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Abstract

The structures, relative stabilities, and infrared spectra of the six low-energy conformers of glycine
have been characterized by a state-of-the-art quantum-mechanical approach allowing the bond
distances, conformational enthalpies and vibrational frequencies to be determined well within
chemical accuracy. Transition state structures governing interconversion among the different
energy minima have also been characterized. In detail, the gas-phase thermodynamic properties (at
15 K and 410 K) of the glycine conformers considered have been obtained with a 1 kJ-mol~1
accuracy, and it has been shown that the employment of DFT geometries usually reduces such
accuracy by at most 0.1 kJ-mol~1. As concerns molecular structures, the use of two different
composite schemes allowed us to further confirm the suitability of a rather cost-effective approach
and provide geometrical parameters with an overall accuracy better than 0.002 A for distances and
1 degree for angles. Thanks to a hybrid CC/DFT approach, the infrared spectra of all conformers
considered and of several deuterated isotopologues have been reproduced (when experimental data
were available) or predicted with an accuracy of 10 cm™L. Finally, the joint thermodynamic and
spectroscopic investigation allowed us to shed some light on the possible observation of elusive
conformers. On the whole, the high accuracy of the computational results allows us to draw a fully
consistent interpretation of the available experimental data and to obtain a more complete
characterization of the potential energy surface of glycine.

TElectronic Supplementary Information (ESI) available: (i) Equilibrium structures computed at the MP2 level using different basis
sets, the extrapolated CBS structure, and the additional corrections (Ar(CV), Ar(diff), Ar(T)) (Tables S1-S6); (ii) Harmonic
frequencies (Tables S7-S12) and IR intensities (Tables S13-S18) computed at the different levels of theory and separate contributions
to best-estimated values (&(CBS), Aa(CV), Aa(diff),Aa((T))); (iii) Best-estimated anharmonic vibrational frequencies and IR
intensities for the six conformers, the main and deuterated species, for all fundamental bands, overtones (214) and combination bands
(11+4). See DOI: 10.1039/b000000x/
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1 Introduction

The simplest amino acid, glycine (HoNCH,COOH), is probably the most natural
prototypical system for analyzing the intrinsic structural and conformational characteristics
of a peptide and protein backbone without the perturbing effect of lateral chains~10. This
has consequently stimulated an increasing number of experimentall11-23 and theoretical
studies?4-41, whose outcomes are, however, still not fully conclusive for a number of
reasons. Although glycine is known to exist as a zwitterion in condensed phases31:42-44 in
the gas phase the neutral form becomes significantly more stable*243, From the
experimental point of view, neutral molecules in the gas phase cannot be characterized by
the mass spectrometric approaches, which have become the methods of choice for charged
species. On the other hand, especially for flexible compounds, spectroscopic analyses in
matrices suffer from the perturbing effect of the hosting species, whereas spectroscopy in
the gas phase is more difficult® and prone to interpretative problems. Furthermore, the most
stable conformers of glycine have very different dipole-moment components, which strongly
complicate an unbiased determination of their relative stabilities. The present situation is
that we dispose of the infrared (IR) spectra for three rotamersP14-16. More recently, Raman
studies have pointed out the presence of an additional conformer and have allowed (via
variable temperature measurements) an estimation of the relative enthalpies of three
rotamers?%:21, However, the thermodynamic characterization is based on the van’t Hoff
equation, whose absolute accuracy might be questionable. Lastly, a further less stable
conformer and its trideuterated [ND,,0D] isotopologue have been prepared and
characterized in low-temperature matrices?2-23 and their structural and spectroscopic
properties have been investigated by means of high-level computational approaches*°. From
the theoretical point of view, the so-called focal point analysis*®~4 (a specific form of
extrapolation technique) has provided what is claimed to be an accurate stability order for all
the energy minima on the glycine potential energy surface (PES)30:34, However, the
computed enthalpies show some disagreement with experiment that might be ascribed to the
employment of the rigid-rotor harmonic-oscillator approximation for a flexible system.

Our previous investigations on uracil and glycine showed that state-of-the-art molecular
structures rivalling their experimental counterparts can be obtained also for medium-sized
molecules of biological interest using the coupled-cluster (CC) ansatz together with
extrapolation to the complete basis set (CBS) limit (by means of second-order Mgller-
Plesset perturbation theory (MP2)#8) and inclusion of core-correlation effects.#041:49 A
similar strategy will be pursued in the present study for the six lowest-in-energy conformers
of glycine. Furthermore, a more rigorous (but more expensive) approach employing
exclusively CC computations including triple excitations has been exploited for the purpose
of validation. This will turn out to be of fundamental importance for the subsequent
energetic characterization, as semi-experimental and accurate computed equilibrium
geometries are available only for a limited number of conformers30:40.41_On top of our best-

8the difficulties are mostly related to the fact that glycine is solid at room temperature - melting point (and decomposition) at 506 K -
and thus needs to be heated without decomposing

as different conformers derive from rotation with respect to the torsional angles, we also use the term ‘rotamer’ as a synonymous of
‘conformer’.
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estimated equilibrium geometries, accurate electronic energies will be computed. Unstable
conformers can be actually easier to characterize than their more stable counterparts due to
longer lifetimes resulting from higher barriers of interconversion to the absolute energy
minimum, and/or from less effective tunneling. Since a first analysis of this problem can be
based on the evaluation of energy barriers connecting different energy minima, transition
state (TS) structures have also been characterized. The situation is more involved for
vibrational frequencies (also needed for the computation of zero-point and temperature
effects on thermodynamic functions) and, especially, for intensities when the sought
accuracy implies going beyond the harmonic oscillator level, thus including anharmonic
effects and vibration-rotation couplings. Several studies have demonstrated that electron
correlation should be included at a very refined level for harmonic frequencies, while lower
computational levels (especially density functional theory (DFT) within the hybrid
functional approximation) perform very well for anharmonic terms, provided that the basis
sets are carefully chosen®0-58, This led to the introduction of hybrid CC/DFT schemes,
which are based on the assumption that the differences between coupled-cluster and DFT
anharmonic frequencies are only related to the harmonic terms®%-55, To further improve the
description of the harmonic force field, composite schemes, that account for extrapolation to
the basis set limit as well as inclusion of core-correlation and diffuse-function corrections,
have been successfully applied to the computation of harmonic frequencies®>-57. In recent
papers, 404156 syich a composite scheme has also been used to evaluate best estimates for IR
intensities within the double-harmonic approximation. On the contrary, much less
experience is available for IR and, in particular, Raman intensities beyond the harmonic
level, but the first general implementation is providing encouraging results>®:€0, In
summary, we have at our disposal state-of-the-art integrated approaches that allow to obtain
very accurate structural, thermodynamic, and spectroscopic results for one of the most
important biomolecule building block characterized by the contemporary presence of
different nearly iso-energetic conformers. This strategy has already been employed in
previous works and is verified in the present investigation once and for all. In detail, we
perform an exhaustive structural, energetic and spectroscopic investigation of the
conformational PES of glycine by studying its six most stable conformers (namely, Ip/ttt,
IIn/cce, IVn/gtt, [ip/tct, Vn/get and Vip/ttc) and the connecting transition states. See Figure
1 for their graphical representation along with atoms and conformers labeling.¢

2 Methodology and Computational details

Density Functional Theory has been employed for a preliminary investigation of the stable
conformers, as well as to compute harmonic and anharmonic force fields. Within the DFT
approach, the standard B3LYP functional®! has been used in conjunction with the SNSD62
basis set. All DFT computations have been performed employing a locally modified version
of the Gaussian suite of programs for quantum chemistry3,

CIn the notation the roman numerals refer to the stability order of the planar structures, the “p,n” labels to the planarity or non-
planarity of the backbone (respectively), and the “c,g,t” labels to the cis, gauche or trans orientation of the lone-pair(Ng)-Ng-C5-C1,
Ng-C5-C1-02, and C5-C1-O2-Hg dihedrals (see Figure 1). Note that all “p” conformers belong to the Cg point group, whereas the “n”

conformers to C1.
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The MP248 and CC singles and doubles approximation augmented by a perturbative
treatment of triple excitations [CCSD(T)]%4 have been employed in the composite schemes
described below. Correlation-consistent basis sets, (aug)-ccp(C)VnZ (n=T,Q,5)%5-67, have
been used in conjunction with the aforementioned methods. MP2 and CCSD(T) calculations
have been carried out with the quantum-chemical CFOUR program package.58

2.1 Conformational analysis

A preliminary investigation of the PES has been carried out at the DFT (B3LYP/SNSD)
level in order to characterize the lowest-energy minima and the connecting transition states.
Subsequently, the DFT molecular structures of the six low-lying minima have been used as
starting points for further accurate investigations by means of state-of-the-art post-Hartree-
Fock approaches.

To account simultaneously for basis-set and electronic-correlation effects, equilibrium
structures have been determined by making use of composite schemes, in which the various
contributions are evaluated separately at the highest possible level and then combined in
order to obtain the best theoretical estimates. Two different approaches have actually been
employed. In the first scheme the additivity approximation is directly applied to geometrical
parameters, while in the second approach the various contributions are added at an energy-
gradient level.

The first scheme mainly involves MP2 geometry optimizations. The MP2 method has been
used in conjunction with the standard cc-pVnZ basis sets (n=T,Q) as well as a triple-zeta
basis set augmented by diffuse functions, aug-cc-pVTZ. In both cases, the frozen core (fc)
approximation has been adopted. To account for core-correlation effects, the core-valence
correlation-consistent cc-pCVTZ basis set has been used, whereas the CCSD(T) method has
been employed together with the cc-pVTZ basis set in order to improve the electronic
correlation treatment. All details can be found in Refs.4041, In tables, the corresponding
best-estimated structures are denoted as “best”.

While in Ref.41 a more refined procedure was applied only to the conformers of Cg
symmetry, because of the reduced computational cost that the higher symmetry implies, in
the present work the best estimate of the equilibrium structure determined by exclusively
employing CCSD(T) calculations has been extended to all conformers. This permits to
provide a significant set of results for verifying the good accuracy obtainable with the first
scheme. This approach is more rigorous as it is based on additivity at an energy-gradient
level.59:70 The contributions considered are: the Hartree-Fock self-consistent-field (HF-
SCF) energy extrapolated to the basis-set limit, the valence correlation energy at the
CCSD(T) level extrapolated to the basis-set limit as well, and the core-correlation
correction. The energy gradient used in the geometry optimization is given by

dEcps oy dE™(HF—SCF) n dAE>(CCSD(T))
dz - dz dz (1)
dAE(CV)
+ dz ’

where dE°(HF-SCF)/dx and dAE>*°(CCSD(T))/dx are the energy gradients corresponding to
the exp(—Cn) extrapolation scheme for HF-SCF’1 and to the n~3 extrapolation formula for
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the CCSD(T) correlation contribution,’? respectively. In the expression given above, n=T, Q
and 5 (n=D, T and Q for conformers of C; symmetry) have been chosen for the HF-SCF
extrapolation, while n=T and Q have been used for CCSD(T). Core-correlation effects have
been included by adding the corresponding correction, dAE(CV)/dx, where the core-
correlation energy, AE(CV), is obtained as difference of all-electron and frozen-core
CCSD(T) energies using the core-valence cc-pCVTZ basis set. The corresponding best-
estimated structures are denoted as “best-CC”.

In view of establishing accurate energy differences among the conformers as well as
accurate energy barriers for their interconversion, single-point energy calculations at the
best-estimated equilibrium structure (best-CC, only for minima) and at the B3LYP/SNSD
optimized geometries (minima and transition states) have been carried out at the
CCSD(T)/CBS+CV level of theory. CBS total energies have been determined by
extrapolating the CCSD(T) correlation contribution to the CBS limit by means of the n™3
formula’2:

AEBeo () =AEX +An™% (2)

corr

and by adding the HF-SCF CBS limit, evaluated by the expression’?

Eyop () =B _+Bexp(—Cn). (3)
The cc-pVTZ and cc-pVQZ basis sets have been employed in the former equation, whereas
the cc-pVnZ sets, with n=T,Q,5, have been used in the latter. As for geometries, we made
use of the additivity approximation to take into account CV effects. The corresponding

corrections to the total energies are given as
AEcv: core+ val — Eyas 4

where Eqgre+val i the CCSD(T) total energy obtained by correlating all electrons and E, is
the CCSD(T) total energy computed in the frozen-core approximation, both in the cc-
pCVTZ basis set.

2.2 Harmonic force field

Best-estimated harmonic force fields for all conformers of glycine have been evaluated by
means of a composite scheme. The approach is similar to the first approach employed for
evaluating the best-estimated equilibrium structures. At the geometries optimized at various
levels of theory, harmonic force fields at the same theory level have been obtained using
analytic second derivatives.’® Following the procedure introduced in Ref.’4, the harmonic
frequencies, o, have been extrapolated to the CBS limit starting from the results obtained at
the MP2/cc-pVTZ and MP2/cc-pVQZ levels. The extrapolated correlation contribution has
been added to the HF-SCF CBS limit, which is assumed to be reached at the HF/cc-pV5Z
level for the conformers of Cs symmetry and estimated by extrapolating to the CBS limit’?
the results at the HF/cc-pVDZ, HF/cc-pVTZ and HF/cc-pVQZ levels for the conformers of
C, symmetry. The consistency of the results at different levels has been checked for the
Ip/ttt conformer: the CBS values extrapolated using the cc-pVDZ, cc-pVTZ and cc-pVQZ
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basis sets, those extrapolated using the cc-pVTZ, cc-pVQZ and cc-pV5Z sets, and the
HF/cc-pV5Z values differ by less than 0.1 cm™1. We also note that harmonic frequencies
computed at the HF/cc-pV5Z level show differences with respect to the HF/cc-pVQZ ones
largely smaller than 1 cm™2, the largest differences in relative terms being ~0.7%. As for
geometries, corrections due to core correlation and effects due to diffuse functions (aug) in
the basis set have then been evaluated respectively at the MP2/cc-pCVTZ,

Aw (CV) =w (MP2/cc- pCVTZ, all) — w (MP2/cc- pCVTZ, fc)
and MP2/aug- cc- pVTZ levels,
Aw (diff) =w (MP2/aug- cc- pVTZ, fc) — w (MP2/cc- pVTZ, fc)

. The latter correction has been introduced since diffuse functions are required to properly
describe electronegative atoms and also to recover the corresponding limitations affecting
the extrapolation procedure when small- to medium-sized basis sets are employed. Higher-
order electron-correlation energy contributions, Aa((T)), have been derived by comparing
the harmonic frequencies at the MP2 and CCSD(T) levels, both in the cc-pVTZ basis set.
The best-estimated harmonic frequencies, w(best), are then provided by

w (best)= w (CBS(T,Q)) +Aw (CV) +Aw (diff)
+Aw ((T)) .

An analogous composite scheme has also been used to determine best estimates for the IR
intensities, I(best), within the double-harmonic approximation. As extrapolation schemes
have not been formulated yet for such a property, Eq. (5) has been rearranged as follows:

I (best)= I(CCSD (T)/VTZ)+AI(CV)AI(QZ — TZ)
+AI (diff) ©

where Al(QZ-T2Z) is the correction due to the “MP2/cc-pVQZ - MP2/cc-pVTZ” difference,
and the other contributions are defined in a similar way as for frequencies.

2.3 Anharmonic computations: vibrational energy levels, transition intensities and
thermodynamics

The computations of vibrational spectra beyond the double-harmonic approximation and the
vibrational contributions to thermodynamic properties have been performed by means of a
Hindered-Rotor Anharmonic Oscillator (HRAQO) model®8.75.76 within the vibrational
second-order perturbation theory (VPT2)77-82,

The VPT2 approach,’’-82 when applied to a fourth-order representation of the PES,
provides a cost-effective route to compute accurate vibrational properties, at least for semi-
rigid systems. However, for an efficient implementation to the larger molecular systems, it is
necessary to overcome the problem of possible presence of singularities, known as
resonances, plaguing the simplest VPT2 model. A standard practice is to remove the
resonant terms from the perturbed treatment and then to treat them with a proper reduced-
dimensionality variational approach. The first step of this procedure can be referred to as the
deperturbed VPT2 (DVPT2) and the second one to the generalized VPT2 (GVPT2). In order
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to identify the Fermi resonances, the criteria proposed by Martin et al.83 have been used.
The GVVPT2 model has shown to be reliable to study medium-sized systems, providing
results accurate enough to be compared with experiment (see e.g. Refs.60.84 and references
therein). However, it is directly dependent on the reliability of the definition of the near-
resonant terms, based on empirical thresholds. Alternatively, a hybrid scheme coupling the
degeneracy-corrected second-order perturbation theory (DCPT2) proposed by Kuhler,
Truhlar and Isaacson® and the standard VPT2 model, called hybrid DCPT2-VPT2
(HDCPT?2), has been proposed by some of the authors®8. This scheme takes advantage of the
reformulation of all potentially resonant terms in a non-resonant expression as done in
DCPT2, so that there is no diverging term in the expression of the vibrational energies in the
presence of Fermi resonances. Since this transformation can introduce inaccuracies far from
resonance, a scaling function is used in HDCPT2 to switch to the better-suited VPT2
expression in this case. HDCPT2 offers a straightforward way to handle near-resonant terms
without the need to actually identify them. This makes it a more versatile model than
GVPT2 to be used as a black-box procedure, in particular whenever one has to consider a
series of force fields for a given system, or a series of structures along a reaction path. It is
also well suited to act as a reference to control the reliability of the Martin test in order to
verify that there is no singularity present in the GVPT2 calculations.

For the calculation of thermodynamic properties, the simple perturbation theory (SPT)
proposed by Truhlar and Isaacson86 has been used to compute the partition function at the
anharmonic level. In this model, the harmonic approximation of the partition function is
used, but the zero-point vibrational energy (ZPVE) and fundamental frequencies are
calculated at the VPT2 level. The resonance-free expression of the ZPVE proposed by
Schuurman et al .87 has been used, and vibrational energies were calculated with the
HDCPT?2 approach, which provides results on a par with the GVPT2 model®®.

Finally, to simulate vibrational spectra, the VPT2 formulation of transition properties
proposed by some of the authors®? has been employed. Similarly to vibrational frequencies,
the equations of the transition integrals suffer from the presence of singularities due to Fermi
resonances but also 1-1 resonances. For Fermi resonances, the same definition as for the
energies, based on the test proposed by Martin et al., is used, while for the 1-1
resonances3959:88 the definition proposed in ref.>® has been adopted.

The last comment concerns large amplitude motions (here torsions around C-N and C-C
bonds). The proper treatment of torsional anharmonicity still represents a challenging aspect
toward accurate thermochemical calculations for complex molecules.”6:89-95 Here, we use a
generalization to anharmonic force fields of the Hindered-Rotor Harmonic Oscillator
(HRHO) model 6 that automatically identifies internal rotation modes and rotating groups
during the normal mode vibrational analysis. This approach employs an effective analytical
approximation to the partition function for a one-dimensional hindered internal rotation that
reproduces the accurate values with a maximum error of about 2% for a number of reference
systems’®. The one-dimensional rotor treatment is generalized to give useful approximations
to multidimensional rotor thermodynamic functions, and in the HRAO model, is further
coupled to the simple perturbation theory (SPT) approach to the partition function for the
other internal degrees of freedom®,
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2.4 Hybrid force field

Density functional theory has been employed to compute harmonic as well as anharmonic
force fields. Within the DFT approach, the standard B3LYP functional has been used in
conjunction with the SNSD basis set. Harmonic force fields have been computed as analytic
second derivatives of energy,%6:97 at equilibrium structures optimized using tight
convergence criteria, while the cubic (Kjj) and semi-diagonal quartic (Kjjjj and Kjjj) force
constants have been obtained by numerical differentiation of the second derivatives of
energy with the standard 0.01 A step.

Recently, hybrid CCSD(T)/DFT schemes, already validated for instance in Refs.>0-55, have
been proved to provide accurate results for relatively large systems®6:57 also in cluding the
evaluation of accurate ZPVES8, In the present study, two slightly different hybrid models
have been adopted for frequencies and IR intensities, respectively. The hybrid
CCSD(T)/DFT anharmonic force fields have been obtained in a normal-coordinate
representation by adding the cubic and semi-diagonal quartic force constants computed at
the DFT level to the best-estimated harmonic frequencies within the VPT2 expressions. In
view of the fact that the DFT, MP2, and CCSD(T) normal modes are very similar (as
expected for most cases), DFT cubic and quartic force constants have been used without any
transformation. The hybrid CCSD(T)/DFT anharmonic force fields have then been used to
compute spectroscopic parameters and, in particular, anharmonic frequencies, ZPVE and
thermodynamic properties. With respect to intensities, anharmonic hybrid CCSD(T)/DFT IR
intensities have been obtained by means of an a posteriori scheme. As discussed above, the
approximation that the differences between the two levels of theory can be ascribed only to
the harmonic part is made. Therefore, our best estimates have been derived by adding the

DFT anharmonic corrections, AT gj;’;, to our best-estimated harmonic intensities from Eq.
(6):

Ianh — Iha'r‘m (b e St) +A Ia,nh %

CC/DFT DFT"

3 Results and discussion

3.1 Equilibrium structures

The results of the energetic investigation (in terms of energy differences with respect to the
Ip/ttt conformer) are summarized in Table 1 and in Figure 1 (which also reports all transition
state energies). For all local minima, the electronic energies have been computed by means
of the composite scheme described in section 2.1 at the best estimated (best/best) and DFT
equilibrium geometries (best/DFT). For transition states, only the best/DFT approach has
been considered, except for the TS (llp/ccc) connecting two equivalent lIn/ccc conformers,
whose molecular structure has been investigated in detail. In view of future application to
larger systems, it is of great interest to note the reliability of the best/DFT approach. From
the comparison of the best/best and best/DFT energies, it is apparent that the differences are
usually smaller than 0.1 kJ mol~1, with the only exception of the lIn/ccc conformer, which is
particularly challenging because of its flat PES. Although larger discrepancies are expected
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for the transition states, the values reported in Figure 1 should be considered well within the
accuracy required for the following qualitative analysis.

First of all, we note that the stability order pointed out in some previous works30:34 is
confirmed, with the IIn/ccc conformer being the second most stable conformer after Ip/ttt. It
is also observed that the energy difference between IIn/ccc and IVn/gtt, which is the third
conformer in the stability order, is reduced from about 2 kJ mol~1 to 1 kJ mol~2 once the
ZPVE is included. The lIn/ccc conformer does not relax to the most stable Ip/ttt rotamer as
the relaxation process proceeds through either Ilp/tct or Vip/ttc and requires barriers of
about 50 kJ mol~1 to be overcome in both cases. On the contrary, 1Vn/gtt can easily relax to
the Ip/ttt conformer as it is directly connected to the latter through a low-energy transition
state, the barrier height being less than 1 kJ mol=1 with respect to 1\VVn/gtt. Analogously, the
I1Ip/tct conformer is expected to be able to relax to Ip/ttt, the corresponding transition state
lying less than 3 kJ mol~1 above the former. We note that Vn/gct lies rather high in energy
(more than 10 kJ mol~1 with respect to Ip/ttt), and is directly connected with Il1p/tct and
IVn/gtt through barriers of 5.5 k mol~1 and 11 kJ mol~1, respectively. Therefore, its
Boltzmann population is rather low (about 2% at 410K), and its possible formation through
vibrational pumping can be rather ineffective due to the already difficult detection of Il1p/tct
and IVn/gtt themselves. The situation is different for the highest energy conformer
considered in this work, Vlp/ttc, which lies more than 20 kJ mol~1 above the Ip/ttt global
minimum, but is directly connected to the most stable one through a highly energetic
transition state. In fact, it has been recently observed that NIR irradiation of the Ip/ttt
conformer trapped in low-temperature matrices leads to the laser-induced conformational
change toward VIp/ttc22, with the latter showing sufficiently long life-time due to the large
barrier (30 kJ mol~1) to be overcome to relax back to Ip/ttt. Moreover, the computed
energies of all TS’s are lower than the laser energy employed in the NIR irradiation
experiment (about 84 kJ mol~1)22, thus both two-step conformational change pathways, Ip/
ttt—lp/tct—lIn/ccc and Ip/ttt—VIp/ttc— lIn/ccc, are possible under the experimental
conditions, in line with the observed increase of the IIn/ccc conformer population.

In Table 1, the gas-phase thermodynamic properties at 15 K and 410 K of the glycine
conformers considered in the present study are also given along with the available
experimental data. These two temperatures have been selected as they are those employed in
recent IR?2:23 and Raman20:21 experiments, respectively. We note that the harmonic
approximation provides semi-quantitative results for enthalpies and free energies at 15K. At
higher temperatures (here 410 K), the entropy of the IlIp/tct rotamer is strongly
overestimated, also when torsions are treated by means of the hindered rotor model. Only
the full HRAO approach is able to provide a reasonable relative free energy of this
conformer. Some experimental estimates'521 are available for the relative enthalpies of the
lIn/cce, Ip/tct, and 1Vn/gtt rotamers with respect to the Ip/ttt absolute minimum. Our
computed values are in remarkable agreement for I\Vn/gtt (4.6 vs. 4.8 + 0.3kJ mol~1) and
close to the upper bound of the experimental value for Illp/tct (6.6 vs. 5.8 + 0.6 kJ mol™1),
whereas the situation is less satisfactory for lIn/ccc (2.4 vs. 1.4 + 0.2 kJ mol™1). However, it
must be recalled that the use of the van’t Hoff equation to estimate enthalpy differences
from Raman spectra at different temperatures?! has a limited accuracy, not to speak about
possible perturbing effects of the hosting matrix1®. It is anyway remarkable that the
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employment of the HRAO model improves the agreement with experiment with respect to
the simple harmonic approximation, the difference being non-negligible for lin/ccc and,
especially, for the IlIp/tct rotamer. From our computed data we can derive the Boltzmann
population at 410K to be 65%, 18%, 4%, 12%, 2% and 0.2% for Ip/ttt, lin/ccc, p/tct, IVn/
gtt, Vn/gct and Vlp/ttc, respectively, while at 15K only the most stable Ip/ttt conformer is
populated. On the basis of thermodynamic properties, one might expect that the 1\VVn/gtt
conformer should be rather easily detected, however this is not the case3341 and this rotamer
has been only recently observed in the Raman spectrum of jet-cooled glycine2%, while its
presence has not been confirmed under low-temperature rare-gas matrix conditions22 and
has been only tentatively proposed in standard gas-phase experiments!®. These results can
be explained by the low, easy to overcome, barrier for its relaxation toward the Ip/ttt
conformer, allowing 1VVn/gtt to convert during matrix deposition, and by possible tunneling
effects, also present in low-temperature matrices. Thus, its detection is clearly more feasible
in the non-equilibrium conditions of jet-cooled molecular beams, in particular close to the
entrance of the nozzle, fully in line with what has already been observed20. On the contrary,
surprisingly high abundance of the Il1p/tct conformer in low temperature matrices (estimated
to be about 8% on the basis of the IR intensities in the C=0 stretching region’8) can be
explained by taking into account that the relaxation of VVn/gct toward Il1p/tct is more
probable due to the halved (with respect to the alternative Vn/gct-1VVn/gtt pathway)
activation energy (about 5.5 kJ mol~1). On the whole, we can conclude that our best-
estimated electronic energies in conjunction with the HRAO model lead to a picture fully
consistent with the experimental findings.

The best-estimated equilibrium structures of the six low-energy conformers of glycine, as
obtained from the first composite scheme (“best”), are collected in Tables 2 and 3, while the
results at the MP2 level using different basis sets, the extrapolated CBS structure, as well as
the additional corrections (Ar(CV), Ar(diff), Ar(T)) are reported in the supplementary
material (Tables S1-S6). For atom labeling, we refer the reader to Figure 1. From Tables S1-
S6, it is evident that the corrections due to the extrapolation to the CBS limit, with respect to
the MP2/cc-pVQZ level of theory, are of the order of 0.0005-0.003 A, where the smaller
value applies to bonds involving H. The effects due to core correlation are of the same order,
with negative corrections ranging from 0.0007 to ~0.003 A. As expected (see, for example,
Refs.49.98.99) ‘even larger is the effect due to triple excitations, Ar(T), with corrections that
can be as large as 0.005-0.006 A, that generally decrease to 0.001 A when H is involved in
the bond length. On the contrary, inclusion of diffuse functions is less important, the effects
being on average smaller than 0.001 A. As concerns angles, we note that the corrections due
to the extrapolation to the CBS limit range from 0.01 to ~0.4 degrees, that can enlarge up to
~1 degree in the case of dihedral angles. Core-correlation effects are rather small, with
contributions of the order of 0.01-0.1 degrees (up to 0.2-0.3 in the case of some dihedral
angles). The corrections due to diffuse functions and to higher-order correlation energy are
larger; in fact, the former is on average about 0.6 degrees, while the later is about 0.3
degrees, but those effects can result in corrections as large as a few degrees for dihedrals.

Tables 2 and 3 also report the structural parameters obtained from the second type of
composite scheme (“best-CC”; see Eq. (1)). The first comment concerns the extrapolation to
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the CBS limit at the HF-SCF level, as two different sets of bases have been used for the C;
(n=D,T,Q) and C4 (n=T,Q,5) conformers (see section 2). For Ip/ttt, it has been verified that
the extrapolated structures obtained with the two sets agree well with each other. The “best-
CC” approach is well tested and is known to provide highly accurate results (see, for
example, Ref.100 and references therein). Therefore, their comparison with the results from
the simpler “best” composite scheme allows us to point out the accuracy of the latter. We
note that, apart from very few exceptions, the differences in the bond lengths are well within
0.001 A, the largest deviation being 0.002 A. For angles, the deviations are usually smaller
than 0.5 degrees and well within 1 degree in almost all cases. The largest discrepancies are
observed for dihedral angles, for which deviations larger than 1 degree are noted in a few
cases. A special comment is deserved for the lIn/ccc conformer, which is characterized by a
flat double-minimum PES, with the minima separated by a low barrier (~2 k mol™1). As a
consequence, the location of the minimum structure strongly depends on the level of theory
and the skeleton dihedral angles are those mostly affected. For these reasons, discrepancies
of about 2-4 degrees are observed.

The comparison discussed above confirms the conclusions drawn in Ref.49, that is, the less
expensive “best” composite scheme can be easily applied to rather large molecules to obtain
very accurate geometrical determinations. In view of the positive comparison, noted that the
convergence to the CBS limit is smooth and the extent of the CV corrections is similar to
what is usually observed, on the basis of the literature on this topic (see, for example,
Refs,49.69,70,.98.100y the accuracy of the equilibrium geometry obtained with the “best”
approach can be conservatively estimated to be about 0.001-0.002 A for bond distances and
about 0.5 degrees for angles. The availability of the semi-experimental equilibrium
structurel0 for the two most stable conformers, Ip/ttt and lin/ccc,3 and in particular its
revision for the former one (see Refs.4941) allows us to further check the accuracy of our
computed structure. In fact, in Ref.102 an accurate investigation drew the conclusion that
errors in the determined empirical bond lengths are typically below 0.001 A for first-row
elements, provided that electron correlation is properly included in the calculation of the
vibrational corrections. While for Ip/ttt we note a good agreement, i.e., well within the
accuracy stated above (for a detailed comparison, the reader is referred to Ref.41), for the
IIn/ccc conformer the comparison needs to be more detailed. For bond lengths, in most cases
our computed parameters agree with the semi-experimental distances within 1-2 times the
standard errors; the most relevant exception are the N-H and O-H distances which are
overestimated by about 0.05 A and 0.02 A, respectively, in the semi-experimental structure.
For angles, large deviations are observed for all angles involving the NH, moiety. These
discrepancies and the reduced accuracy of the semi-experimental structure are once again
related to the flat double-minimum PES. In fact, the vibrational ground state lies above the
transition state. As a consequence, the experimental ground-state rotational constants refer to
an averaged structure that essentially it is thought to resemble the Ilp/ccc conformer. For this
reason, we also investigated the transition state connecting the two lIn/ccc equivalent
minima by means of the two composite schemes mentioned above. The corresponding
geometrical parameters are collected in Table 2, where they are compared to those of the
IIn/ccc conformer. First of all, we note that they are very similar, with negligible differences
in most cases. The discrepancies increase when the geometrical parameters related to the
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torsion of the -NH, group are considered; in such cases, they are about 0.001 A for the N-H
distance and a few degrees for angles and dihedrals. Finally, the overestimation of the semi-
experimental N-H and O-H bond lengths is confirmed also when they are compared to the
corresponding parameters of the TS structure. Therefore, a re-investigation of the semi-
experimental equilibrium structure of IIn/ccc is suggested.

3.2 Harmonic frequencies and IR intensities

For the conformers of glycine considered in the present work, the best-estimated harmonic
vibrational frequencies, as obtained from the composite scheme described in the
methodology section (Eq. 5), are reported in Table 4. To reduce the numbers of tables, the
harmonic frequencies computed at the different levels of theory and the various
contributions (o(CBS), Aa(CV), Aa(diff), Aa((T))) are given only in the supplementary
material, Tables S7-S12, while Table 5 summarizes the corresponding statistics. From these
Tables it is observed that the MP2/cc-pVQZ level of theory already provides a good
approximation for the CBS limit, the differences being of the order of 0.5% (i.e., in absolute
terms they range from less than 1 cm™1 to about 6 cm™1). Core-correlation corrections are
quite small (i.e., from <0.01 to ~8 cm™1, where the larger corrections usually apply to higher
frequencies) and mostly positive; in relative terms they are on average of the order of 0.3%.
Inclusion of diffuse functions in the basis set generally tends to lower harmonic frequencies
(i.e., negative corrections), with changes ranging from negligible (<0.2 cm™1) to large (~25
cm™1) in absolute value terms. With respect to higher-order electron-correlation corrections,
for which the inclusion of triples is expected to be the most relevant contribution, the
corresponding contributions are generally large, either positive or negative, ranging from
<0.1to 60 cm™2 (i.e. of the order of 0.01-4%). However, the largest contributions are
mainly negative, except for the case of ws for lin/ccc, corresponding to the O-H stretching
vibration within the hydrogen bridge, for which inclusion of triples increases the harmonic
frequency by 60 cm™L. Special comments are deserved for the Illp/tct conformer, as it has an
imaginary frequency at the SCF level (with all basis sets considered). As a consequence, for
this frequency the extrapolation to the CBS limit has been carried out by applying the n=3
formula to the entire term, and not only to the correlation contribution (as required).

Finally, a brief discussion on the accuracy of the best-estimated harmonic frequencies is
warranted. On the basis of the approximations made, the corrections included, the estimates
for the neglected contributions (which are mainly excitations beyond CCSD(T)), as well as
the literature on this topic (see, for example, Refs.56:74.103.104y "\ye expect that the accuracy
obtained is of the order of a few wavenumbers: from 3 cm™1 to 15 cm™1, where larger errors
affect the larger frequency values and/or challenging vibrational modes. Concerning higher-
order effects in the correlation treatment beyond CCSD(T), as discussed in some of our
previous papers,4041.56 while the effect of the full treatment of triples is expected to be
entirely negligible,103.105 that due to quadruple excitations is predicted to be larger (a

decrease of about 0.1% to 0.3%), even if the literature on this topic is very
scarce,103,104,106,107

In Table 4, the comparison of the best-estimated and DFT harmonic frequencies is also
reported. We note that on average the B3LYP/SNSD level of theory tends to slightly
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underestimate frequencies with respect to our best results, anyway showing a good
agreement. The differences are of the order of 2%, which means average absolute deviations
of ~12 cm™1, with the largest discrepancies observed for the lowest torsional mode and the
higher frequency values. Concerning previous theoretical investigations of harmonic
frequencies, except for our very recent works on the Ip/ttt, I'\Vn/gtt, Ip/tct and Vlp/ttc
conformers?%:41 the best determination prior to our study was carried out at the B2PLYP/
aug-cc-pVTZ level.3% By comparing the corresponding results with our best-estimated
frequencies, we note a good agreement, with the latter being in most cases larger than the
B2PLYP ones. The deviations are in fact on average of about 5 cm™L. For both B3LYP and
B2PLYP calculations, the largest discrepancy with respect to the best estimates is observed
for the O-H stretching frequency of lin/ccc, for which higher-order correlation effects turned
out to be important. BLYP underestimates a3 by about 80 cm™2, in line with what has been
observed for other hydrogen-bonded systems1%8, while B2PLYP improves the agreement to
the best estimates by ~40 cm™1,

As the comparison to experiment is meaningful only once anharmonic corrections are
accounted for, we postpone it to the next section.

The different contributions to IR intensities (within the double-harmonic approximation)
have been investigated by means of the composite scheme introduced in the methodology
section. As for harmonic frequencies, we report only the best-estimated values in Table 6,
while for all conformers the various contributions are detailed in the supplementary material
(Tables S13-S18) and summarized in Table 7. Unlike harmonic frequencies, intensities show
a slow convergence to the CBS limit (see Tables S13-S18); in fact, by comparing the
MP2/cc-pVTZ and MP2/cc-pVQZ levels (Al(QZ-T2Z) corrections) differences in the largest
part on the order of 1-2 km/mol are observed, but variations as large as 15-20 km/mol can
also appear. As already noted for instance in our previous works,*041:56 core-correlation
corrections (AlI(CV)) are small, with the largest contributions being of a few km/mol (4
km/mol at most). By contrast, the effects of diffuse functions (Al(diff)) are large, the
corresponding corrections being on average of about 5 km/mol, but also as large as 25-35
km/mol. This result is in line with the literature on this topic84:199-112 Even if CCSD(T)/cc-
pVTZ is the reference level of theory in our composite scheme, by comparing results at this
level to the MP2/cc-pVTZ ones, we can draw conclusions concerning higher-order
correlation-energy contributions. The corresponding effects are on average of about 7 km/
mol, which means ~23% in relative terms, with the MP2 level that generally tends to
overestimate IR intensities with respect to CCSD(T). A particular case that deserves to be
mentioned concerns the Ip/ttt conformer. For the transitions lying at 1138.1 cm™ (CN
stretch + OH bend, best-estimate) and 1176.5 cm™1 (CO stretch + OH bend, best-estimate),
at the MP2/cc-pVTZ level the intensities are 223.5 and 60.0 km/mol (252.7 and 47.6
km/mol at the MP2/aug-cc-pVTZ level), respectively, while the CCSD(T)/cc-pVTZ level
provides for them very similar intensity values (138.8 and 139.9 km/mol). The experimental
IR spectrum4 clearly shows two strong bands of different intensities, and this is well
reproduced by computations at the B2PLYP/aug-cc-pVTZ level3®. Starting from the
CCSD(T)/cc-pVTZ intensities, increase of the basis set and inclusion of diffuse functions
(albeit at the MP2 level) give different contributions to the intensities of these two bands,
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restoring the agreement with the B2PLY P/aug-cc-pVTZ results and, more importantly, with
experiment. In view of the large extent of some contributions and the lack of literature on
this topic, it is difficult to assess the accuracy of our best-estimated values. However, it is
expected to be similar to that obtained at the CCSD(T) level in conjunction with basis sets of
at least aug-cc-pVTZ quality, which already provides quantitatively converged IR
intensities!12. From Table 6, it is evident that DFT performs reasonably well with respect to
our best-estimated values, with discrepancies of the order of 22%. A close inspection of the
various contributions involved in our composite scheme (see Table 7) points out that the
major source responsible for the differences observed is the effect of triple excitations, as
included by the computation at the CCSD(T)/cc-pVTZ level. On the other hand, all MP2
results show a good agreement with those at the B3LYP/SNSD level. However, as far as the
accuracy of intensities is concerned, in the next section we limit our discussion at a
qualitative level, based on the graphical comparison of spectra.

3.3 IR spectra

Anharmonic vibrational frequencies and IR intensities have been obtained as explained in
the methodology section for the six low-lying glycine conformers, considering the main
isotopic species (dg) and its bi-[CD5](dy), tri-[ND,0D](d3) and penta-[CD,,ND,,0D](ds)
deuterated isotopologues. The best-estimated anharmonic vibrational frequencies and IR
intensities for the main isotopic species are listed in Table 8 along with the available
experimental data, while the simulated IR spectra of dy and ds in selected frequency regions
are presented in Figures 2, and 3, respectively. The detailed computational results for the six
conformers, for main and deuterated species, namely, the best-estimated vibrational
frequencies for all fundamental bands, overtones (21;) and combination bands (1;+1;) along
with their best-estimated IR intensities are collected in the ESI. The accuracy and robustness
of the CC/DFT hybrid approach have been validated in a number of recent papers including
both small systems®9-5558 and hiomolecule building blocks#041.56:57 - Although DFT-only
approaches are usually quite adequate, the increased cost of CCSD(T) harmonic frequencies
(when feasible) remains advisable not only in view of a general improvement in the
accuracy, but also for the strong reduction of the outliers with respect to experimental
frequencies. On the other hand, the larger errors inevitably connected to the use of lower
computational levels (e.g., MP2 or, better, DFT) can be tolerated for the more expensive
anharmonic corrections due to their smaller contribution (well below 10% even for XH
stretchings). The accuracy of our theoretical estimates is further confirmed by the
comparison with experiment for the conformers Ip/ttt, lin/ccc and Il1p/tct, for which several
IR transitions have been detected and unequivocally assigned. Most of the experimental
results reported in Table 8 have been measured in low-temperature matrices, but the results
obtained in different rare-gas low-temperature environments (both matrices and
nanodroplets)14-16.22.23 and in the gas phasel®20 show that matrix effects are not significant
for most of the observed transitions and are clearly noted only for the higher frequency
modes. Thus, anharmonic best estimates can be directly compared with the experimental IR
spectra recorded in low-temperature matrices141522.23 except for the OH stretching
vibrations of Ip/ttt, lIn/ccc and Illp/tct, for which unperturbed frequencies have been
measured in helium nanodropletst®. For the voy frequency of the other conformers, we take
into account the matrix-induced red shift by applying a correction of about 20-30 cm™2. In
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all cases, experimental data measured in argon matrices are considered#23, with the most
recent results reported in Table 8. For what concerns the experimental transitions reported in
Refs.1419 which are not assigned or only tentatively assigned, the best matching frequencies
of IVn/gtt are compared. Moreover, experimental data for VIp/ttc are also included for
comparison purposes: once again the agreement between the two set of data is remarkable.
For the most stable Ip/ttt conformer, experimental data for almost all (23 over 24)
fundamental vibrational transitions are available, with the theoretical predictions showing a
mean absolute error (MAE) of 8 cm~ and all values well within 20 cm~. On the whole, all
conformers show MAE below 10 cm™1, and only a few frequencies deviate from experiment
by more than 20 cm™L. We also note that for strongly anharmonic modes, improved results
can be obtained by hybrid computations with anharmonic corrections at the B2PLYP/aug-
cc-pVTZ level. For the OH stretching of lin/ccc involved in the hydrogen bridge, CC/
B2PLYP halves the deviation from experiment with respect to CC/B3LYP (20 cm~ and 42
cm™1, respectively), albeit at largely increased computational cost.

The theoretical model applied in this work allows the direct comparison between simulated
and experimental IR spectra, including also weak transitions from overtones and
combination bands. Figures 2 and 3 compare the main features of the low-temperature Ar-
Matrix MI-IR spectra of do- and dz-glycine, reported in Ref.14 with theoretical predictions.
The overall spectrum has been obtained as a sum of three conformers, Ip/ttt, lin/ccc and I1ip/
tct, with each contribution weighted according to the relative Boltzmann population at 410
K. Moreover, the abundances of Ip/ttt and I11p/tct have been increased in order to account
for the 1Vn/gtt and Vn/gct conformational cooling (1'Vn/gtt— Ip/ttt and Vn/gct—I1ip/tct),
thus leading to relative contributions to the spectra of 77%, 18% and 6% for Ip/ttt, lIn/ccc
and Ilip/tct, respectively. Figures 2 and 3 demonstrate that the corresponding simulated
spectra (Ip/ttt-1in/ccc-11p/tct) match well the intensity pattern of their experimental
counterparts. It is also evident that some additional weak features are present when possible
minor contributions (1%) from the 1\VVn/gtt, VVn/gct and VIp/ttc conformers are considered.
However, for a more detailed analysis of experimental data, in view of searching for other
glycine conformers, a full list of the observed experimental transitions would be necessary,
while Ref.14 (and all other experimental works) reports only some of them. Thus, to help
further experimental investigations (either re-investigation of already available spectra or
new measurements), a full list of best-estimated vibrational frequencies and IR intensities is
reported in the ESI, which allows to simulate spectra for any kind of experimental
conditions and several isotopologues. As an example, Figures 2 and 3 also depict the single
contributions from each conformer. Instead, Figure 4 shows a detailed comparison for the
900-400 cm™1 region of the Ip/ttt-1In/cce-1Ip/tct combined spectrum from Figure 2 with
simulated spectra which also account for the additional contributions from I\Vn/gtt, Vn/gct,
and Vlp/ttc (10%). It is apparent that detailed spectral features can be distinguished in the
simulated spectra, thus clearly facilitating the analysis of experimental data. In our opinion
the results presented in this work point out the advantages arising from the direct
comparison between simulated and experimental spectra and the high accuracy of the
theoretical models here applied.
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4 Conclusions

In conclusion, state-of-the-art quantum-chemical computations allowed us to complement
the limited experimental data available for several glycine conformers, thus leading to a
complete structural, thermodynamic, and spectroscopic characterization of the whole
potential energy surface governed by soft degrees of freedom with an accuracy rivalling the
best experimental determinations for the most stable conformers. In particular, the approach
employed is expected to provide structural, thermodynamic and spectroscopic properties
with accuracies largely sufficient for validation and/or integration of the most sophisticated
experimental data. From a more general point of view, this and related works are paving the
route toward integrated experimental and computational tools that allow the characterization
of medium-sized molecular systems of current interest in several fields of chemistry with an
accuracy reached so far only for very small rigid systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Vip/tte Cq

[In/ccc C,

Fig. 1.

Six low-lying conformers of glycine and corresponding Transition States. Electronic “best/
DFT” energies (kJ mol~1): CBS+CV energies computed at the DFT (B3LYP/SNSD)
optimized geometry. See text.
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wavenumber (cm-!)

Best-estimated MI-IR spectra in the (2000-400 cm™1) frequency region, for the main glycine
isotopologue. Simulated theoretical spectra: single contributions from Ip/ttt, lin/ccc, 1lip/tct,

1Vn/gtt, Vn/gct and Vlp/ttc, the sum of the Ip/ttt, 1in/ccc and Iip/tct (Ip-1In-111p)

contributions weighted for relative abundances (as computed in this work (T=410 K), also
assuming the conformational cooling IVn/gtt— Ip/ttt and Vn/gct— IlIp/tct), and the Ip-lin-
I11p sum complemented by minor contributions (1%) from the 1\Vn/gtt, VVn/gct and Vlp/tcc
(ALL). Experimental IR spectra recorded in low-temperature Ar Matrix generated using the
data of Table 5 of Ref.14. IR spectra line-shapes (both theoretical end experimental) have
been convoluted with Lorentzian functions with a half-width at half-maximum (HWHM) of

1cm™L,
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Fig. 3.

Begst—estimated MI-IR spectra in the (2000-400 cm™1) frequency region for the ds-glycine
isotopologue [ND,,0D]. Simulated theoretical spectra: single contributions from Ip/ttt, lin/
cce, Hlp/tet, 1IVn/gtt, Vn/get and VIp/ttc conformers, the sum of the Ip/ttt, IIn/ccc and Illp/tct
(Ip-1In-111p) contributions weighted for relative abundances (as computed in this work
(T=410 K), also assuming the conformational cooling 1\VVn/gtt—Ip/ttt and VVn/gct—Illp/tct),
and the Ip-1In-111p sum complemented by minor contributions (1%) from the 1'\Vn/gtt, VVn/gct
and Vlp/ttc (ALL). Experimental IR spectra recorded in low-temperature Ar Matrix
generated using the data of Table 7 of Ref.14. IR spectra line-shapes (both theoretical end
experimental) have been convoluted with Lorentzian functions with a HWHM of 1 cm™1.
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Fig. 4.

Cgmputed IR spectra in the 900-400 cm™1 energy range: the theoretical spectrum Ip-Iin-111p
from Figure 2 and the simulations also including a 10% contribution from 1Vn/gtt (Ip-IIn-
IHp+1Vn/gtt), VVn (Ip-1In-111p+Vn/gct) and Vip (Ip-1In-1p+VIp/ttc). IR spectra line-shapes
have been convoluted with Lorentzian functions with a HWHM of 1 cm™1,
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Table 1

Theoretical thermodynamic properties (kJ mol™1) of the glycine conformers.

Conformer  Model T=0K T=15K T=410K
AEqe besyDFTP?  AE, bestbest® AE pye© AH  AG  AH AG

linfcce HO 2.45 2.29 3.82 382 382 280 541
HO+HRA - - - 385 380 250 457
SPT(HRAO)d® - - 373 377 372 245 441
Exp.f 1.38

IVn/gttd HO 4.89 4.87 481 481 481 459 597
HO+HRA - - - 482 482 468 599
SPT(HRAO)dE - - 474 475 475 462 578
Exp.f 481

Hip/tctd HO 7.42 7.44 7.48 759 734 761 -117
HO+HRM - - - 755 728 659  0.04
SPT(HRAO)IE - . 7.94 790 787 662 972
Exp.n 5.8

Vn/gct HO 10.99 10.88 1122 1123 1123 1087 1210
HO+HRd - - - 1122 1123 1121 1215
SPT(HRAQU®) - - 1121 1121 1122 1121 12,02

Vipittcl HO 20.34 20.32 19.39 1989 19.89 20.02 20.34
HO+HRd - - - 19.80 19.77 20.08 20.24
SPT(HRAO)AE - - 19.80 1981 19.80 2024 20.26

TS lip/cce 2.87 2.92

a . Lo . .
Conformational energies with respect to the Ip/ttt conformer. All thermodynamic properties have been computed at 1 atm.

b

Page 24

“best/DFT” means CBS+CV energy computed at the DFT (B3LYP/SNSD) optimized geometry; “best/best” means CBS+CV energy computed at
the corresponding optimized geometry.

CZPVE differences added to the AEg|e “best/best”.

The two lowest vibrations have been described by hindered-rotor contributions computed by an automatic procedure76.

€Contributions computed by means of the HDCPT2°8 model using the hybrid CC/DFT force field, in conjunction with simple perturbation theory
(SPT)58v86 (see text for the details).

fExperimental gas-phase data from Ref.21, obtained from the Raman band ratios using the van’t Hoff scheme.

gRef.41.

Experimental low-temperature matrix data from Ref.15, obtained based on the integrated intensities of 1{C = O) from the samples evaporated at
358 K and 438 K.

IRef."’o.
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Table 5

Page 29

Contributions? to harmonic frequencies (cm™1) for glycine isomers: MIN and MAX stands for signed errors,

largest positive (MAX) and largest negative (MIN), MAE stands for Mean Absolute Error.

AAQZ-TZ) A@(CBS-QZ) Aw(CV) Aw(diff) Ae((T)
Ip/ttt

MIN -13.84 -6.56 -0.73 -22.49 -47.22
MAX 8.88 7.45 8.01 6.46 9.44
MAE 2.75 1.76 271 5.24 8.59
lIn/cce

MIN -10.69 -6.07 -0.93 -24.13 -46.32
MAX 6.91 10.64 7.69 2.07 60.35
MAE 3.69 3.20 271 7.26 11.52
1Vn/gtt

MIN -14.82 -8.34 -3.19 -21.67 -44.79
MAX 7.17 13.21 8.41 0.32 1411
MAE 2.83 2.19 2.86 6.40 9.16
11p/tct

MIN -16.62 -11.91 -1.19 -24.63 -48.08
MAX 9.77 14.18 8.13 2.73 11.64
MAE 3.19 2.78 2.75 6.56 9.49
Vn/gct

MIN -11.35 =7.79 -1.88 -20.75 -46.01
MAX 7.74 11.35 8.30 2.40 9.70
MAE 2.66 2.02 2.76 5.92 9.10
Vlplttc

MIN -12.91 -8.20 -0.67 -24.93 -47.27
MAX 8.42 7.16 7.95 3.35 11.65
MAE 2,77 1.86 271 6.26 9.11
All

MAE 2.98 2.30 2.75 6.27 9.50

aContributions as defined in the text.
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Table 7

Page 31

Contributions? to harmonic intensities (km/mol) for glycine isomers: MIN and MAX stands for signed errors,

largest positive (MAX) and largest negative (MIN), MAE stands for Mean Absolute Error.

Al(QZ-TZ) AI(CV) Aldiff) Al(T))
Ip/ttt

MIN -16.77 -8.16 -29.10 -84.67
MAX 25.90 8.55 29.19 79.91
MAE 2.98 0.89 3.16 5.28
lIn/cce

MIN -12.78 -275 -21.85 -70.57
MAX 19.14 4.65 35.35 26.24
MAE 2.35 0.62 3.91 5.93
1Vn/gtt

MIN -30.08 -454  -42.06 -33.83
MAX 33.65 9.56 29.07 29.81
MAE 3.58 0.91 4.61 5.37
11p/tct

MIN -15.57 -2.25 -27.22 -64.37
MAX 14.98 4.70 26.95 62.26
MAE 2.57 0.63 4.04 4.47
Vn/gct

MIN -17.61 -8.34 -2642 -20.11
MAX 16.53 11.51 29.22 21.27
MAE 2.70 0.85 3.87 4.07
Vlplttc

MIN -15.55 -8.30 -25.11 -27.32
MAX 19.95 8.07 23.67 18.81
MAE 2.94 0.83 3.80 3.95
All

MAE 2.85 0.79 3.90 4.85

aContributions as defined in the text.
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