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Current understanding of grapevine defense mechanisms

against the biotrophic fungus (Erysiphe necator), the causal

agent of powdery mildew disease
Wenping Qiu1, Angela Feechan2 and Ian Dry3

The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete
fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the
Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic
resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of
effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a
major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our
understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of
different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application
of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which
will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring
effective and durable resistance in the vineyard.
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INTRODUCTION
Grapevine (Vitis spp.) has been cultivated for human consumption
for over 7000 years. Few horticultural crops have had more histor-
ical, cultural, and social impacts than grapevine. Grapevines are
estimated to be cultivated on over 7.6 million of hectares of land
worldwide1. The majority of wine grape cultivars are derived from
the species Vitis vinifera which originated in Eurasia but are highly
susceptible to the pathogens and pests that are thought to have
evolved on the wild grapevines native to North America. The
ascomycete fungus, Erysiphe necator (syn. Uncinula necator), the
causal agent of grapevine powdery mildew (PM) disease, was
inadvertently introduced into Europe from North America in the
1850s and caused significant losses to viticultural production2. The
fungus has subsequently spread to other grape-growing regions
throughout the world and has changed the practice of viticulture
by requiring the use of frequent and prophylactic spray programs.
Indeed, a report on the use of fungicides in the European Union
over the period 2001–2003 indicated that while viticulture only
accounted for 3.3% of the agricultural area, a staggering 81,000
tonnes of active substance were applied annually to grapevines in
European vineyards, which represented 67% of all fungicides
applied to crops in the EU3. Not only does this translate into
increased production costs for growers, but there is also the
potential impact of these chemicals on the health of beneficial
organisms in the vineyard4 and vineyard workers5, as well as
increased carbon emissions generated from their frequent
application. Thus, the integration of effective genetic resistance
into grape cultivars would reduce the dependence of viticulture
on chemical inputs, leading to significant financial, health, and
environmental benefits.

Wild North American Vitis spp. including V. rotundifolia (syn.
Muscadinia rotundifolia), V. rupestris, V. riparia, and V. aestivalis are
more resistant to PM than European V. vinifera cultivars6. As early as
the late 1800s, grape breeders began introgressing genetic resistance
from the North American Vitis spp. into V. vinifera, resulting in the
generation of many Vitis interspecific ‘French–American’ hybrids.
However, commercial adoption of these new grape cultivars has been
limited, due to the reduced quality of wine made from these resistant
hybrids. Selected accessions of a number of wild Chinese Vitis spe-
cies7,8 have also been reported to show strong resistance to PM, but
apart from some specific examples described below, little information
is available regarding the genetic basis of PM resistance or the quality
of wine produced from Vitis interspecific ‘French–Chinese’ hybrids.

THE BIOTROPHIC FUNGAL PATHOGEN – ERYSIPHE NECATOR
There is insufficient space in this short review to provide a detailed
description of the biology, ecology, and epidemiology of grapevine
PM. Instead, readers are directed to an excellent review published
by Gadoury et al.9 However, a brief description of the infection
process is presented here in order to understand the resistance
strategies used by the grapevine host to restrict fungal invasion
and colonization.

Erysiphe necator is an obligate biotrophic fungus that relies fully
on a host cell in photosynthesis-active tissues to complete its life
cycle. Once a conidiospore of E. necator lands on the epidermis of
photosynthesis-active tissues, it germinates to form a lobed appres-
sorium. Based on studies with other PMs, it is likely that germination
involves the secretion of fungal lytic enzymes such as lipases,
esterases, and cutinases10 which leads to the release of long-chain
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fatty acid derivatives which enhance fungal germination and
development10,11. From the lower surface of the appressorium, a
penetration peg emerges which penetrates the cell wall and
invades the host epidermal cell to form a specialized intracellular
structure called a haustorium. The haustorium is an interface
between the fungus and the host cell that facilitates the dynamic
exchange of molecules derived from both fungal and host cells. The
fungus retrieves hexoses, amino acids, vitamins, and other nutrients
from host cells, through the haustorium, while at the same time
secreting proteins to suppress host defences. If the establishment
of the haustorium and the uptake of nutrients is successful, the
fungus continues to spread via hyphae across the surface, pro-
ducing more appressoria and haustoria at regular intervals. After
5–25 days, sporulation occurs in the form of conidiophores perpen-
dicular to the epidermis on which chains of asexual conidia are
produced and spores are released to start a new cycle of infection12.

PLANT DEFENSES AGAINST BIOTROPHIC FUNGAL PATHOGENS
There are two main strategies that plants use to restrict the invasion
and growth of biotrophic fungal pathogens: penetration resistance
and programmed cell death (PCD)-mediated resistance (Figure 1).
Penetration resistance blocks the breach of the cell wall and mem-
brane by the germinated spore and thus prevents the formation of
the haustorium. The PCD-mediated resistance is exerted inside the
penetrated epidermal cell and induces the death of invaded cell,
thereby terminating the supply of nutrients required by the bio-
trophic fungus for further growth and development.

The innate immune responses in a plant cell happen, consecu-
tively and are interconnected, in two basic forms: pathogen-assoc-
iated molecular patterns (PAMP)-triggered immunity (PTI) and
effector-triggered immunity (ETI)13. PTI is activated by the inter-
action of extracellular pattern-recognition receptors in the plasma
membrane of the host cell and pathogen-specific molecules that
are released from a pathogen14. The fungal PAMP chitin, which is a
major constituent of fungal cell walls, is released during infection by
PM and is detected by a LysM (lysin motif)-receptor-like kinase15.
This, in turn, activates the mitogen-activated protein kinase cascade
which triggers multiple defense responses, including the genera-
tion of reactive oxygen species, defense gene activation, biosyn-
thesis/signaling of plant stress/defense hormones, phytoalexin
biosynthesis, and cell wall strengthening16. PTI is the first line of
defense and provides protection against the majority of microbes
that plants face. However, through evolution, certain isolates have
become ‘adapted’ to a specific host through the development of
effector proteins that are secreted into the plant cell to suppress PTI
and enable the pathogen to become virulent on the host13. Over
time, selected plant species in which PTI had been compromised,
acquired additional receptors (resistance (R) proteins) that specif-
ically recognize these effectors, leading to ETI. R proteins interact
with the effector directly, or indirectly through partner proteins,
leading to the induction of defense responses that share overlap-
ping pathways with PTI17. ETI is most commonly associated with
PCD (observed as a hypersensitive response) which prevents bio-
trophic pathogens, including PM, from obtaining nutrients and
completing its life cycle.

Figure 1. Mechanisms of grapevine defense against the biotrophic fungal pathogen powdery mildew (E. necator). Grapevine powdery mildew
spores were inoculated onto detached leaves of M. rotundifolia (A & B), V. vinifera cv. Cabernet Sauvignon (C) and a V. vinifera backcross progeny
plant containing the powdery mildew resistance gene MrRUN1 (D). Leaf samples were collected after 2 days and fixed and stained with
Coomassie brilliant blue to visualize fungal structures. Panels A and B represent the same field of view but are focused at different levels to
show the germinated conidium (c) and appressoria (ap) on the surface of the leaf (panel A) and the globular papillae (arrows) beneath the
appressoria (panel B) which are blocking penetration and haustoria formation. Panel C shows normal growth of E. necator hyphae (hy) across the
leaf surface of a susceptible grapevine cultivar. Panel D shows the induction of MrRUN1-mediated programmed cell death in penetrated
epidermal cells (arrows) which effectively halts further growth of this biotrophic pathogen.
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PAMP-TRIGGERED IMMUNITY AGAINST POWDERY MILDEW IN
GRAPEVINE
The cultivated grapevine, V. vinifera is resistant to species of PM that
are not adapted to grapevine. For example, the ‘non-adapted’ PM
species, Erysiphe cichoracearum that causes PM disease of cucurbits,
shows much lower rates of penetration of grapevine epidermal cells
than E. necator18 and, as such, is unable to establish a successful
infection. Penetration resistance represents the major component
of PTI against non-adapted PMs in most plant species and has been
shown by forward genetic screens, in Arabidopsis and barley,
to involve the combined action of at least three PENETRATION
(PEN) genes: PEN1, PEN2, and PEN319–21. PEN1 is a member of
the SNARE (soluble N-ethylmaleimide-sensitive factor attachment
protein receptor) family which includes proteins which mediate
membrane fusion events22 and is proposed to have a role in the
trafficking of secretory vesicles to the plasma membrane that con-
tain cargo required for penetration resistance against PM. PEN2 and
PEN3 function in the same penetration resistance pathway in
Arabidopsis which is independent of PEN120. PEN2 is a myrosinase
involved in the biosynthesis of antimicrobial molecules that are
delivered to the site of PM penetration via PEN3 which is an ATP-
binding cassette transporter23,24.

As grapevine is a woody perennial and much more difficult to
transform, it has not been possible to use similar forward genetic
screens to identify basic components of PTI against E. necator.
However, accumulating evidence from studies using other experi-
mental approaches indicates that the PEN1- and PEN2/PEN3-like
pathways are also important components of PTI in grapevine. The
first piece of evidence comes from inhibitor studies. Penetration
resistance of grapevine against the non-adapted PM species E.
cichoracearum was shown to be compromised by the actin cytos-
keleton inhibitor cytochalasin18 which was subsequently shown, in
Arabidopsis, to inhibit the focal accumulation of PEN3 under the site
of PM penetration23. This suggests a role for a PEN3-like protein in
PTI against non-adapted PM in grapevine, but as yet, no ortholo-
gues of the Arabidopsis PEN3 protein have been identified in any

other plant. Recently a PEN1 orthologue from grapevine (VvPEN1)
was cloned and its functional complementation of the Arabidopsis
pen1 mutant demonstrated25. A VvPEN1-GFP fusion protein was
also shown to accumulate under the site of PM penetration as
has been demonstrated for PEN1 in Arabidopsis and barley26. The
accumulation of PEN1 and VvPEN1 under the site of attempted PM
penetration is inhibited by the endomembrane trafficking inhibi-
tors brefeldin A and wortmannin25,27. Feechan et al.18 also demon-
strated that penetration resistance against the non-adapted PM
species E. cichoracearum, in grapevine, was compromised by bre-
feldin A and wortmannin, suggesting the existence of a PEN1-
mediated secretory pathway that is also an important component
of PTI against PM in grapevine.

EFFECTOR-TRIGGERED IMMUNITY AGAINST POWDERY
MILDEW IN GRAPEVINE
The most important class of R-genes in plants are those encoding
proteins with nucleotide binding (NB) site – leucine-rich repeat (LRR)
domains28. These NB-LRR proteins specifically recognize the micro-
bial effector molecules secreted during infection and initiate ETI
which is highly effective against biotrophic pathogens such as PM.
The genomes of perennial woody plants appear to possess a larger
number of NB-LRR resistance genes than annual herbaceous plants
which most probably reflects the more diverse range of pathogens
that perennial plants have to deal with over their lifespan29.

The grapevine genome encodes a large family of NB-LRR genes
that are clustered in tandem repeats in genomic regions30,31.
Tandem repetitive and paralogous R-genes constitute a reserved
genetic army that can be activated whenever there is a need to
battle against invading pathogens. It is therefore reasonable to
expect that a significant amount of genomic diversity exists within
the large number of accessions of wild Vitis species. To date, nine
loci have been identified from a range of different grape species
native to North America, China, and Central Asia, which are thought
to contain R-genes that confer strong resistance to E. necator
(Table 1). The chromosomal location of these loci have been
genetically mapped using molecular markers, although the exact

Table 1. Major resistance loci in grapevine species that confer resistance to the powdery mildew fungus Erysiphe necator

R-locus Source of resistance Origin of R-loci Resistance mechanism Chromosome R-gene type References

RUN1 M. rotundifolia ‘Thomas’ North America PCD of penetrated cell (rapid) 12 TIR-NB-LRR gene (MrRUN1)

functionally confirmed in

transgenic susceptible

cultivars

32

RUN2 M. rotundifolia ‘Magnolia’/

‘Trayshed’

North America PCD of penetrated cell (lower

frequency compared to RUN1)

18 n.d. 35,84

REN1 V. vinifera ‘Kishmish

vatkana’

Central Asia PCD of penetrated cell (significantly

slower and lower frequency than

RUN1) – hyphal growth and

sporulation restricted

13 Maps to a CC-NB-LRR gene

cluster

34,39,40

REN2 V. cinerea ‘Illinois 547-1’ North America PCD of penetrated cell (slower than

RUN1)

14 n.d. 35,85

REN3 Interspecific hybrid ‘Regent’ North America n.d. 15 n.d. 86

REN4 V. romanetii China PCD of penetrated cell (rapid)/callose

encasement of haustoriuma

18 n.d. 37

REN5 M. rotundifolia ‘Regale’ North America Post-penetration but mechanism not

reported

14 n.d. 36

REN6 V. piasezkii China PCD of penetrated cell (very rapid)b 9 n.d. Riaz S, 2015,

unpublished data

REN7 V. piasezkii China n.d. 19 n.d. Riaz S, 2015,

unpublished data

n.d. – not determined.
a Feechan A, 2015, unpublished data.
b Dry I, 2015, unpublished data.
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position on the chromosome in question is only currently known for
the Resistance to Uncinula necator (RUN1) locus which is co-located
with a locus for Resistance to Plasmopora viticola (downy mildew)
(RPV1) on chromosome 1232.

RUN1 is one of the three PM resistance loci that have been identified
from different accessions of the wild North American grapevine spe-
cies M. rotundifolia (Table 1) and is, to date, the only pathogen resist-
ance locus that has been cloned from any grapevine species32.
Sequencing of the RUN1/RPV1 locus revealed that it contains a family
of seven putative Toll/interleukin-1 receptor (TIR)-NB-LRR-type R-
genes. However, only one of the candidate TIR-NB-LRR genes at the
locus (MrRGA10) was found to confer strong resistance to PM when
transformed into a range of susceptible V. vinifera cultivars including
Shiraz, Tempranillo, and Portan. This gene, designated MrRUN1, con-
fers complete resistance against isolates from Australia, North America,
and France by rapidly inducing PCD in penetrated epidermal cells32.
However, a PM isolate (Musc4) collected from the southeastern region
of North America33, to which M. rotundifolia is native, was found to be
capable of breaking MrRUN1 resistance32 indicating that the effector
recognized by the MrRUN1 protein has either been mutated or com-
pletely lost from the Musc4 isolate.

The other two PM resistance loci identified in M. rotundifolia are
located on different chromosomes to RUN1 (Table 1). Allelic variants
of the RUN2 locus, RUN2.1 and RUN2.2 on chromosome 18, have
been identified in the M. rotundifolia cultivars ‘Magnolia’ and
‘Trayshed’, respectively34 whereas RUN1 is thought to have origi-
nated from the cultivar ‘Thomas’35. Interestingly, while RUN2.1-
mediated PM resistance does not appear to be as strong as RUN1,
it is not broken by the Musc4 isolate making it a potential candidate
for pyramiding with RUN135. REN5 was derived from the M. rotundi-
folia cultivar ‘Regale’ and maps to the upper portion of chro-
mosome 1436. The mechanism underlying the resistance
mediated by REN5 is yet to be determined but appears to be
initiated at the post-penetration phase36.

Recent research has demonstrated that wild Chinese Vitis species
also represent an important source of major dominant R-genes for
PM resistance. REN4 has been successfully introgressed into V. vini-
fera from the Chinese species V. romanetii and shown to segregate
as a single dominant R-locus37. REN4 resistance was initially
reported to be associated with high levels of penetration resistance
and did not appear to be dependent on the induction of PCD37.
However, more recent studies indicate that REN4-mediated resist-
ance occurs post-penetration and involves two different mechan-
isms – penetrated epidermal cells either undergo PCD or the
haustoria become encased in callose thereby effectively blocking
nutrient uptake (Feechan A, 2015, unpubl. data). Interestingly, this
dual resistance phenotype is reminiscent of the type of response

mediated by the broad spectrum PM resistance gene RPW8.2 from
Arabidopsis which has a unique structure in terms of other known R
proteins38. Another important observation is that REN4 resistance is
not broken by the Musc4 isolate35 suggesting that REN4 targets a
different E. necator effector to that recognized by the RUN1 protein.
This is most probably the result of REN4 co-evolving with different E.
necator isolates in China to those in North America.

The wild Chinese grapevine species V. piasezkii also appears to
contain at least two PM resistance loci, designated REN6 and REN7,
on chromosomes 9 and 19 respectively (Riaz S, 2015, unpublished
data). A comparison of the resistance responses of the REN6, REN4,
and RUN1 loci, against the same Australian E. necator isolate, in the
same genetic background, indicated that PCD initiation is most
rapid in penetrated cells containing REN6, with less than 5% of
appressoria producing a secondary hypha, compared to ,15%
and 30% in grapevines containing REN4 or RUN1 respectively (Dry
I, 2015, unpublished data).

Finally, it is now clear that certain accessions of V. vinifera from
Central Asia also contain a major R-gene that, while less effective
than RUN1-mediated resistance, still significantly restricts PM
growth and sporulation. Two V. vinifera cultivars, ‘Kishmish vatkana’
and ‘Dzhandzhal kara’, originating from Uzbekistan, were shown to
induce PCD in penetrated epidermal cells at a higher frequency
than susceptible vines, but the speed of the PCD induction was
much slower than that observed in a genotype containing
RUN139. As a result, more PM hyphal growth and sporulation is
observed on REN1 plants than on RUN1 plants, but this is still much
less than observed on susceptible V. vinifera cultivars. The REN1
locus has been mapped to a 1.4 Mbp region on chromosome
1340. The syntenous region in the PN40024 V. vinifera reference
genome contains a cluster of CC-NB-LRR genes40, but no data have
yet been published to indicate what candidate R-genes are present
in this region in ‘Kishmish vatkana’ or ‘Dzhandzhal kara’. Riaz and
co-workers34 subsequently identified an additional six V. vinifera
and two V. vinifera subsp. sylvestris accessions from Central Asia that
also contained a REN1-like locus. Based on genetic marker analysis,
they concluded that the REN1-like resistance in V. vinifera subsp.
sylvestris was most likely the progenitor of the resistance in the
Central Asian V. vinifera accessions.

The existence of major R-gene resistance against E. necator in Vitis
species native to China and Central Asia brings into question the
current dogma that this pathogen is native to North America and
was spread to all grape-growing regions from this one source. It
seems more likely that E. necator isolates have been in existence in
Central Asia and China for a much longer period than previously
thought to explain the evolution of these R-genes in the wild grape
species from these regions34.

Table 2. Genes from wild grapevine species postulated to be involved in resistance to the powdery mildew fungus Erysiphe necator

Gene Description Vitis species Function and phenotype References

VaEDS1 Enhanced Disease Susceptibility

ortholog

V. aestivalis ‘Norton’ Defense pathway regulator – complements Arabidopsis eds1

mutant. Constitutively high expression in V. aestivalis

resistant genotype and regulated by SA and PM

41,49

VpPR10.1 Pathogenesis-related protein 10 V. pseudoreticulata ‘Baihe-35-1’ Antifungal activity. Increases resistance to PM in

agroinfiltrated grapevine leaves

71

VpALDH2B4 Aldehyde dehydrogenase V. pseudoreticulata ‘Baihe-35-1’ Activation of SA signaling? Enhanced resistance to PM when

overexpressed in Arabidopsis

43

VpWRKY1 WRKY domain Transcription factor V. pseudoreticulata ‘Baihe-35-1’ Transcriptional activator of defense-related genes. Enhanced

resistance to PM when overexpressed in Arabidopsis

42

VpRFP1 C4C4-type RING finger protein V. pseudoreticulata ‘Baihe-35-1’ Transcriptional activator of defense-related genes? Enhanced

resistance to PM when overexpressed in Arabidopsis

45

VpEIRP1 E3 ubiquitin ligase Erysiphe necator-

induced C3HC4 RING finger protein

V. pseudoreticulata ‘Baihe-35-1’ Ubiquitination and degradation of a negative transcriptional

regulator of defense? Enhanced resistance to PM when

overexpressed in Arabidopsis

44
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DOWNSTREAM GENES IMPLICATED IN RESISTANCE TO
POWDERY MILDEW
In addition to the isolate-specific R-genes that confer ETI in pene-
trated epidermal cells (Table 1), a number of other genes have also
been implicated in PM resistance in certain wild Vitis species
(Table 2). These genes have been identified because (i) they show
increased transcription during PM infection and/or show differ-
ential expression levels between PM-resistant wild Vitis species
and susceptible V. vinifera cultivars and (ii) they confer increased
levels of resistance to PM when overexpressed transiently in grape-
vine leaves or stably transformed into wild-type or mutant lines of
the model species A. thaliana41–45.

One example of this is the cultivar Norton which is derived from
the North American grapevine species V. aestivalis and which is
highly resistant to E. necator in comparison to V. vinifera cv.
Cabernet Sauvignon46. Investigation of the PM-responsive tran-
scriptome of the two grapevine species revealed that an ortholog
of the Arabidopsis Enhanced Disease Susceptibility 1 (EDS1) was dif-
ferentially expressed in Norton and Cabernet Sauvignon. EDS1 tran-
scription was induced in response to PM in Cabernet Sauvignon
whereas its transcription levels were constitutively high in Norton
and always exceeded the levels induced in Cabernet Sauvignon41.
The level of salicylic acid was also found to be significantly higher
in Norton than in Cabernet Sauvignon under non-PM-infected
conditions46. EDS1 has been previously been shown to regulate
resistance to host-adapted biotrophic pathogens in Arabidopsis
in a SA-dependent manner47,48. Constitutively expressed VaEDS1
complemented the function of the mutant eds1 gene in
Arabidopsis41 and rendered the pen2/eds1 mutant resistant to
PM. The VaEDS1 promoter was also shown to be inducible by SA
and PM49. These results strongly suggest that the constitutively
high levels of SA and SA/PM-responsive EDS1 in Norton may
account for the elevated resistance of this genotype to PM.

A large number of studies have also been carried out to deter-
mine the genetic basis of PM resistance in certain accessions of the
wild Chinese grapevine V. pseudoreticulata. At least five different
genes have been identified that may contribute to PM resistance in
this wild species (Table 2). The transcription factor, VpWRKY1, was
rapidly induced in V. pseudoreticulata within 12 h of inoculation
with E. necator and the level of expression was found to be corre-
lated with the level of resistance42. Furthermore, ectopic expression
of VpWRKY1 in Arabidopsis enhanced resistance to E. cichora-
cearum. Two other genes that appear to be upregulated in the V.
pseudoreticulata accession Baihe-35-1, in response to PM inocu-
lation, and which both confer resistance to PM when ectopically
expressed in Arabidopsis, belong to the Really Interesting New
Gene (RING) finger protein gene family44,45. The RING finger domain
has been shown to have E3 ligase activity, which is important in
ubiquitin-dependent protein degradation50. Although plant cells
contain hundreds of distinct E3 ligases involved in ubiquitination
reactions, in a range of different biological processes, to date there
are only limited reports of any RING-type E3 ligases involved in
plant defense51,52.

EVIDENCE FOR POWDERY MILDEW SUSCEPTIBILITY GENES IN
GRAPEVINE
As described above, adapted PM species are able to successfully
penetrate their cognate host by secreting effector proteins that sup-
press host PTI. However, successful penetration by the adapted PM
species has been shown to be dependent on the presence of a func-
tional allele of the Mildew resistance Locus O (MLO) in a range of host
species including barley53, Arabidopsis54, tomato55, and pea56.

MLO proteins belong to large gene families which are unique
to plants and encode seven-transmembrane domain proteins
of unknown biochemical activity localized in the plasma mem-
brane57. Significantly, only specific MLO genes within the family

are capable of acting as PM susceptibility genes and these encode
proteins with conserved motifs within the cytoplasmic C-terminal
domain of the MLO protein58. The mechanism by which MLO
proteins act as PM susceptibility factors is unknown. One possibil-
ity is that adapted PM species are able to utilize these specific MLO
proteins to suppress host PTI, perhaps through the secretion of an
effector that targets MLO either directly or indirectly through
another protein. Support for this hypothesis comes from the
recent observation that the Arabidopsis PM susceptibility protein
AtMLO2, also acts as a susceptibility factor for infection by the
bacterial pathogen Pseudomonas syringae and that AtMLO2 is tar-
geted by the P. syringae effector HopZ259.

Based on sequence homology, the presence of the C-terminal
conserved motifs and expression kinetics following PM infection,
Feechan et al.60 identified three VvMLOs (VvMLO3, VvMLO4, and
VvMLO17) that may act as PM susceptibility genes in V. vinifera.
VvMLO3 and VvMLO4, but not VvMLO17, were subsequently shown
to partially rescue an Arabidopsis mlo2 mlo6 mlo12 triple mutant25.
Furthermore, GFP fusions of both VvMLO3 and VvMLO4 were
demonstrated to localize to the site of PM appressoria formation,
in agreement with previous localization studies in barley with
HvMLO26. These data strongly support a role for VvMLO3 and
VvMLO4 as PM susceptibility factors in grapevine. However, despite
the generation of numerous single and double VvMLO3/4 knockout
mutants in V. vinifera using RNAi techniques, it has not yet been to
recover transgenic grapevines with high rates of reduced PM pen-
etration (Feechan A, 2015, unpubl. data). It is interesting to note that
PM-resistant mlo mutants of barley, tomato, and pea have been
identified in naturally occurring segregating populations in which
mlo is in the homozygous state53,55,56. Therefore, an alternative
strategy in grapevine, may be to employ techniques such as
EcoTILLING61 to search for point mutations and/or small inser-
tions/deletions in VvMLO3 and VvMLO4 in V. vinifera germplasm
collections where the mutation, and thus the PM resistance pheno-
type, is masked by presence of the wild-type MLO allele.

Evidence for the presence of PM susceptibility gene(s) in grapevine
also comes from a recent study which used genotype-by-sequencing
to identify a QTL for PM susceptibility from Chardonnay named Sen1
(Susceptibility to Erysiphe necator 1)62. Isolation and analysis of genes
located at the Sen1 locus will assist in helping us understand the ways
that E. necator establishes and maintains a compatible biotrophic
relationship with the grapevine host cell.

DEVELOPMENTAL CHANGES IN GRAPEVINE RESISTANCE TO
POWDERY MILDEW
Age-related or ontogenic resistance has been observed in a number
of plant species to viral, bacterial, oomycete, and fungal patho-
gens63. Both grapevine berries and leaves display ontogenic resist-
ance to PM. This is particularly apparent in developing berries of V.
vinifera cultivars which are highly susceptible to infection in the first
1–2 weeks after fruit set64 but then become increasingly resistant to
PM penetration65,66. In contrast, berries of most North American
Vitis species exhibit strong resistance at all stages of berry develop-
ment67, a constitutive resistance that may have developed during
the coevolution of wild Vitis species and E. necator populations.

While the genetic and mechanistic basis of ontogenic resistance
to PM in grapevine is still unknown, it is important to note two
things. First, that ontogenic resistance to PM is not unique to
grapevine. For example, strawberry leaves and fruit also display
ontogenic resistance to PM (Podosphaera aphanis)68. Second, the
ontogenic resistance phenotype appears to be the result of an
increase in PTI and does not appear to be associated with changes
in the availability of nutrients during leaf or berry development. In
experiments reported by Ficke et al.,65 conidial germination and
appressorium formation were unaffected by berry development
but the rate of penetration, formation of haustoria, and develop-
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ment of secondary hyphae was almost completely halted on older
berries. Furthermore, the increased PM resistance could not be
ascribed to any changes in cuticle or cell wall thickness in the
developing berries66. Based on the evidence presented in the
previous section, which shows that the successful penetration
of epidermal cells, by an adapted PM species, is dependent on
MLO-mediated suppression of host PTI, it is tempting to speculate
that changes in host MLO expression or activity may be involved in
this process.

PERSPECTIVES AND CHALLENGES
With the ongoing development of cheaper and faster sequencing
technologies it will be possible to undertake complete genome and
transcriptome sequencing of an increasing number of wild Vitis spe-
cies that display resistance to E. necator. This will facilitate comparative
genomics studies leading to the identification of key components in
PTI and ETI against E. necator in grapevines. Identification and char-
acterization of more grapevine R-genes will unveil deeper insights into
and shed more light onto the complex genetic mechanisms of grape-
vine disease resistance and also provide more molecular markers and
genes for breeding resistant grapevine cultivars.

With the identification of an increasing number of R-gene can-
didates, it will be essential that techniques are available to func-
tionally characterize these genes. Ideally, this would involve stable
transformation of a susceptible V. vinifera cultivar with the R-gene
candidates to challenge them with a range of E. necator isolates32.
However, R-loci typically contain multiple R-gene candidates and
stable grapevine transformation, despite technical improve-
ments69, remains a long and technically challenging process.
Alternative strategies are needed to facilitate rapid evaluation of
these R-gene candidates. One possibility is the use of transient
expression systems such as agroinoculation70. This approach has
been used to demonstrate the anti-fungal activity of VpPR10.1
against E. necator71 (Table 2). It might also be feasible to test
grapevine R-gene function by transforming into Arabidopsis
mutants in which PTI has been compromised allowing E. necator

to penetrate and form haustoria72. Figure 2 shows the results of
an experiment in which the PM resistance gene MrRUN1, was
transformed into the Arabidopsis pen1-1 mutant. Inoculation of
these pen1-1 mutants with E. necator resulted in a significant
induction of PCD in transgenic lines containing MrRUN1 but not
in the pen1-1 control lines32. Furthermore, MrRUN1-mediated PCD
in Arabidopsis was only induced in response to penetration by E.
necator and not observed with E. cichoracearum demonstrating
the response is specific to grapevine PM. Thus, this approach could
be used to rapidly evaluate multiple R-gene candidates before
selected genes are introduced into susceptible V. vinifera cultivars
for final validation.

Due to its mixed reproductive system (sexual and asexual) and
large population size, PM is considered to be a pathogen with a high
evolutionary potential and therefore a high risk to overcome gen-
etic resistance73. This was demonstrated by the fact that PM resist-
ance conferred by the apple R-gene Pl2 was found to have broken
down in experimental orchards after only 6 years74. Jones et al.75

recently reported on the genome sequencing of five E. necator
isolates collected from Californian vineyards that had regularly
been treated with synthetic fungicides. Their results showed there
to be a significant amount of structural variation in the genomes of
the different E. necator isolates and, in particular, a variation in copy
number of the EnCYP51 gene which is the target of the commonly
used sterol demethylase fungicide75. This demonstrates that E.
necator is able to readily respond to strong selection pressures in
the field. This has important implications for the potential deploy-
ment of major dominant R-genes outlined in Table 1 and highlights
the importance of using pyramiding strategies involving multiple
R-genes to maintain durable PM resistance in the vineyard.

While it is generally accepted that pyramiding R-genes is an effec-
tive approach for increasing the durability of field resistance76, it is
essential that the R-genes to be combined do not rely on recog-
nition of the same E. necator effector protein to initiate PCD
(defined as the avirulence (Avr) effector), because resistance con-
ferred by both genes would be lost simultaneously should a new
isolate evolve in which this effector has been lost or mutated. At

Figure 2. Use of the Arabidopsis pen1 mutant for rapid screening of candidate grapevine powdery mildew resistance genes. The pen1-1 mutant
line that allows increased penetration of non-adapted powdery mildew species was transformed with the grapevine powdery mildew resistance
gene MrRUN1 and inoculated with either grapevine powdery mildew (E. necator) or Arabidopsis powdery mildew (E. cichoracearum).
Programmed cell death (PCD) was estimated by trypan blue staining of inoculated leaves at 2 dpi. Each data point is the mean of three
independent experiments (6standard deviation). In each experiment, a minimum of 100 germinated conidia were scored on each of three
leaves for each line. Asterisk indicates a statistically significant difference from pen1-1 (P , 0.05; Student’s t-test).
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present, we have only limited information about the range of PM
isolates detected by some of the R-loci listed in Table 135 and
breeding strategies are currently being employed that are based
essentially on the availability of R-genes from different Vitis species,
rather than on any empirical knowledge regarding the isolate spe-
cificity of these different R-genes. However, the assumption that
R-genes from different Vitis species have different recognition spe-
cificities may not always be true. This was clearly demonstrated by a
study on resistance to the oomycete pathogen Phytophthora infes-
tans, which causes late blight in potato, showing that R-genes from
three different Solanum species were functionally equivalent and
recognized the same P. infestans effector77.

The simplest approach to determining Avr effector recognition
specificity is to challenge grape genotypes containing different R-
loci to PM, with a range of PM isolates with different Avr specifici-
ties35. However, we are currently limited by the paucity of E. necator
isolate collections and by the fact that it is not always feasible to
bring the grape genotypes and E. necator isolates together in the
same country, region, or research facility because of quarantine
issues and concerns associated with accidental release of the
pathogen. Therefore alternative approaches will be required to
enable Avr recognition specificity of PM R-genes from different
grape species. One such approach is ‘Effectoromics’, a high-
throughput functional genomics approach that uses the transient
expression of Avr effectors to probe plant germplasm to detect and
characterize R-genes78. However, this is only possible once the Avr
effectors have been identified. This will be challenging given that
sequencing of the E. necator genome has revealed it to contain at
least 150 candidate-secreted effector proteins (CSEPs)75.
Furthermore, unlike functionally characterized Avr effectors from
oomycete pathogens, which have a conserved host cell targeting
motif (RXLR) in the N-terminal region of their mature protein79,
there are insufficient Avr effectors characterized from PM species,
or for that matter, fungal biotrophic pathogens in general, to use a
bioinformatics approach based on conserved domains to enable
prediction of the potential Avr candidates from the E. necator effec-
torome. Thus, more targeted approaches may be required involving
the use of a comparative genomics approach in which the effector-
omes of isolates possessing different pathogenicity specificities are
compared80 or a map-based cloning approach using PM popula-
tions segregating for the Avr effector gene81.

The identification of Avr effectors will not only provide us with
tools to enable testing of the recognition specificity of new R-genes
without the need to have access to the PM isolate, but will also
provide us with a diagnostic test to be able to follow the appear-
ance of resistance-breaking strains in the vineyard. Characterization
of the E. necator effectorome will also facilitate the identification of
the host targets of the effectors that suppress the grapevine PTI
pathway as has been done with the Blumeria graminis f. sp. hordei –
barley interaction82,83. This knowledge could possibly be used to
modify the host targets to avoid PTI suppression and, in so doing,
re-establish PTI against E. necator in grapevine.

Further work is also needed to properly characterize the genes
and pathways underpinning the quantitative PM resistance dis-
played by certain wild Vitis species. Much of the evidence implic-
ating a role for the genes listed in Table 2, in PM resistance, is based
on correlations between an elevated level of gene expression
(either constitutive or PM-induced) in the resistant genotype vs.
the susceptible genotype and functional assays showing reduced
pathogen infection when overexpressed in Arabidopsis. However,
in order to prove conclusively that these genes do contribute to PM
resistance in these wild grapevine species, it will be necessary to
demonstrate that the segregation of resistance is genetically linked
to the inheritance of these candidate genes. This will also test the
degree to which these genes are able to function in different gen-
etic backgrounds i.e. V. vinifera which is essential to know if they are
being considered as part of any gene pyramiding strategy.

In summary, we see the following research priorities as critical in
the ongoing development of durable and effective PM-resistant
grapevine germplasm:

1. Genome and transcriptome sequencing of more PM-resistant

wild grape species to identify new R-genes.

2. Genome and transcriptome sequencing of multiple virulent and

avirulent grapevine powdery mildew isolates to facilitate con-

struction of the E. necator effectorome and identify Avr effectors.

3. Functional characterization of R-genes from different Vitis spe-

cies in terms of effector recognition specificity.

4. Whole genome association analysis of disease resistance using

high-density SNPs to identify genes conferring partial resistance

to PM for pyramiding with major R-genes.

5. Continued exploration of grapevine genes involved in PM sus-

ceptibility, including host targets of PTI suppression by E. necator

effectors.

6. Further genetic analysis of ontogenic resistance in developing

leaves and berries to identify the genes and pathways underlying

this process.
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