those aimed at decreasing the effects
of an aberrant inflammatory response.

Methods

Patient samples

During the 2010/11 RVF outbreak in South Africa, human
serum samples from suspected RVF cases were submitted
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to the Centre for Emerging and Zoonotic Diseases, Na-
tional Institute for Communicable Diseases (NICD-NHLS),
for laboratory confirmation, which included screening for
other arboviral infections [51]. Of a total of 278 laboratory
confirmed cases, 104 sera were analyzed in the study, of
which 19 were from fatal, and 85 from non-fatal cases. Sera
were separated from clotted blood and aliquoted for rou-
tine diagnostic testing and -70 °C storage for follow-up
testing. Ethical clearance for the use of the samples was ob-
tained from the University of the Witwatersrand Hu-
man Research Ethics Committee (HREC), clearance
number M120239.

Virus titration

Titration of virus in human serum was performed as de-
scribed previously [52] by preparing quadruplicate tenfold
dilutions in culture medium on microtiter (96-well) tissue
culture plates, addition of Vero cells and incubation at
37 °Cin 5 % CO, incubator for up to 14 days. Cytopathic
effects (CPE) were recorded and virus titers calculated by
the Karber method [53] were expressed as median tissue
culture infectious dose (TCIDsg) per ml of serum. Only
serum samples of sufficient volume, and from which virus
was isolated in suckling mice and/or viral RNA detected
by RT-PCR during the diagnostic process, were subjected
to TCIDs titration (7 = 98 serum samples).

Whole genome sequencing of RVFV isolates

A total of 12 viral isolates (first passage on Vero cells)
were selected for whole genome sequencing, consisting
of six isolates from fatal cases and six isolates from non-
fatal cases. Vero cells were infected with human serum
and grown until 80-90 % CPE. To avoid accumulation
of misleading mutations in the virus genome during
in vitro passaging of virus in Vero cells, we sequenced
first passage Vero isolates. Supernatants (SNF) were har-
vested, clarified of cellular debris and RNA extracted
from 140 upl SNF using the QIAamp viral RNA kit
(Qiagen, Germany). RVF genome specific primers de-
scribed previously [54] were used to amplify whole S
and M segments and two overlapping fragments of the L
segment using a Titan One step RT-PCR kit (Roche,
Germany). RT-PCR products were cleaned up using a
Promega Wizard PCR clean up system (Promega, USA).
Sequencing was outsourced to the Stellenbosch Univer-
sity Central Analytical Facilities (SUN-CAF) and per-
formed as follows. Purified amplicons were barcoded
and sequenced using 316 Chips with 200 bp chemistry
on an Ion PGM™ system (Life Technologies, USA). Ana-
lysis of sequence data were performed using the Torrent
Suite software. Reads were mapped to Genbank consensus
sequence (NCBI BioProject PRJNA14631) using Mira
version 3.9.18 (http://mira-assembler.sourceforge.net/) to
obtain a FASTA file.
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Serum cytokine quantification by Cytometric Bead Array
(CBA)

A total of 60 serum samples were selected for CBA ana-
lysis. This total consisted of 19 serum samples from fatal
cases, 33 serum samples from non-fatal cases and eight
serum samples from uninfected persons (healthy con-
trols) sampled in a post-outbreak survey. The samples
from infected patients (fatal and non-fatal) consisted of
a selection of sera virologically or serologically labora-
tory confirmed cases. Available sample volume was a
limiting factor with regards to the selection of samples
for this particular analysis.

All serum samples were tested in duplicate at 1:4 di-
lution and CBA kits designed to measure specific sets
of cytokines were used. The BD CBA Human Chemokine
kit (Becton, Dickinson and Company, USA) was used to
quantitatively measure interleukin-8 (IL-8), RANTES
(CCL5), monokine induced by interferon-gamma (CXCL9/
MIG), monocyte chemoattractant protein-1 (MCP-1) and
interferon-gamma-induced protein-10 (IP-10). The BD CBA
Human Inflammatory Cytokines kit (Becton, Dickinson and
Company, USA) was used to quantitatively measure IL-8,
interleukin-1p (IL-1pB), interleukin-6 (IL-6), interleukin-10
(IL-10), tumor necrosis factor (TNF) and interleukin-12p70
(IL-12p70). Assays were performed according to the manu-
facturer’s instructions. Flow cytometry was performed using
a dual-laser BD FACSCalibur™ system (BD Biosciences,
USA) utilizing BD CellQuest™ software for acquisition.
Dilution series of human cytokine standards, included in
each kit and prepared according to the manufacturer’s in-
structions, were included in each assay run to enable quanti-
fication. Data were analyzed using FCAP Array software
v1.0. Note IL-8 was analyzed with both kits and although
concentrations of the cytokine differed slightly due to the
difference in preparation steps between the kits, the out-
come of fatal versus non-fatal and healthy controls were the
same, thus only results from the Chemokine kit is shown.

The relationship between serum levels of cytokines
and viral load (log) was evaluated using the Spearman
correlation coefficient. Obvious outliers were excluded
from analyses.

Statistics

Equality of variance of cytokines/chemokines between
fatal and non-fatal cases was calculated for each cytokine/
chemokine analyzed using the F-test in Microsoft Excel
Analysis ToolPak. Confidence intervals and p-values (two
sample T-test assuming either equal or unequal variance
depending on the outcome of the F-test) were calculated
using Microsoft Excel Analysis ToolPak. The alpha (a)
value was set to 0.01 to ensure high confidence in statis-
tical significance. Comparison of viral load and cytokine
levels was performed using the Spearman correlation
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coefficient. SPSS software (SPCC Inc., Chicago, Illinois)
were used for these statistical analyses.
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