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Abstract

Summary: DamID is a powerful technique for identifying regions of the genome bound by a DNA-

binding (or DNA-associated) protein. Currently, no method exists for automatically processing

next-generation sequencing DamID (DamID-seq) data, and the use of DamID-seq datasets with nor-

malization based on read-counts alone can lead to high background and the loss of bound signal.

DamID-seq thus presents novel challenges in terms of normalization and background minimiza-

tion. We describe here damidseq_pipeline, a software pipeline that performs automatic normaliza-

tion and background reduction on multiple DamID-seq FASTQ datasets.

Availability and implementation: Open-source and freely available from http://owenjm.github.io/

damidseq_pipeline. The damidseq_pipeline is implemented in Perl and is compatible with any

Unix-based operating system (e.g. Linux, Mac OSX).

Contact: o.marshall@gurdon.cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DamID is a well-established technique for discovering regions of

DNA bound by or associated with proteins (van Steensel and

Henikoff, 2000). It has been used to map the genome-wide binding

of transcription factors, chromatin proteins, nuclear complexes

associated with DNA and RNA pol II (for e.g. Choksi et al., 2006;

Filion et al., 2010; Singer et al., 2014; Southall et al., 2013). The

technique can be performed in cell culture, whole organisms (van

Steensel and Henikoff, 2000) or with cell-type specificity (Southall

et al., 2013), and requires no fixation or antibody purification.

DamID involves the fusion of a bacterial DNA adenine methyl-

ase (Dam) to any DNA-associated protein of interest. The bacterial

Dam protein methylates adenine in the sequence GATC and, given

that higher eukaryotes lack native adenine methylation, the DNA-

binding footprint of the protein of interest is uniquely detectable

through isolating sequences flanked by methylated GATC sites.

However, a major consideration with DamID is that any Dam pro-

tein within the nucleus will non-specifically methylate adenines in

GATC sequences at accessible regions of the genome. For this rea-

son, DamID is always performed concurrently with a Dam-only

control, and the final DNA-binding profile is typically presented as

a log2(Dam-fusion/Dam-only) ratio.

Although the majority of published DamID experiments have used

tiling microarrays for data analysis, next-generation sequencing

(NGS) allows greater sensitivity and higher accuracy. Although sev-

eral recent studies have used NGS with DamID (Carl and Russell,

2015; Clough et al., 2014; Lie-A-Ling et al., 2014; Wu and Yao,

2013), these have relied upon a comparison of peak binding intensities

between read-count-normalized Dam-fusion and Dam samples.

Depending on the characteristics of the Dam-fusion protein (see later)

this approach may lead to real signal being lost, and correct normal-

ization of the datasets is required to detect all binding by many Dam-

fusion proteins. Here, we describe a software pipeline for the auto-

mated processing of DamID-sequencing (DamID-seq) data, including

normalization and background reduction algorithms.

2 Algorithms

Although DamID-seq data can be aligned and binned as per all NGS

data, two issues arise that are specific to DamID. The first major
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consideration is the correct normalization of the Dam-fusion and

Dam-control samples. The greatest contribution to many Dam-fu-

sion protein datasets is the non-specific methylation of accessible

genomic regions (e.g. Fig. 1B), with a mean correlation between

Dam alone and Dam-fusion datasets of 0.70 (n¼4, Spearman’s cor-

relation). Representing the data as a (Dam-fusion/Dam) ratio in the-

ory negates such non-specific methylation. However, strong

methylation signals at highly bound regions in the Dam-fusion data-

set will reduce the relative numbers of reads present at accessible

genomic regions in this dataset (see, for example, the occupancy of

Dam-RNA Pol II over the eyeless gene in Fig. 1), and normalizing

the data based on read counts alone can therefore produce a strong

negative bias to the ratio file [Fig. 1B (iii), Supplementary Fig. S5A].

Depending on the characteristics of the fusion protein, this negative

bias can lead to real signal being lost (Fig. 1). Although microarray

data inadvertently overcame this bias through the manual

adjustment of laser intensities during microarray scanning, until

now no method has existed for correctly normalizing DamID-seq

datasets.

In order to correct for this negative bias we use the read

counts from accessible genomic regions—as determined from

the Dam-only dataset—as the basis for normalization, while avoid-

ing regions likely to contain real signal in the Dam-fusion

sample. We use the following algorithm to adjust the Dam-fusion

dataset.

1. Given the GATC-site resolution of DamID, we divide the read

counts into GATC fragments.

2. All GATC fragments lacking read counts are excluded. The re-

maining GATC fragments are divided into deciles.

3. Given the high probability that the highest 10% of Dam-

fusion read counts represent bound signal rather than back-

ground signal, we exclude fragments that have scores in this

decile.

4. The first three deciles of the Dam sample can generate inconsist-

ent normalization values if included (Supplementary Table S2),

so we exclude fragments that lie within this range.

5. The distribution of the log2(Dam-fusion/Dam) ratio ðx1; x2; . . . ;

xnÞ for all remaining fragments is determined via the Gaussian

kernel density estimate f̂ hðxÞ ¼ 1
nh

Pn

i¼1

1ffiffiffiffi
2p
p expð� ðxi�xÞ2

2h2 Þ, where h

is the bandwidth, estimated via the method of Silverman (1986):

h ¼ 0:9 minðr;IQRÞ
1:34 n�1=5 (where r is the standard deviation of

the sample and IQR the interquartile range). For speed consider-

ations, we estimate kernel density over 300 equally spaced

points within the interval ½maxð�5;minðxÞÞ;minð5;maxðxÞÞ�.
6. The point of maximum kernel density represents the point of

maximum correspondence between Dam-fusion and Dam val-

ues; if both samples are correctly normalized this value should

equal 0. We therefore normalize all Dam-fusion values by

1=ð2arg maxðf̂ hðxÞÞÞ.

In addition to ensuring correct normalization, a second important

consideration is the reduction of background noise. Regions without

specific methylation will have randomly distributed background

counts that, when a ratio file is generated, will generate a large

Fig. 1. Results of the damidseq_pipeline. (A) The gene eyeless (ey) (highlighted) is expressed in D. melanogaster laval neural stem cells (Southall et al., 2013) and

previously published microarray DamID in these cells (i) shows RNA polymerase II occupancy (Southall et al., 2013). (B) Performing DamID-seq in the same cell

type illustrates the high correlation between Dam-Pol II (i) and Dam alone (ii) in terms of RPM (read counts/million mapped reads). Taking the ratio of the two

RPM-normalized datasets fails to show significant RNA pol II occupancy at ey (iii); however, processing via the damidseq_pipeline software successfully recovers

the RNA pol II occupancy profile while minimizing background (iv). See Supplementary Methods for experimental details
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degree of noise. Such noise can potentially obscure peak detection.

In order to mitigate this effect we add pseudocounts to both data-

sets. In order to maintain equivalence between replicates with differ-

ing numbers of reads (assuming that genomebound� genomeunbound)

the number of pseudocounts added is proportional to the sequencing

coverage, thus c reads
bins , where c is a constant. (Supplementary Table S1

for a comparison of gene calls with different read-depths). Adding

pseudocounts increases the number and the total genomic coverage

of detected peaks and increases the signal:noise ratio

(Supplementary Figs S1–S4).

The combination of these two methods compares favorably with

previously published microarray data [Fig. 1B (iv)] or DamID-seq

data (Supplementary Figs S1–S4; Supplementary Fig. S5).

3 Implementation

The damidseq_pipeline software is implemented in Perl, and will

process multiple single-end read sequencing files in FASTQ or BAM

format. The pipeline can match sequencing adaptors to sam-

ple names, automatically identifies the Dam-only control, and per-

forms alignment, read-length extension, normalization, background

reduction and ratio file generation. (Supplementary Methods for

details).

A large number of user-configurable options are provided,

including the ability to adjust the normalization algorithm param-

eters, generate read-count normalized files and add a user-specified

number of pseudocounts. Parameters specified on the command-line

can be saved as defaults if the user desires.

The damidseq_pipeline software is open-source and freely avail-

able at http://owenjm.github.io/damidseq_pipeline. A detailed set of

installation and usage instructions are provided at the above web-

site, along with a small example dataset.
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