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De novo assembly and next-generation
sequencing to analyse full-length gene variants
from codon-barcoded libraries
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Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of

complex genetic systems and unveiling structure and function of genetic pathways. Although

high resolution mapping of en masse variant libraries renders molecular biologists to address

genotype-phenotype relationships, long-read sequencing technology remains indispensable

to assess functional relationship between mutations that lie far apart. Here, we introduce

JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by

combining a codon-based molecular barcoding strategy and de novo assembly of short-read

data. We first validate JigsawSeq on small sub-pools and observed high precision and recall

at various experimental settings. With extensive simulations, we then apply JigsawSeq

to large-scale gene variant libraries to show that our method can be reliably scaled using

next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional

genomics and offer the opportunity to explore evolutionary trajectories of protein variants.
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F
unctional analysis of highly complex mutant protein
libraries is a powerful tool for deep mutational scanning
of potential sequence-function relationships. Typically,

random mutagenesis libraries are created by error-prone poly-
merase chain reaction (PCR)1, random shuffling2, programmed
mutagenesis3,4 or assembly of synthetic oligonucleotides5.
Careful scrutiny of variant libraries may enable us to delineate
the crucial role for each sequence variation, leading to the
identification of changes in protein activities. However, as the
number of library sequences exceeds hundreds of clones,
sequence verification of variants becomes limited in scalability,
and only a few clones are subjected to further analysis via
conventional cloning and Sanger sequencing6. Although the
characterization of a few ‘selected’ clones has shown great utility
for discovering sequence information bearing top characteristic
functions, the small number of clones may not represent the
full-spectrum of sequence space that may contain crucial
mutations that are potentially adaptive in a given environment7.

High-throughput sequencing offers enormous benefits in
sequencing analysis of variant libraries because of its un-
precedented accuracy and processing capability. Comprehensive
mapping of promoter regions or protein domains using next-
generation sequencing (NGS), or ‘deep mutational scanning’, has
previously been performed. Pioneering explorations of these
large-scale analysis techniques mainly focused on small genomic
regions that can be sequenced via short-read NGS platforms8–11.
Recently, numerous studies have been undertaken to analyse
longer genomic region on a library scale12,13. For example, the
PacBio RS II platform14, which has been adapted for de novo
assembly of sequencing reads for genome contiguity, was utilized
to analyse libraries with longer region. However, PacBio is still
expensive for general laboratory use and errors should be resolved
via multi-consensus read, requiring large number of reads to
profile large variant population.

The two general categories of short-read sequence assembly
based on hierarchical structuring are as follows: reference-based
and de novo approaches. The former is more straightforward as it
aligns the reads and merges them into final contigs15,16. However,
the aligner must tolerate imperfect mapping to avoid missing true
joins. Error tolerance causes false assemblies making chimeric
contigs. This leads to problems especially when the library is
highly polymorphic. Barcode assignment to each reads would
provide an alternative solution for tracing where original
molecule came from. Promising approach utilizing both
barcoding and sub-assembly has been pursued17,18. These
researchers utilized several nested forward primers and
common random barcode primers to generate templates for
assembly. Subsequently, overlap-layout-consensus assembly was
performed to resolve long-range information. However, PCR
using random primers tends to create biases thereby over-
representing certain templates and preventing perfect assembly19.
As regions to be analysed increase in length, serial tiling of
primers over the target is required such that individual synthesis
of the nested primers would also increase.

Many de novo assembly algorithms20,21 have shown promise
especially for analysing significantly altered genomes. An elegant
de Bruijn22 -based graph provides an efficient solution for
whole-genome assembly. The graph consists of vertices (nodes)
defined by k-mer nucleotides and edges (suffix to prefix k-1 mer
overlaps between reads). Unlike genome assembly which can be
solved in linear time, transcriptome assembly is more complex
and computationally challenging because alternative splicing
produces many isoforms that requires traversing a multi-path
graph23. Likewise, disentangling individual molecules from
closely related species in a metagenome library or error-
prone PCR library is confounded by genomic diversity and

non-uniform coverage of the population. Variability can be
introduced based on compositional bias of sequencing
technologies and cellular copy number variation.

To overcome these limitations, we develop a novel de novo
assembler called JigsawSeq. The method utilizes codon-barcoded
library and cost-effective Illumina NGS platform24 for profiling
the full-spectrum of multiple gene variant libraries via
computational assembly of short reads (Fig. 1a,b). Briefly, one
protein sequences can be reverse-translated to make a diverse,
randomized library of synonymous gene sequences that can be
constructed by incorporating degenerate nucleotides as barcodes
during in vitro library synthesis. When the gene libraries (or gene
variants) are subjected to random shearing for NGS preparation,
even short NGS reads can be connected based on randomized
codons as barcodes to retrace back original sequences. We
demonstrate general applicability of our method by (i) analysing
libraries of pooled gene variants, (ii) implementing different
cloning and library construction methods and (iii) extensive
simulations to show scalability by analysing thousands of gene
variants. We show that our algorithm has high sensitivity and
specificity over a wide range of genes and experimental
procedures. Comparing real and simulated data, our results
highlight the fact that JigsawSeq can be potentially applied even to
evaluating larger (100,000) libraries overcoming the size limit of
the region to be analysed.

Results
Library construction of gene variants using codon barcode. We
constructed variant libraries for genes of various lengths (Fig. 1c):
the self-splicing gene dnaE in Nostoc punctiforme25 (Npu-intein,
411 bp); the far-red fluorescent protein coding gene26 (mcardinal,
735 bp), aminoglycoside 3-phosphotransferase gene (kanR, 816 bp)
and a transmembrane channel protein coding gene27 (tolC,
1482 bp). These genes were selected based on varying gene length
for JigsawSeq efficiency modelling and their utility for protein
engineering studies. In detail, the method used in construction of
a library was as follows: First, we designed oligonucleotides for
full-length gene assembly. The sequences were determined by
reverse-translation of protein sequences with barcodes: N (for A,
T, C or G), R (for A or G) and Y (for T or C). We placed N, R and
Y bases at the third position on the codon (4281 diversity for tolC
with reverse-translated 281 ‘N’ sequences) only if no amino acid
change occurs (Supplementary Table 1 and Supplementary
Data 1). Incorporating degenerate nature of the genetic code,
designing oligonucleotides with synonymous codons that
translate into the same amino acid sequences provides diversity
in making gene variant library. The unique combination of
codons per one variant molecule facilitates one to deconvolute the
pooled libraries by assembling consensus sequences of
fragmented reads (Supplementary Fig. 1). Second, synonymous
gene libraries were generated by assembly PCR28 or ligase chain
reaction29 (LCR; that is, ligation reaction followed by PCR) with
corresponding sense and nonsense oligonucleotides. To achieve
a diverse mutational spectrum at the protein coding level,
we optionally used error-prone PCR to generate libraries
containing non-synonymous mutations (Supplementary Table 2
and Methods).

We then cloned the synthetic gene variants into appropriate
plasmid vectors (Supplementary Figs. 2 and 3; Supplementary
Table 2) and transformed them into Escherichia coli cells.
We limited the initial population to a few thousand clones
(Supplementary Fig. 4) for a model study. For a positive control,
we randomly sub-sampled 96 colonies from the initial pool
and combined them for subsequent NGS analysis. In addition,
each colony was separately sequenced for Sanger sequencing to
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identify true positive sequences. For simplicity, we characterized
each library with the corresponding notations; for example,
kanR_initial is the original pool of thousands of kanR gene
variants, and kanR_Sub contains the pooled 96 clones prepared
from kanR_initial. We noted that not all colonies contained a
cloned gene because of incomplete cloning efficiency. Plasmids
from two different pools were randomly sheared into 200–400 bp
fragments and further treated to prepare standard NGS
sequencing libraries. Finally, each gene library was sequenced
with the Illumina HiSeq 2500 platform (Methods).

The core algorithm of JigsawSeq. We performed de novo
assembly of sequenced short-read data using a modified de Bruijn
graph (Fig. 2a–c) to reconstruct full-length gene variants. In
general, de Bruijn graph provides overlap information in DNA
substrings from sequencing reads. The words of length k (k-mer)
represent nodes and adjacent k-mers overlap by (k-1) mers are
called edges. Assembling reads can be formulated as finding a trail
or Eulerian path that visits edge exactly once. Initially, we made
nodes for every (k-3) mer appearing as consecutive substrings of
raw reads. Then, nodes were connected using edges (k-mer
substrings of raw read) when two (k-3) mer nodes are the prefix
and suffix of a k-mer edge. To save the computational costs on
assembly, infrequent nodes and edges were masked according to
input threshold parameters. Next, we defined the nodes aligned at
the beginning and end of backbone vector sequences, adjacent to
inserted gene sequence, as initial and terminal seeds. We further
defined ‘contig’ as the full-length DNA segment by traversing
overlapped consensus nodes from initial to terminal seeds and
explored all possible contigs using de Bruijn graph. Lastly, to filter
spurious contigs, raw sequencing reads were re-aligned into
candidate contigs, and depth distributions with exact sequence
matches were examined. We assumed the read depth mapped to
true positive candidate gene contigs would be evenly distributed
because we randomly sheared whole plasmids containing the gene
variant library. With regard to contigs of various genes confirmed
by Sanger sequencing, we determined the cut-off of the coefficient
of variation (CV) (ratio of the standard deviation to the mean of
the aligned depth distribution), which maximizes sensitivity
(recall) and predictive positive value (precision). We retained
contigs with uniform depth distribution, which had a lower CV
than threshold for further analysis (Methods).

Validation of JigsawSeq on sub pool data. To optimize
parameters for de novo assembly, we first compared Sub-NGS
libraries with verified Sanger sequences and calculated precision
and recall according to different k-mer sizes: 60, 75, 90, 105 and
120. As expected, precision increased as k-mer length increased
because increasing k-mer length will cover more randomized
bases, promoting contig uniqueness (Fig. 2d,e). From both recall
and precision results, we determined the k-mer size as 120 and
applied this value for analysis of all libraries.

We observed that, on average, 93% (90–96% range) of contigs
detected by JigsawSeq (five sub-pools) were validated by Sanger
sequencing (Fig. 2f–j). Next, we simulated our data to examine
sensitivity via the number of raw reads (Supplementary Fig. 5).
Overall, with even B1 million reads, Sub-pools showed high
sensitivity (average: 81%). Notably, for Npu-intein, we recovered
492% of contigs using B1.0� 106 reads (B0.3% of HiSeq 1
lane). Not all gene variants validated by Sanger sequencing
were retrieved in our result of Sub NGS pool, partly due to
non-uniform growth of cells containing specific plasmids
(Supplementary Fig. 6); on average, 1.4 contigs (0–4 range for
five sub-pools) in the Sanger set were unrepresented, even in the
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Figure 1 | Overview of JigsawSeq pipeline. (a) General scheme of

gene library construction leading to NGS. Native protein sequences were

reverse-translated with barcodes (N, R and Y). Forward and reverse flanking

sequence were attached to both ends of reverse-translated DNA

sequences. Black regions represent flanking vector sequences. After LCR or

assembly PCR, assembled genes were cloned into an appropriate vector.

Sub-pools (Sub) were generated by isolating 96 colonies from its initial

pool. Then, these pools were subjected to standard NGS library preparation.

For performance validation, we verified 96 colonies by Sanger sequencing.

(b) Schematic representation of overview of de Bruijn graph-based

assembly of a codon-barcoded library. Codon-barcoded reads interlock with

each other to assemble final contigs. (c) Library insert sizes were verified by

agarose gel electrophoresis.
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raw NGS read, indicating that missing contigs were not due to
de novo assembly and were actually not sequenced.

Next, we evaluated potentially ‘functional variants’, defined
as in-frame contigs without mutations, such as insertions or
deletions that would result in a premature stop codon (Fig. 2k
and Supplementary Table 3). Notably, we identified mutations
separated by long spans of identical sequences (Supplementary
Fig. 7). Because of inherent synthetic oligonucleotide errors30

(usually deletion errors), as the number of oligonucleotides
needed to synthesize the gene increases, more non-functional
variants would likely be created. Next, when comparing two
different library construction methods (for example, assembly
PCR versus LCR) for mcardinal genes, we observed a marginal
difference in the proportion of functional variant contigs (LCR:
41%, assembly PCR: 30%).

Simulation of scalability in terms of data and computation. To
verify that our method could be reliably scaled to larger libraries,
we performed in silico simulation of high-throughput sequence
data (150 bp paired-end reads) for tolC and kanR assuming
uniformly distributed sequencing error rate of 0.1% (substitution
errors are dominant in Illumina platform). The simulated
templates consisted of fixed length of gene sequences plus back-
bone seed region (±150 bp sequences flanking the start and end
of the gene) to map the initial and terminal seeds for assembly.
We reasoned that removal of backbone plasmid sequences would

aid accurate assembly as unwanted nodes create false paths
making it computationally intensive. First, the amino acid
sequence was reverse translated using N, R and Y. These three
ambiguous sequences were set to one of possible bases with
uniform probability. Then, random mutation was generated with
various mutation rate conditions mimicking an error-prone
PCR library. Finally, we simulated two different models for
comparison: First, with no cell growth bias (evenly distributed
number of templates of distinctive molecules) with uniform
distribution of coverage. Second, coverage based on negative
binomial distribution with empirical determination of parameters
mu and sigma reflecting the cell growth bias observed in the
initial pools (Supplementary Fig. 8). The rationale for choosing
negative binomial distribution is that the model is useful for
explaining biological variability.

In the simulation, we found that a biased distribution of the
cellular contents required higher coverage (12� for uniform,
60� for the negative binomial model for tolC, Supplementary
Fig. 9 and Supplementary Fig. 10a) to rescue a rare (0.1–0.2%
allele frequency) population as observed in the actual distribution
of initial pools. We observed a linear increase in peak memory
usage and running time with respect to the number of population
to be analysed. Based on the negative binomial distribution,
which reflects more realistic cell behaviour, a 10,000 variant
library of tolC can be efficiently assembled in 1.1 h (11 G RAM
with 3.3 GB data, for kanR: 0.7 h, 6.5 G RAM with 2.1 GB data)
with high sensitivity (Fig. 3). When comparing the actual initial
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pool of B10,000 variant population with the simulated pool, we
estimated that real data showed increase in running time and
memory usage since we utilized sequencing reads from whole
plasmid sequences, which could generate unwanted nodes
(k-3 mer nodes created by backbone sequences) that induce
ambiguous paths complicating assembly. Thus, we discarded
reads that were properly aligned to the reference backbone
plasmid sequences (except ±150 bp for the initial and terminal
seed detection regions) to achieve more efficient performance
(Supplementary Table 4).

The discrepancy between the real and simulated data results
from accumulated sequencing errors as data size increases. Also,
variable indel polymorphisms could be generated during the gene
library construction and cloning step which also complicate graph

structures. These issues together would be likely to create false
nodes that hamper accurate assembly. As k-mer content increases
(longer path), it dramatically affects memory usage and operation
time. We finally demonstrated the capability to analyse 100,000
variant populations in less than 12 h (105 G RAM for tolC).
The whole process was performed using an Intel(R) Xeon(R)
processor with a 2.93 GHz CPU with 192 GB of main memory.

Analysis of initial pools and data estimation. When comparing
contigs in the initial pool to Sanger validated sequences, we
observed that 19 out of 71 true contigs were missed (14/92, for
kanR). Functional variants from the initial pool accounted for
43.5% of the total contigs for the kanR library, whereas they
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accounted for only 6.2% of total contigs in the tolC library,
consistent with an expected accumulation of oligonucleotide
errors as gene length increases. We then investigated whether
missing Sanger sequences in the initial pool were due to the
parameter optimization or an insufficient amount of sequencing
data. With exhaustive simulation under various parameters
(Supplementary Table 5), we found that the default seed cut-off
parameter was too strict for evaluating the initial pool, especially
for current large pools that showed a right-skewed distribution.
The default seed cut-off was determined as follows: First,
the distinctive initial and terminal nodes were enumerated by
aligning k-3 mer nodes in the graph. During the cloning step,
errors might be introduced in the region that overlaps seed
detection regions flanking gene sequences. Thus, given the node
distribution, we filtered rare candidate seeds to discriminate
erroneous seeds (by default, o1/150 of the maximum node
depth). Considering the depth (we defined this value to reflect a
certain cell population or plasmid copy number) distribution of
the initial large pool, applying a strict seed cut-off value might
have caused us to miss true contigs. This finding suggests that
true contigs could be missed with the default seed cut-off because
certain paths (nodes) of the graph (especially, start and end
regions) would be missed by discarding the rare nodes
(Supplementary Fig. 11a).

For tolC, out of 19 missing contigs, four were rescued when the
cut-off was adjusted to 200 indicating that rare mutations were
present in the flanking gene regions. For kanR, only 1 of the 14
missing contigs was rescued after this adjustment. Then, we
additionally examined the rest of the missing contigs for the two
initial libraries. We plotted the number of k-3 mer nodes (x axis)
present in the raw fastq by sliding 3 bases as we traverse the graph
for assembly (Supplementary Fig. 11b). Notably, we discovered
that the rest of the missing contigs in the kanR and tolC initial
pool were because of the empty nodes that were present in the
middle of the graph prohibiting the full assembly. For this reason,
we concluded that more sequencing would resolve the issue of
missing nodes in the graph. We sequenced additional initial pool
of tolC (30 GB of fastq, total 65 GB) to see if how many of the
missing contigs could be recovered. In total, six more true contigs
(rescued four additional contigs containing rare seeds and two
additional contigs with empty nodes in the middle of the graph)
were recovered. For kanR, total of four contigs were recovered
(rescued one contig missed by seed cut-off and three contigs
containing empty nodes) with the same amount of data as tolC.
Remaining contigs still contained broken nodes that hampered
assembly of the full-length contigs. We hypothesized that the
sequencing was still insufficient to recover whole population.

To fully explore how much sequencing is required to analyse
the initial pool library, we first modelled the coverage distribution
to be negative binomial as described above, with a fixed mutation
rate 0.01 for the error-prone library tolC and no mutations for
normal PCR library kanR. We simulated virtual templates of
comparable library size with actual initial pools under different
mean coverages (m¼ 12, 24, 36, 48, 60). For 60x mean coverage,
the recovery rate reached to 100%. Next, we sub-sampled the
initial data pool to ½ fraction and plotted this against mean
coverage (Supplementary Fig. 10b,c). Interestingly, the recovery
rate (79%) under 36� mean coverage in the simulation was very
close to the value (81.7%) achieved under actual initial pool
tolC data (mean coverage value: 36.8� ). Finally, we linearly
extrapolated the graph and estimated that a factor of 1.6 would
ensure 60� mean coverage. We concluded that 104 GB of
sequenced data (65 GB*1.6) would saturate the larger pool
(0.013 GB per variant, total data/assembled number of contigs).
As in the simulation settings, discarding reads that are aligned to
reference backbone plasmid sequences (except ±150 bp for the

initial and terminal seed detection regions) required much less
data. Thus, we recommend potential practitioner to sequence
only region of interest for efficient performance. With less data
size, one can analyse a large library very efficiently since
unwanted backbone sequences are removed prior to the assembly
step. In the case of kanR (Supplementary Fig. 12), the recovery
rate reached 100% when coverage is 48� . The recovery rate of
kanR (86%) in the simulation (36� ) was comparable to the value
(89.1%) with given coverage (37.1� ) at a factor of 1.0 (65 GB) of
the actual initial data pool of kanR. A factor of 1.3 would ensure
48� coverage when we extrapolated the graph. We concluded
that 84.5 GB of sequenced data (65 GB*1.3) would saturate initial
pool (0.014 GB per variant).

To examine the characteristics of these synthetic gene libraries
for potential bias in protein expression, we calculated the codon
adaptation index for functional variant contigs from the initial
pools of kanR and tolC. Protein expression levels are often
affected by codon usage, promoter sequences and ribosome
binding sites31 (RBS). However, we observed codon adaptation
index values converged to narrow ranges in multiple libraries
(kanR_initial, 0.603±0.018 and tolC_initial, 0.608±0.013),
Supplementary Fig. 13), suggesting expression artefacts would
be minimized in our setting. Nonetheless, the full effects of codon
usage on protein expression using our method remain to be
explored, and we are actively engaging on gene-based selection
system in a further study.

Simulation under various mutagenesis scenarios. To investigate
the effects of barcode density in the assembly, we sub-sampled
barcodes of tolC under binomial distribution with parameters
defined as follows (Supplementary Fig. 14); n¼maximum
possible number of barcodes, P¼ frequency of down sampled
barcodes. The simulated condition was the same as described
above with fixed mutation rate of 0.01 and evenly distributed
coverage (12� ). We found that downsampling to P¼ 0.6 caused
a significant reduction in sensitivity (o20%) when sequencing
error rate is 0.1%. We then examined how fixed region (not
randomized using codon) length affects the performance of a
program by varying window size (Supplementary Fig. 15). As the
length of fixed region is increased, we observed an increase in
false positives while sensitivity remained high. Applying B1% of
the mutation on the fixed region facilitated accurate assembly
(PPV of B99%) since mutated sequences could serve as a unique
barcode.

Furthermore, we simulated 100,000 variant library of tolC
containing two distant regions with singleton missense mutation
to explore the possibility to resolve long-range contiguity
information. We randomly chose library from all possible
combinations of missense mutation in two regions (20 AA
(amino acids)� 34 AA position of region A� 20 AA� 34 AA
position of region B, Supplementary Fig. 16). In fact, this large-
scale site-directed mutagenesis can be done using microarray-
programmed oligonucleotides, which could dramatically reduce
cost, time and labour. We observed high sensitivity (98.2%)
and specificity (97.9%) on simulation performance. Finally, we
applied JigsawSeq to measure the diversity of full-length antibody
sequences (Supplementary Fig. 17). We downloaded human
heavy and light (kappa) chain V, D, J segment sequences from the
International Immunogenetics Information System. For heavy
chain, in silico joining of the V, D and J segments was performed.
Likewise, light chain segments of V and J were also joined. The
complementarity determining regions (CDRs) of single-chain
antibodies are defined using Kabat’s numbering scheme32. Heavy
and light chain sequences were joined with the help of linker
peptide sequences (GGSGGSGGASGAGSGGG) which were
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reverse translated to DNA sequences using ‘N’. Using codon
redundancy, other framework regions (FRs) with the exception of
CDRs were randomized with ‘N’ using DP-47 and DPK-22
germline sequences33,34 which are frequently found in human
antibodies. We compared performances of the assembly between
randomized and non-randomized library design. We note
that codon barcodes offer a great advantage in high specificity
(99% versus 54%).

Discussions
In this work, we successfully extend our method to explore
JigsawSeq-based analysis of various synthetic gene variant
libraries of initial pools and find high concordance with
corresponding sub-NGS pools. When comparing between real
and simulated data, accurate assembly can be achieved, provided
that deep and uniform coverage of the population can be
obtained. Although the quest for more accurate and efficient
assembly software remains area of critical development, we
envision that hybrid de novo assembly, using combination of
long-read technology and short-read data offers an alternative
solution. The following four points are notable for further
discussion.

The originality of our method is proven based on the following
four aspects. First, the simplicity of the barcoding design (the
codon is randomized to ‘N’,’R’ and ‘Y’ for every third position)
allows us to reassemble a large number of fragmented sequencing
reads to retrace the original molecule sequences. To investigate
how the barcoding density affects assembly, we randomly
sampled the number of barcodes under a binomial distribution.
Clearly, as decreasing the number of barcodes shows decrease in
sensitivity, a maximum level of randomization of the library is
essential in order to achieve high sensitivity and PPV. Specifically,
the number of barcodes in the k-mer window provides
distinct path for the de novo assembly step. For future users,
conventional mutagenesis methods such as oligonucleotide
assembly and programmed mutagenesis could also be applied
in our experimental framework (Supplementary Fig. 18).

Second, de novo assembly may allow us to explore novel
epistatic interactions between long-range mutations. We
simulated assembly of random mutagenesis library containing
two regions having singleton missense mutation events that are
distant (4800 bp). Simulation results for potential applications of
our method have proven the reliability of this method for
analysing variants that lay farther apart. Further, in silico analysis
of 100,000 unique combinations of single-chain Fv antibody
libraries was carried out and a large repertoire of these antibody
sequences was successfully distinguished at the single molecule
level. When compared with the design with fixed nucleotide
sequences in the FRs, introducing codon barcodes in the
regions facilitated accurate assembly by reducing false positives
significantly. The ability to identify single molecule sequences
in a multiplexed fashion would shed light on the antibody
engineering.

Third, we were able to utilize the sequencing depth information
of each variant to successfully quantify distinctive molecules.
The depth profile of each variant would provide useful metric
for prioritizing variants with desired properties in selection
experiments. In this study, we observed that the functional
variants were highly enriched and suggested that the functionally
important clones would show a high enrichment ratio
(Supplementary Fig. 19). This should be validated further via
additional in vitro protein functionality studies (e.g., enzymatic
activity).

Lastly, JigsawSeq enables ‘selective retrieval’ of target genes
from the reassembled libraries. Using 22–24 bp of primers

(including 7 bp unique nucleotides on average) at both ends of
the target gene as ‘codon-based barcode tags’ for selective
retrieval of desired gene variants from the gene library, the
recovery of the target gene sequences was successful and
sequences were validated by Sanger sequencing (Supplementary
Fig. 20 and Supplementary Table 6).

In summary, our results demonstrate the utility of short-read,
NGS-based identification of full-length gene variant libraries in a
high-throughput manner. We provide robust protocols for the
construction of synthetic and codon-barcoded gene libraries. The
codon-barcoding strategy highly facilitates the analysis of pooled
gene variants using sequencing information obtained from
randomly sheared gene fragments. Shearing whole plasmids,
rather than specifically amplifying the target region, minimizes
the sequencing depth bias across the gene region. As we extend
JigsawSeq’s portfolio of applications to analysing highly diverse
variant libraries, such as antibody genes, our method will provide
a new perspective for understanding the functional consequences
of mutations using gene variant libraries.

Methods
Oligonucleotide design. Protein sequences were reverse-translated in two
different ways. In the first method, protein sequences were reverse-translated using
N (A, T, C or G), R (A or G) and Y (T or C) for the third base of each codon to
construct a synonymous library. The other reverse-translation method used only
N (A, T, C or G). For example, amino acid glycine is reverse-translated to ‘GGN’ as
N could be one of four possible nucleotides to make a synonymous variant library.
In-house Python programming was used to design sense and nonsense randomized
oligonucleotide sequences with appropriate lengths and no interval gaps.
Oligonucleotide sequence information is available in Supplementary Data 1. All
oligonucleotides were purchased from Integrated DNA Technologies (IDT, USA).

Gene library construction using ligase chain reaction. Oligonucleotides
were diluted to a final concentration of 10 mM. A 3 ml aliquot of each sense
oligonucleotide was phosphorylated with 6 ml 10� PNK buffer and 3 ml T4 PNK
(NEB, USA). The final volume was adjusted to 60 ml by adding distilled water
(dH2O) and incubated at 37 �C overnight. Nonsense oligonucleotide pools were
phosphorylated by the same protocol. After 50 phosphorylation, 20 ml sense
oligonucleotide and 20ml nonsense oligonucleotide solutions were mixed with 5 ml
10� Ampligase buffer, 2.5 ml Ampligase (100 U per ml, Epicentre, USA), and 2.5 ml
dH2O. The reaction was performed under the following conditions: (1) initial
denaturation at 95 �C for 3 min; (2) annealing at 95 �C with ramping at 0.1 �C s� 1

until reaching 60 �C; (3) ligation at 60 �C for 2 h; and (4) storage at 4 �C. The
reactions were then purified with a Qiagen PCR purification kit according to the
manufacturer’s instructions (Qiagen, USA).

For the amplification, 1 ml assembled product from the first reaction was mixed
with 7 ml dH2O, 10 ml KAPA HiFi 2� polymerase (Kapa BioSystems, USA), and
1 ml each forward and reverse primers (10 mM). The mixture was subjected to PCR
under the following conditions: (1) 95 �C for 3 min; (2) 95 �C for 30 s; (3) 60 �C for
30 s; (4) 72 �C for 1 min with repetition of steps (2) through (4) for 20 cycles;
(5) 72 �C for 10 min; and (6) 4 �C storage.

Gene library construction through assembly PCR reaction. Sense and nonsense
oligonucleotides were diluted to a final concentration of 10 mM and mixed in equal
proportions. Assembly PCR reactions contained 5 ml oligonucleotide mix, 10 ml
KAPA HiFi 2� polymerase and 5 ml dH2O. The assembly reactions without
primers were performed as follows: (1) 95 �C for 3 min; (2) 95 �C for 30 s; (3) 60 �C
for 30 s with ramping 0.1 �C s� 1; (4) 72 �C 1 min with repetition of steps
(2) through (4) for 20 cycles; (5) 72 �C for 10 min; and (6) 4 �C storage.

For the amplification, 1 ml assembled product from the first reaction were mixed
together with 7 ml dH2O, 10ml KAPA HiFi 2x polymerase, and 1 ml each forward
and reverse primers(10 mM). The mixture was subjected to PCR with the following
conditions: (1) initial denaturation at 95 �C for 3 min; (2) annealing at 95 �C with
ramping at 0.1 �C s� 1 until reaching 60 �C; (3) ligation at 60 �C for 2 h; and
(4) storage at 4 �C. The reactions were then purified with a Qiagen PCR
purification kit according to the manufacturer’s instructions (Qiagen, USA).

Randomly-mutated gene library construction. We used the GeneMorph II
Random Mutagenesis kit (Agilent Technologies, USA) for error-prone PCR. Using
the assembly PCR product as a template, amplification was carried out using the
error-prone PCR protocol according to the manufacturer’s instructions. After
mixing 1 ng (1 ml) template, 5 ml 10� Mutazyme II reaction buffer, 1 ml 40 nM
dNTP mix, 1 ml Mutazyme II and 2 ml each forward and reverse primer (10 mM).
The final volume was adjusted to 50 ml by adding dH2O. The mixture was subjected
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to PCR under the following conditions: (1) 95 �C for 2 min; (2) 95 �C for 30 s;
(3) 55 �C (Tm � 5 �C) 30 s; (4) 72 �C (1 kb min� 1) with repetition of steps (2)
through (4) for 35 cycles; (5) 72 �C for 10 min; and (6) 4 �C storage. Elongation
time varied with gene length. Gel electrophoresis was then used to selectively
retrieve PCR products, which were purified with a Qiagen gel purification kit per
the manufacturer’s protocol.

Construction of backbone plasmid pBR322-du1. In 2009, the Muir group
reported an intein selection system using the kanamycin resistance gene. Their
kanR-Npu selection plasmid includes Nsil and Ncol sites, which were inserted into
the kanR gene through silent mutation. Intein cloning generates a split form of
N-kanR and C-kanR. We obtained this plasmid from the Muir group and retrieved
the kanR sequences from its RBS to the terminator using PCR (Forward: 50-atcgat
aagcttgagcgcaacgcaattaatgt-30 , Reverse: 50- tatagcgctagcGAATTAATTCttagaaaaa
ctcatcgagc-30). The retrieved sequences were cloned into a low-copy plasmid
(pBR322), and the internal intein sequence was substituted by an 87 bp dummy
sequence (‘5-TACAAATCCGCCTAGAGCGGATTTGAACGTTGCTGAAGCAA
CGGCCCGGAGGGTGGCCAGGACGGCCATTGACTGCCAGGAATTAAC-3’)
via Nsil and Ncol restriction digestion to yield a control plasmid (pBR322-du1)
(Supplementary Fig. 2).

Cloning of codon variant library to pBR322-du1 or pEGFP-C1. For cloning
intein, the dummy control sequence in the pBR322-du1 plasmid was replaced by
intein library sequences using NsiI and NcoI restriction sites. Gene kanR, which
was constructed by LCR, was cloned into the pBR322 backbone plasmid using a
one-step isothermal reaction (Gibson assembly35). Because the backbone vector is
large, we divided it into two fragments with an 80 bp-overlap (Supplementary
Fig. 3). The amplified gene insert and the two pBR322 backbone plasmid fragments
were mixed in equal molar ratio to a final volume of 5 ml, and 15 ml assembly master
mixture was added before incubation at 50 �C for 2 h. We constructed the tolC
library using assembly PCR and cloned the inserts into the backbone vector by
Gibson assembly. For cloning mcardinal, we first amplified gene products using
both assembly PCR and LCR. We then cloned the amplicons into a pEGFP-C1
backbone plasmid using Gibson assembly and transformed into competent E. coli
cells (C2566, NEB, USA).

Validation of sub pool by Sanger sequencing. To test the validity of our method,
we confirmed randomly-selected colonies from every gene library pool by
Sanger sequencing. Primers for PCR were designed from ±50 bp upstream and
downstream of the target gene. Sequence analysis was performed using Lasergene
10/SeqMan 5.01 (DNASTAR Inc., USA) (Supplementary Data 2).

Next-generation sequencing and quality filtration. By selecting the desired
number of clones, we controlled the maximum size (96 colonies for Sub-pools and
up to thousands of colonies for initial pools) for our conventional and error-prone
PCR libraries. The plasmids from the clone libraries were extracted using the
Exprep plasmid DNA purification kit (GeneAll, Korea) and were randomly sheared
to a target size of 200–400 bp using an M220 ultrasonicator (Covaris, USA).
Libraries were constructed using the SPARK DNA sample preparation kit
(Enzymatics, USA) according to the manufacturer’s protocol. We further processed
1 mg of sheared DNA by end-repairing with end repair mix and dH2O up to 100 ml.
Next, we mixed 50ml of end-repaired product to A-tailing mix. Then, the Illumina
adaptor loop (NEBNext Multiplex Oligonucleotides for Illumina kit; NEB) was
attached to 40 ml dA-tailed DNA using ligation mix. After cutting the loop with 3 ml
of the USER enzyme (New England BioLabs), we selectively purified 300–500 bp
fragments through gel electrophoresis. Finally, the enrichment reaction with an
index primer was carried out. We sequenced 150 bp paired-end reads with the
Illumina HiSeq2500 platform. To remove sequencing errors, bases with a Phred
quality score of o20 at both ends and more than three consecutive A’s at the
30-end were trimmed.

Construction of contigs by de novo assembly of short reads. JigsawSeq is a
directed acyclic multi-path searching graph based on k-mer strategy. The algorithm
consisted of seven steps (Supplementary Fig. 21). (1) The trimmed reads were
divided into k-mer substrings. (2) To efficiently handle large fastq data, we divided
these k-mer substrings into certain number of bins. A modified de Bruijn graph
was constructed for each bin using (k-3) mer nodes and k-mer edges. The depth of
nodes and edges was defined as the number of detected nodes and edges from raw
reads. (3) The graphs constructed in each bins were merged into single file. For
efficient memory usage, we utilized an indexing strategy using an alphabetically
sorted hash table. (4) To save time and memory usage in the reconstruction process
via the de Bruijn graph, any nodes or edges that appeared only once in the graph
were considered errors and were eliminated. In addition, for each node, the edge
with the highest depth was selected, and edges were pruned if the edge had a depth
of o1/50 of the highest depth linked to a node. (5) Next, all nodes were aligned to
the backbone vector sequences using Burrows-Wheeler Aligner (BWA)36 (0.7.5a-
r405) under non-default parameters (�O2 �E1). Only nodes aligned at the
beginning and end of backbone vector sequences, adjacent to the inserted gene

sequence, were considered initial and terminal seeds. We neglected rare seeds
whose depth was o1/200 of the highest depth of seeds. (6) With passed initial and
terminal seeds, and all possible candidate contigs were explored by traversing the
de Bruijn graph from initial to terminal seeds. Recursive path exploration was
performed until the nodes and edges from the hash table were exhausted. For every
greedy extension, we calculated (k-3) mer nodes (coverage) for each final contigs.
We then defined plasmid copy number variation as the minimum value of all
traversed (k-3) mer nodes. (7) To remove chimeric false-positive contigs from
among the candidates generated during assembly, we aligned paired-end raw reads
to candidate contigs with exact matches using BWA. Then, we calculated the CV of
depth distribution (the standard deviation of depth divided by the mean depth) for
each candidate. We excluded candidates with a higher CV than the cut-off (0.2163
for k¼ 120), which was determined through optimization with validated contigs
via Sanger sequencing. In the algorithm optimization process, we found that
aligning raw fastq reads using BWA requires a high memory server and is also
time-consuming which allowed mild gain to occur in PPV. Thus, this final filtering
step is optional for users. Finally, contigs were aligned to the reference sequence by
implementing a Needleman–Wunsch algorithm in the BioPython function (match
score¼ 2, mismatch score¼ � 1, gap initiation¼ � 3 and gap propagation¼ � 1)
to detect substitutions and indels.

Retrieval of specific variants of kanR variant library. Primer design - To achieve
an appropriate retrieval rate, 50 and 30-end of the primer were designed to target
randomized base, specifically, the forward primer is 24 bp including the start codon
of kanR and the reverse primer contains 22 bp sequences including the stop codon.
On average, seven randomized bases (‘N’,’R’,’Y’) were included in the forward and
reverse primer regions.

PCR amplification—PCR reactions contained 10 ng of kanR plasmid pool, 10ml
of KAPA HiFi 2� polymerase, and 1 ml of 10mM forward and reverse primers.
The conditions for PCR were as follows: (1) 3 min of initial heating at 98 �C
followed by 40 cycles of 98 �C 30 s, 65 �C 30 s, 72 �C 1 min and a final elongation
step at 72 �C for 10 min. Bands at 816 bp were excised from the agarose gel and
purified using a gel purification kit (Qiagen) and the purified DNA was subjected to
Sanger sequencing.

Positive selection for kanR with kanamycin selection. We performed genetic
selection based on kanamycin resistance to screen enriched population for kanR
library. First, 100 ml of initial pool was transferred to 10 ml conical tube containing
LB/Amp (50 mg per ml) and kanamycin (100 mM), then was incubated for 16 h at
37 �C. We hypothesized that significant proportion of non-functional dead clone
would be present in solution after just one round of selection. Therefore, we
transferred 100 ml of the previous selected population to the 10 ml conical tube
containing LB/Amp (50 mg per ml) and kanamycin (100 mM). Plasmid DNAs were
extracted from cloned libraries and randomly sheared with ultrasonicator to a
target size of 200–400 bp. Libraries were constructed using the SPARK DNA
sample preparation kit (Enzymatics, USA) according to the manufacturer’s
protocol.

Availability. JigsawSeq (version r3) is currently written in Perl and is freely
available as open-source software at https://sites.google.com/site/duheebanglab/
software/jigsawseq. It is released under a CC BY-NC-SA license.
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