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Abstract

Summary: In light-sheet microscopy, overall image content and resolution are improved by acquir-

ing and fusing multiple views of the sample from different directions. State-of-the-art multi-view

(MV) deconvolution simultaneously fuses and deconvolves the images in 3D, but processing takes

a multiple of the acquisition time and constitutes the bottleneck in the imaging pipeline. Here, we

show that MV deconvolution in 3D can finally be achieved in real-time by processing cross-sec-

tional planes individually on the massively parallel architecture of a graphics processing unit

(GPU). Our approximation is valid in the typical case where the rotation axis lies in the imaging

plane.

Availability and implementation: Source code and binaries are available on github (https://github.

com/bene51/), native code under the repository ‘gpu_deconvolution’, Java wrappers implementing

Fiji plugins under ‘SPIM_Reconstruction_Cuda’.

Contact: bschmid@mpi-cbg.de or huisken@mpi-cbg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MV imaging is particularly useful in light-sheet microscopy where

consecutive views are acquired in short succession, allowing recon-

struction of entire developing organisms without artifacts (Huisken

et al., 2004). Due to the low photo-toxicity in light sheet micros-

copy, time-lapse experiments are oftentimes run over days and tera-

bytes of data accumulate quickly. MV fusion is therefore

particularly desirable to be performed in real-time to eliminate re-

dundant information from different views. Best fusion results, how-

ever, are achieved by combining fusion with 3D deconvolution

(Swoger et al., 2007; Verveer et al., 2007; Wu et al., 2013).

Although efficient Bayesian MV deconvolution based on the

Richardson–Lucy (RL) algorithm has been shown recently to out-

perform existing methods in terms of fusion quality and convergence

speed, it is still too slow for real-time processing of typical data vol-

umes (Preibisch et al., 2014).

The RL deconvolution iterations consist only of convolutions

and pixel-wise arithmetic operations and could therefore be signifi-

cantly accelerated using dedicated hardware such as a graphics pro-

cessing unit (GPU). The large memory requirements of MV

deconvolution, however, exceed the limited resources of modern

GPUs even for moderate data sizes (Supplementary Note S1).

Previous attempts therefore required splitting the data into blocks of

appropriate size. Each block then either had to be transferred to and

from the GPU in each RL iteration (Preibisch et al., 2014), or blocks

needed to share a considerable amount of overlap to avoid border

artifacts (Temerinac-Ott et al., 2011). Therefore, GPU-based imple-

mentations only achieved a three-times performance gain (Preibisch

et al., 2014).

2 Results

The primary goal of MV fusion is the improvement of the poor axial

resolution in a single 3D dataset using the superior lateral resolution

of an additional, overlapping dataset, and not necessarily to improve

resolution beyond the intrinsic lateral resolution. We therefore

approximated the full 3D point spread function (PSF) with a 2D

PSF, neglecting one lateral component (along the rotation axis), and

processed each plane orthogonal to the rotation axis independently

(Fig. 1a). Memory requirements were thereby reduced by the num-

ber of lines read out from the camera chip, i.e. typically 100–1000

fold (Fig. 1b). This allowed us to implement the entire MV deconvo-

lution on a GPU. Taking advantage of three CUDA (Compute

Unified Device Architecture) streams, we interleaved GPU
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computations with data transfers, such that not only expensive

copying to and from GPU memory, but also reading and writing

data from and to the hard drive came without additional cost

(Supplementary Note S2). Compared with 3D MV deconvolution,

with and without GPU support, we thereby reduced processing

times by a factor of up to 25 and 75, respectively (Fig. 1c,

Supplementary Table S1), while producing comparable results.

We compared the results of our implementation to the methods

commonly used in the light-sheet community, such as established

3D deconvolution (Preibisch et al., 2014), averaging and entropy-

based fusion (Preibisch et al., 2010) (Fig. 1d–i). Both averaging and

entropy-based fusion were blurry and showed cross-shaped artifacts,

originating from the elongated PSFs along the optical axes. Three di-

mensional deconvolution and our plane-wise variant reduced arti-

facts and enhanced the contrast, thus truly improving the resolution

in the fused dataset (Fig. 1h and i; Supplementary Fig. S1).

Although registration of the different views is still required, it

can be performed in pre-processing before starting a time-lapse ex-

periment, due to the repeatability of high-quality microscope stages.

Multi-view deconvolution can then be performed in real time dir-

ectly as the data is transferred from the camera.

We provide our software as a C library that can be directly

linked to camera acquisition software for real-time processing, and

as plugins for Fiji (Schindelin et al., 2012) (Supplementary

Material).

3 Validation

Our plane-wise deconvolution approximates 3D deconvolution by

neglecting the contribution of the PSF along the rotation axis. It is

therefore suited for systems with a single rotation axis lying within

the imaging plane. Using artificial data (Supplementary Fig. S2 and

Table S2), we confirmed the applicability of our approximation

even if the rotation axis is slightly tilted (Supplementary Fig. S3). Its

validity is independent of the amount of noise (Supplementary Fig.

S4), but depends on the lateral extents of the PSF. Keeping its axial

standard deviation fixed at eight pixels, a typical value measured on

our microscopes, we found that up to a lateral standard deviation of

2–3 pixels, results from plane-wise and 3D deconvolution are undis-

tinguishable (Supplementary Fig. S5). The measured lateral standard

deviation of the PSF was typically between 1.5 and 1.8 pixels on our

microscopes.

4 Conclusion

The photo-efficiency of light-sheet microscopy enables long time-

lapse imaging of living samples to study fundamental questions in

developmental biology. However, its huge data rates also open new

challenges for data processing. A key problem in light-sheet micros-

copy has been the fusion of data recorded from multiple angles. In

this article, we presented a new method that performs MV deconvo-

lution plane-wise, which reduces memory requirements compared

with existing methods and thus permits an entirely GPU-based im-

plementation. The achieved acceleration makes MV deconvolution

for the first time applicable in real-time without the need for data

cropping or resampling.
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Fig. 1. Plane-wise multi-view deconvolution concept and performance. (a) Concept of plane-wise deconvolution for two views. Each dataset is resliced into planes

orthogonal to the microscope’s rotation axis. Datasets are deconvolved plane-by-plane. (b) Memory requirements for traditional 3D and our plane-wise multi-

view deconvolution, for various data sizes and numbers of views, on a logarithmic scale. (c) Execution times for plane-wise multi-view deconvolution, imple-

mented on GPU and CPU, and 3D deconvolution, with and without GPU support. Memory requirements for 3D deconvolution timings for the 20483 pixel dataset

were beyond the capabilities of our workstation. (d–i) Resulting images of a 9 h post-fertilization transgenic Tg(h2afva:h2afva-mCherry) zebrafish embryo, using

different methods (view along the rotational axis, scale bar 100 lm, 10 lm in the inset): (d, e) acquired raw data, (f–i) fusion performed by (f) averaging, (g) en-

tropy-weighted averaging, (h) 3D multi-view deconvolution and (i) plane-wise multi-view deconvolution (10 iterations). (Dell T6100, Intel E5-2630 @2.3 GHz 2 pro-

cessors, 64 GB RAM; Graphics card: Nvidia GeForce GTX TITAN Black)
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